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Abstract

The paper deals with a soft topological space which is de�ned over an
initial universe set U with a �xed set of parameters E. The main goal
is to point out that any soft topological space is homeomorphic to a
topological space (E × U, τ) where τ is an arbitrary topology on the
product E×U , consequently many soft topological notions and results
can be derived from general topology. Furthermore, in many papers
some notions are introduced by di�erent ways and it would be good to
give a uni�ed approach for a transfer of topological notions to a soft
set theory and to create a bridge between general topology and soft set
theory.
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1. Introduction

In 1999, Molodtsov [18], [19], [20] introduced a soft set theory as a new tool for
investigation of uncertainties where we can �nd a large range of applications of soft sets
in many di�erent �elds. There has been a rapid growth of interest in soft set theory,
its applications and its connection with another mathematical branches [1], [2], [4], [5],
[7], [8], [12], [13], [14], [15], [16], [23]. Moreover, there are many papers devoted to soft
topological spaces [3], [6], [9] ,[10], [11], [17], [21], [22]. The basic topological notions
such as the soft open and soft closed sets, soft subspace, soft closure and soft interior,
soft boundary, soft separation axioms, soft continuity have been introduced and the
investigation of their basic properties has been established.

We continue investigating the soft topological theory based on a corresponce between
set valued mappings and binary relations. Their close connection shows that both de�-
nitions of a soft set by a set valued mapping and by a relation are equivalent and there is
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only a formal di�erence between them. Furthemore, the binary relation view is very com-
fortable and many results concerning the properties of the operations on soft sets follow
from the set theory. On the other hand, the set valued mapping view gives possibilities
for a further investigation of the soft set theory in many directions, since the theory of set
valued mappings is strong and has many applications in mathematics (general topology,
generalized continuities, linear and dynamic programming, di�erential inclusions, �xe
point theory, statistics, economics and so on).

This paper shows that many results concerning soft topological spaces follow from
general topology. In particular, some notions introduced in soft topological spaces and
their consequences (the properties of soft open (closed) sets, interior and closure of soft
set, soft cluster points) are identical with corresponding notions known from general
topology. Some of them are di�erent (soft separation axioms, soft continuity) and they
are introduced by di�erent ways. The main goal of this paper is to give a uni�ed view for
a further development of soft topological spaces based on the results of general topology.

2. Relations, set valued mappings and their correspondence

Any subset S of a Cartesian product A × U is called a binary relation from a set
A to a set U . By R(A,U), we denote a set of all binary relations from A to U and
S[a] := {u ∈ U : [a, u] ∈ S}. The operations of sum S ∪ T , ∪t∈TSt, intersection S ∩ T ,
∩t∈TSt, complement Sc and di�erence S \ T of relations are de�ned in the obvious way
as in the set theory.

By F : A→ 2U we denote a set valued mapping from A to power set 2U of U . The set
of all set valued mappings from A to 2U is denoted by F(A,U). If F,G are two set valued
mappings, then F ⊂ G (F = G) means F (a) ⊂ G(a) (F (a) = G(a)) for any a ∈ A.

A graph of F is a set Gr(F ) := {[a, u] ∈ A × U : u ∈ F (a)} and it is a subset of
A × U , hence Gr(F ) ∈ R(A,U). So, any set valued mapping F determines a relation
from R(A,U) denoted by RF := {[a, u] ∈ A× U : u ∈ F (a)} = Gr(F ).

On the other hand, any relation S ∈ R(A,U) determines a set valued mapping FS
from A to 2U where FS(a) = S[a]. So, there is one-to-one correspondence between a
relation S from R(A,U) and a set valued mapping G from F(A,U), i.e.,

S 7→ FS , FS(a) = S[a], G 7→ RG, RG[a] = G(a),

FRG = G, RFS = S.

2.1. Remark. For H,G,Ft ∈ F(A,U), t ∈ T , we de�ne the following obvious set valued
mapping operations and we give also their binary relation equivalents.

(1) Sum: ∪t∈TFt : A→ 2U

(∪t∈TFt)(a) = ∪t∈TFt(a) = ∪t∈TRFt [a] = (∪t∈TRFt)[a], a ∈ A,

(2) Intersection: ∩t∈TFt : A→ 2U

(∩t∈TFt)(a) = ∩t∈TFt(a) = ∩t∈TRFt [a] = (∩t∈TRFt)[a], a ∈ A,

(3) Complement: Hc : A→ 2U

(Hc)(a) = U \H(a) = U \RH [a] = R c
H [a], a ∈ A,

(4) Di�erence: H \G : A→ 2U

(H \G)(a) = H(a) \G(a) = RH [a] \RG[a] = (RH \RG)[a], a ∈ A.

The next lemma is a consequence of Remark 2.1.

2.2. Lemma. For H,G,Ft ∈ F(A,U) and S, P,Rt ∈ R(A,U), t ∈ T , the following
equations hold.

(1) R∪t∈TFt = ∪t∈TRFt , F∪t∈tRt = ∪t∈TFRt ,
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(2) R∩t∈TFt = ∩t∈TRFt , F∩t∈tRt = ∩t∈TFRt ,
(3) RHc = R c

H , FSc = F c
S ,

(4) RH\G = RH \RG, FS\P = FS \ FP .

3. Set valued mapping and binary relation representation of soft

set

In this section we will consider soft sets over a common initial universe set U and
a �xed set of parameters E and a de�nition of a soft set is introduced by a set valued
mapping (see references).

3.1. De�nition. If F : E → 2U is a set valued mapping, then a pair (F,E) is called a
soft set over U with respect to a set of parameters E. The family of all soft sets over U
with respect to a set of parameters E is denoted by SS(E,U).

As we said above there is no di�erence between the graph of a set valued mapping F
and a relation Gr(F ) ⊂ E × U , which is a member of R(E,U). So, a soft set can be
de�ned equivalently as follows.

3.2. De�nition. A soft set over U with respect to a set E is any subset of E × U . So,
in this case a soft set is a member of R(E,U).

From De�nition 3.2 we can see a bene�t of both equivalent interpretations of a soft
set. Any operation known from a set theory setting can be used for a soft set (soft sets)
from R(E,U). In this case we deal with the soft sets as subsets of E × U and it is not
necessary to use the di�erent notations (symbols) for operations and many proofs can be
omitted. For example, the next operations on the soft sets form R(E,U), R ⊂ S, R = S,
R\S, R∩S, R∪S, ∪t∈TRt, ∩t∈TRt, Rc are the set theory ones and all known properties
from set theory hold in the soft set setting (for example associativity, commutativity,
distributivity, de Morgan laws and so on).

Equivalently, if a soft set is understood as a pair (F,U) (F ∈ F(E,U)), we can
de�ne standard operations on the set valued mappings (sum, intersection, complement,
di�erence) which have equivalent binary relation forms, as we see from Remark 2.1 and
Lemma 2.2.

3.3. Lemma. Let S ∈ R(E,U), G ∈ F(E,U) and (H1, E), (H2, E) ∈ SS(E,U). Then

(1) G(a) ⊂ S[a] for all a ∈ E i� G ⊂ FS i� RG ⊂ S i� a soft set (G,E) is a soft
subset of (FS , E),

(2) S[a] ⊂ G(a) for all a ∈ E i� S ⊂ RG i� FS ⊂ G i� a soft set (FS , E) is a soft
subset of (G,E),

(3) G(a) = S[a] for all a ∈ E i� G = FS i� RG = S i� a soft set (FS , E) is equal
to a soft set (G,E),

(4) a soft set (H1, E) is a soft subset of (H2, E) i� RH1 ⊂ RH1 i� H1 ⊂ H2,
(5) a soft set (H1, E) is equel to a soft set (H2, E) i� RH1 = RH1 i� H1 = H2.

4. Special soft sets, their notation and terminology

Let A ⊂ E, X ⊂ U . Then A×X is called a rectangle soft set. It represents a constant
soft set (a constant set valued mapping F with values F (a) = X if a ∈ A and F (a) = ∅
if a 6∈ A) denoted also c(A,X). Maximal (minimal) rectangle soft set with respect to the
set inclusion is E×U (∅×∅) called a full soft set (a null soft set). For the special cases of
a constant soft set c(A,X) ∈ R(A,U) we introduce the next notation and terminology.
Let A ⊂ U , X ⊂ U , e ∈ E, x ∈ U .
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(1) c(A, x) := A× {x} - a horizontal x-line on A,
(2) c(E, x) := E × {x} - a full horizontal x-line,
(3) c(e,X) := {e} ×X - a vertical e-line on X,
(4) c(e, U) := {e} × U - a full vertical e-line,
(5) c(e, x) := [e, x] - a point, denoted also P [e, x] or brie�y P .

4.1. Lemma. Let S ∈ R(E,U), G ∈ F(E,U). Then

(1) S = ∪e∈E
(
{e} × S[e]

)
= ∪e∈E [S ∩ c(e, U)] = ∪x∈U [S ∩ c(E, x)],

(2) RG = ∪e∈E
(
{e} ×G(e)

)
= ∪e∈E [RG ∩ c(e, U)] = ∪x∈U [RG ∩ c(E, x)].

5. Soft topological space

By [9],[10],[21] a soft topological space is a triplet (E,U, τ), where τ ⊂ SS(E,U) is
a topology. So, τ is represented by a family of set valued mappings F from F(E,U)
each of them has a binary relation representation RF from R(E,U). Put τE×U := {R ∈
R(E,U) : (FR, E) ∈ τ}.

On the other hand, if (E × U, τE×U ) is a topological space, then (E,U, τE,U ) is a
soft topological space, where τE,U = {(G,E) ∈ SS(E,U) : RG ∈ τE×U}. Then a soft
topological space can be characterized (de�ned) as follows:

5.1. Proposition. A triplet (E,U, τE,U ) is a soft topological space if and only if (E ×
U, τE×U ) is a topological space. For brevity we will denote τE×U as well as τE,U by τ and
the di�erence between both topologies is clear from notation (E,U, τ) (a soft topological
space, τ ⊂ SS(E,U)) and (E × U, τ) (a topological space, τ ⊂ R(E,U)).

Again, there is a one-to-one correspondence between the soft topological spaces and
the topological spaces and any soft topological space can be considered as an arbitrary
topological space on the product of two sets. The members from τ are called open sets
in a topological space (E×U, τ) or soft open sets in a soft topological space (E,U, τ). A
complement of an open set (a soft open set) is called a closed set (a soft closed set). It
can be formulated by the following lemma.

5.2. Lemma. A soft set (G,E) is soft open (soft closed) in a soft topological space
(E,U, τ) i� RG is open (closed) in a topological space (E × U, τ) and S is open (closed)
in a topological space (E ×U, τ) i� (FS , E) is soft open (soft closed) in a soft topological
space (E,U, τ).

Any topological notion known from general topology on the product of two sets can be
introduced (formulated) also for a soft topological space by direct reformulation. From
Proposition 5.1 we can see that many results in a soft topological space follow from
general topology, provided they are directly reformulated. It is not necessary to prove
the properties of the soft open and soft closed sets, the properties of the soft interior and
soft closure operators, soft cluster points, soft interior points, soft topological subspaces,
soft boundary sets, the soft separation axioms and so on, provided they are de�ned by
the same way as in topological spaces. But some notions are de�ned by a di�erent way
and we will discuss them below.

On the other hand, many interesting and important results follow from general topol-
ogy, provided τ is the Tychono� (product) topology on E × U . But if a topology τ on
E ×U is not Tychono�, many results do not hold. So, there are many open problems in
the soft topology setting and before researchers is a huge challenge.
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6. Comparison of some topological notions and soft topological

ones

In this section we show a few correspondences between some topological notions and
soft topological ones. For example, our expectation is that the soft closure of a soft set
(G,E) in a soft topological space (E,U, τ) agrees with the closure of RG in a topological
space (E × U, τ).

Recall a few basic topological notions. Let (E × U, τ) be a topological space. A set
H ∈ τ is an open neighborhood of a point P [a, x] ∈ E×U , if P [a, x] ∈ H and P [a, x] is a
cluster point of S ⊂ E × U , if any open neighborhood of P [a, x] intersects S. The set of
all cluster points of S in (A×U, τ) is equal to the closure of S denoted by cl(S), which is
the smallest closed set containing S or it is the intersection of all closed sets containing
S. A point P [a, x] ∈ E × U is an interior point of S, if there is an open set H ∈ τ such
that P [a, x] ∈ H ⊂ S and S is open, if any its point is an interior point of S. The sum
of all open subsets of S is called the interior of S denoted by int(S).

1. Open (closed) sets and interior (cluster) points of a set versus
soft open (closed) sets and a-interior (a-cluster) points of a soft set

By [9], an a-soft open neighborhood of x is any open soft set (G,E) such that x ∈ G(a),
equivalently RG is open and x ∈ RG[a] or P [a, x] ∈ RG. A point x ∈ U is said to be an
a-cluster point of (H,E) ∈ SS(E,U) if for every a-soft open neighborhood (G,E) of x,
(H,E) and (G,E) are not soft disjoint (there is e ∈ E such that H(e) ∩G(e) 6= ∅). The
set of all a-cluster points of (H,A) is denoted by cl(H, a), see [9]. Similarly, int(H, a) is
a set of all a-interior points of (H,E), see [9].

6.1. Lemma.

(1) x ∈ cl(H, a) if and only if P [a, x] ∈ cl(RH), so cl(H, a) = cl(RH)[a],
(2) x ∈ int(H, a) if and only if P [a, x] ∈ int(RH), so int(H, a) = int(RH)[a].

Consequently, cl(H, a) (int(H, a)) is a set of all cluster (interior) points of RH in (E ×
U, τ) from the full vertical a-line (cl(H, a) = cl(RH) ∩ c(a, U) (int(H, a) = int(RH) ∩
c(a, U))).

Proof. (1)
"⇒" Let x ∈ cl(H, a) and P [a, x] ∈ S ∈ τ . Then x ∈ FS(a). That means (FS , E) is

a-open neighborhood of x, so (H,E) and (FS , E) are not soft disjoint. Hence, there are
e ∈ E, y ∈ U such that y ∈ H(e) ∩ FS(e) or P [e, y] ∈ RH ∩ S. That means RH ∩ S 6= ∅
or P [a, x] ∈ cl(RH).

"⇐" Let P [a, x] ∈ cl(RH) and (G,E) be a-soft open neighborhood of x. Then P [a, x] ∈
RG ∈ τ and RH ∩ RG 6= ∅. So, there are e ∈ E and y ∈ U such that y ∈ RH [e] ∩ RG[e],
hence (H,E) and (G,E) are not soft disjoint, so x ∈ cl(H, a).

Item (2) is similar.
�

6.2. Lemma. Let cl(G,E), int(G,E) be a soft closure, a soft interior of a soft set
(G,E), respectively (see [9]). Then

(1) cl(G,E) = (Fcl(RG), E),
(2) int(G,E) = (Fint(RG), E).

Proof. (1) By the de�nition of the soft closure ([9]) and by Lemma 5.2, cl(G,E) is the
intersection of all soft closed supersets (Gt, E), t ∈ T of (G,E) if and only if ∩t∈TRGt is
the intersection of all closed (in (E×U, τ)) supersets RGt of RG. That means ∩t∈TRGt =
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cl(RG) is the graph of a multivalued mappingH for which cl(G,E) = (H,E), so Fcl(RG) =
H.

(2) is similar.
�

Since (Fcl(RG), E) = cl(G,E), cl(G,E) is a soft set given by a set valued mapping
with the values cl(RG)[a], a ∈ E which is equal to a set valued mapping RG,E de�ned in
[9] as RG,E(a) = G(a)∪ cl(G, a) = cl(G, a) = cl(RG)[a] (see Lemma 6.1). So, cl(G,E) =
(RG,E , E). Similarly, RG,E(a) = G(a)∩int(G, a) = int(RG)[a] for int(G,E) = (RG,E , E)
see [9]. So Proposition 3.9 and 3.12 of [9] are clear.

2. Separation axioms

In the literature ([11], [17], [21]) we can see notation x ∈ (F,E), where F is a set
valued mapping from E to 2U and x ∈ U . It means x ∈ F (e) for any e ∈ E. So, the
notation x ∈ (F,E) is in fact the inclusion c(E, x) ⊂ RF . It was used in the de�nitions
of soft separation axioms in a soft topological space. In general topology, the separation
axioms separate two di�erent points or a closed set and a point or two disjoint closed
sets. For example, by [21], (E,U, τ) is called soft T2, if for every distinct points x, y of
U there are two soft open sets (F,E) and (G,E) such that x ∈ (F,E), y ∈ (G,E) and
(F,E) and (G,E) are soft disjoint. That means it separates two full horizontal lines
c(E, x) and c(E, y). Further, if (F,E) is a soft closed set and x 6∈ (F,E), a soft regularity
introduced in [21] separates two sets, namely c(E, x) and RF which need not be disjoint.
It is a very strict de�nition as we see from the next lemma.

6.3. Lemma. Let (E,U, τ) be a soft topological space and (F,E) be a soft closed set.
If there are e1, e2 ∈ E and a point y ∈ U such that y ∈ F (e1) and y 6∈ F (e2) (it is
su�cient (E,U, τ) is not indiscrete), then (E,U, τ) is not soft regular (in the sense of
[21]). Consequently, if some soft topological space over U is soft regular, then any soft
closed set (F,E) is constant, i.e., there is a set X ⊂ U such that F (e) = X for any
e ∈ E.

Proof. Suppose (E,U, τ) is soft regular. It is clear y 6∈ (F,E). Then there are two
soft open and soft disjoint sets (G,E) containing y and (H,E) containing (F,E), but
y ∈ G(e1) ∩H(e1), a contradiction.

�

The next theorem shows that soft regularity in the sense of [21] seems to be a rather
strong de�nition.

6.4. Theorem. If a non indiscrete soft topological space is soft regular, then any soft
closed set is a constant soft set (it is of the form c(E,X)).

In [10], the authors introduced other soft separation notions, namely T0, T1, T2, T3.
We recall only two of them (for further see [10]). A soft topological space (E,U, τ) is
called soft T2, if for any distinct points x and y of U and for every a ∈ E there exist two
soft open sets (G,E) and (H,E) such that x ∈a (G,E), y ∈a (H,E) and G(a)∩H(a) = ∅
(z ∈a (G,E) means that z ∈ G(a) and z 6∈a (G,E) means that z 6∈ G(a)). In this case we
separate a couple of the points P [a, x] and P [a, y] from full vertical a-line c(a, U) by two
soft open sets "disjoint at a". This is a di�erent de�nition of a soft T2-space introduced in
[21]. Further by [10], a soft topological space (E,U, τ) is called a soft T3-space if for every
point x ∈ U , for every a ∈ E and for every soft closed set (Q,E) such that x 6∈a (Q,E)
there exist two soft open sets (G,E) and (H,E) such that x ∈a (G,E), Q(a) ⊂ H(a),
and G(a) ∩ H(a) = ∅. In this case the sets G(a) ∩ c(a, U) and H(a) ∩ c(a, U) are two
subsets of E × U which are open in a subspace (c(a, U), τa) of (A× U, τ).
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Generally, for any full vertical line c(e, U), topology τ induces a relative topology τe
on c(e, U), so also on U (for di�erent e1, e2 the induced topological spaces (U, τe1) and
(U, τe2) can be di�erent). So we have the next theorem (which does not hold generally.
” ⇒ ” follows from hereditary of Ti, i = 0, 1, 2, 3 and ” ⇐ ” follows from a character of
the de�nitions of the soft separation axioms in [10]).

6.5. Theorem. A soft topological space (E,A, τ) is soft Ti (in the sense of [10]) if and
only if the topological space (U, τe) is Ti (i = 0, 1, 2, 3) for any e ∈ E.

Any subset S of (E ×U, τ) induces relative topology τS on S. Since the properties Ti
(i = 0, 1, 2, 3) are hereditary, Proposition 3.13 of [10] holds for any S ⊂ E × U not only
for E × Y (see De�nition 3.12 in [10] or [21]).

3. Soft e-continuity of f and continuity of e× f ,
soft continuity of Φef

In [3], [9], [10], [13], [22] for two functions e : E1 → E2, f : U1 → U2, a function Φef
from SS(E1, U1) to S(E2, U2) was de�ned (denoted also fpu in [22], ϕφ in [3]). We will
show a connection between Φef and the product e× f : E1 × U1 → E2 × U2, de�ned as
(e× f)([e1, x1]) = [e(e1), f(x1)]. De�ne two soft mappings:

Se×f : SS(E1, U1)→ SS(E2, U2) as Se×f ((H,E1)) = (F(e×f)(RH ), E2),

S−1
e×f : SS(E2, U2) → SS(E1, U1) as S−1

e×f ((G,E2)) = (F(e×f)−1(RG), E1).

6.6. Theorem. Let (H,E1) ∈ SS(E1, U1) and (G,E2) ∈ SS(E2, U2). Then

(1) Se×f = Φef , i.e., Φef ((H,E1)) = (F(e×f)(RH ), E2),

(2) S−1
e×f = Φ−1

ef , i.e., Φ−1
ef ((G,E2)) = (F(e×f)−1(RG), E2).

Proof. Let H ∈ F(E1, U1) and RH be a corresponding relation, so RH [a] = H(a). Then,
by Lemma 4.1 (1),

(e× f)(RH) = (e× f)
(
∪a∈E1 ({a} ×RH [a])

)
=

= ∪a∈E1(e× f)
(
{a} ×RH [a]

)
= ∪a∈E1

(
e(a)× f(RH [a])

)
.

That means (e × f)(RH) is a subset of E2 × U2 and corresponding set valued mapping
denoted by G : E2 → U2 has its values given by

[
(e× f)(RH)

]
[p2] for any p2 ∈ E2.

G(p2) =
[
(e× f)(RH)

]
[p2] =

[
∪a∈E1

(
e(a)× f(RH [a])

)]
[p2] =

= ∪a∈E1

[
e(a)× f(RH [a])

]
[p2] = ∪{f(RH [a]) : e(a) = p2} =

= ∪{f(H(a)) : a ∈ e−1(p2)}.
So, (G,E2) is the image of (H,E1) under Φef as it was de�ned in [10]. So, Φef ((H,E1)) =
(G,E2) = (F(e×f)(RH ), E2) (see Lemma 3.3 (3)) or Φef = Se×f .

Similarly we can show (see [10]) that Φ−1
ef ((G,E2)) = (D,E1),

whereD(p1) = f−1(G(e(p1))) = (e×f)−1(RG)[p1]. So, Φ−1
ef ((G,E2)) = (F(e×f)−1(RG), E1)

or Φ−1
ef = S−1

e×f .
�

Proposition 2.18 and 2.19 of [9] (Proposition 2.8 of [10]) follow from the properties of
the image and the inverse image, which hold generally for any function.

In [10], for two soft topological spaces (E1, U1, τ) and (E2, U2, σ) a de�nition of a soft
e-continuity of f was introduced by the following way.
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6.7. De�nition. Let (E1, U1, τ) and (E2, U2, σ) be two soft topological spaces and x ∈
U1, e : E1 → E2. A map f : U1 → U2 is called soft e-continuous at the point x if for
every a ∈ E1 and every e(a)-soft open neighborhood (G,E2) of f(x) in (E2, U2, σ) there
exists an a-soft open neighborhood (H,E1) of x in (E1, U1, τ) such that Φef ((H,E1)) is
a soft subset of (G,E2). If the map f is soft e-continuous at any point x ∈ E1, then we
say that the map f is soft e-continuous.

Now we reformulate the de�nition above in the corresponding topological spaces (E1×
U1, τ) and (E1 × U2, σ).

6.8. De�nition. Let (E1 × U1, τ) and (E1 × U2, σ) be two topological spaces, x ∈ U1,
e : E1 → E2. A map f : U1 → U2 is called soft e-continuous at the point x if for every
a ∈ E1 (i.e., for every [a, x] ∈ c(E1, x)) and every open set G ∈ σ containing [e(a), f(x)]
there exists an open set H ∈ τ containing [a, x] such that (e× f)(H) ⊂ G. If the map f
is soft e-continuous at any point x ∈ U1, then we say that the map f is soft e-continuous.

Since Φef ((H,E1)) = (F(e×f)(RH ), E2) (see Theorem above), Φef ((H,E1)) is a soft
subset of (G,E2) i� (e × f)(RH) ⊂ RG. That means the soft e-continuity of f at x
means that the set of all continuity points (in the general topology sense) of e × f :
(E1 × U1, τ)→ (E2 × U2, σ) contains a full horizontal x-line c(E1, x). Since Φef = Se×f
and Φ−1

ef = S−1
e×f , the next theorem is clear and Propositions 2.18 and 2.19 of [10] follows

from standard equivalent conditions of continuity.

6.9. Theorem. The next conditions are equivalent

(1) A function f is soft e-continuous (in the sense of [10]),
(2) e× f : (E1 × U1, τ)→ (E2 × U2, σ) is continuous (in the topological sense),
(3) Φ−1

ef ((G,E2)) ∈ τ for any (G,E2) ∈ σ.

Finally, we recall a notion of a soft set point mentioned in [22]. A soft point, denoted by
eF is a soft set for which F (e) 6= ∅ and F (a) = ∅ for all a ∈ E\{e} and eF ∈ (G,E) means
F (a) ⊂ G(a) for all a ∈ E. So, a soft point is in fact any vertical e-line c(e,X) = {e}×X
on X, for X 6= ∅. By [22], Φef (= fpu) is soft continuous (soft pu-continuous see [22]) at
a soft point eF if for any soft open set (G,E2) containing Φef (eF ) there is a soft open set
(H,E1) containing eF such that Φef ((H,E1)) is a soft subset of (G,E2) and Φef is soft
continuous if it is so at any soft point. Since a point P [e, x] is also a soft point (namely
eF where F (a) = ∅ for a 6= e and F (e) = {x}), soft continuity of Φef in the sense of
[22] implies a topological continuity of e× f at any point P [e, x] ∈ E ×U . The opposite
implication also holds, as we prove in the next theorem.

6.10. Theorem. A function Φef (= fpu) is soft continuous (in the sense of [22]) if and
only if e× f is continuous (in the topological sense). Consequently, the soft continuity is
equivalent to the soft e-continuity.

Proof. It is su�cient to prove "⇐". Let gK (i.e., K(g) 6= ∅ and K(e) = ∅ for e 6= g)
be a soft point and (G,E2) be a soft open superset of Φef (gK). Since RG is an open
set in E2 × U2, RG is open neighborhood of a point [e(g), f(x)] for any x ∈ K(g). Since
e × f is continuous at [g, x], for any x ∈ K(g) there is an open subset Hx of E1 × U1

containing [g, x] such that (e× f)(Hx) ⊂ RG. Put H := ∪x∈K(g)Hx ⊃ RgK . Then H is
open in E1 ×U1 and (e× f)(H) ⊂ RG, so (F(e×f)(H), E2) is a soft subset of (G,E2) (see
Lemma 3.3 (2)). Since (FH , E1) is a soft open set containing gK (see Lemma 3.3 (1)),
Φef (FH , E1) = (F(e×f)(H), E2) (see Theorem 6.6 (1)) is a soft subset of (G,E2).

�
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7. Conclusion

This paper deals with the study of the theory of soft topological spaces and the
main result is to show a deep connection between a soft topology τ on SS(E,U) and
a topology τE×U = {R ⊂ E × U : (FR, E) ∈ τ} on the product E × U . Any soft
topological space (E,U, τ) can be considered as a topological space on E × U and any
topological space (U, τ) can be considered as a soft topological space over U with respect
to a singleton E = {e}. From this correspondence between (E,U, τ) and (E × U, τE×U ),
it follows that many results from soft set theory are consequences of the topological
results. In fact, (E,U, τ) and (E × U, τE×U ) are homeomorphic. A homeomorphism
h : (E × U, τ) → (E,U, τ) is given by h([a, x]) = (Fc(a,x), E), where Fc(a,x) is given by
Fc(a,x)(e) = {x} for e = a and Fc(a,x)(e) = ∅ for e 6= a.

Similarly, if E = {e}, then (E,U, τ) and (U, τ) are homeomorphic and a homeomor-
phism h : (U, τ) → (E,U, τ) is de�ned by h(x) = (Fc(e,x), E), x ∈ U . This homeomor-
phism is a very good tool for �nding a soft topological space which has a soft property
P1 (for example soft Ti) and it has not a soft property P2 (soft Tj , i < j). Then, it is
su�cient to �nd a topological space which has the property P1 (Ti) and it has not the
property P2 (Tj , i < j, i, j = 1, 2, 3, 4).
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