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An asymptotic criterion for third-order dynamic
equations with positive and negative coefficients
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Abstract
We establish a criterion for the asymptotic properties of all bounded
solutions to a class of third-order linear dynamic equations with positive
and negative coefficients. New theorem improves and complements the
related results reported in the literature. An example is provided to
illustrate the main results.
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1. Introduction
In this paper, we deal with the asymptotic behavior of all bounded solutions to a class

of third-order linear dynamic equations with positive and negative coefficients

(1.1)
(
rx∆∆

)∆

(t) +B(t)x(β(t))− C(t)x(γ(t)) = 0,

where t0 ∈ T and t ∈ [t0,∞)T. Throughout the paper, we always assume that the follow-
ing hypotheses are satisfied:

(h1) r ∈ C1
rd([t0,∞)T, (0,∞)), B,C ∈ Crd([t0,∞)T, [0,∞)), and∫ ∞

t0

∆t

r(t)
=∞;(1.2)

(h2) β, γ ∈ Crd([t0,∞)T,T) are strictly increasing functions such that limt→∞ β(t) =
limt→∞ γ(t) =∞;

(h3) δ := γ−1◦β ∈ C1
rd([t0,∞)T,T) is strictly increasing with δ([t0,∞)T) = [δ(t0),∞)T

and δ(t) < t, the notation γ−1 stands for the inverse of the function γ;
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(h4) D ∈ Crd([t0,∞)T, (0,∞)), where D(t) := B(t)− δ∆(t)C(δ(t)).

A solution of (1.1) is said to be oscillatory if it is neither eventually positive nor
eventually negative; otherwise, it is called nonoscillatory. Hilger [11] initiated the theory
of time scales (which unifies continuous and discrete analysis). Agarwal et al. [3] and
Bohner and Peterson [5] summarize and organize much of the time scale calculus and
advances in dynamic equations on time scales.

In recent years, there has been an increasing interest in obtaining sufficient conditions
for the oscillatory and asymptotic behavior of solutions to various classes of differential
and dynamic equations on time scales. We refer the reader to [1,2,4,6–10,12–27] and the
references cited therein. For the study of asymptotic properties of third-order dynamic
equations, Agarwal et al. [1] and Erbe et al. [8] established Hille and Nehari type criteria
for third-order dynamic equations

(a(rx∆)∆)∆(t) + p(t)x(τ(t)) = 0

and
x∆3

(t) + p(t)x(t) = 0,

respectively. Assuming that γ is a quotient of odd positive integers, Agarwal et al. [4],
Hassan [10], and Li et al. [21] studied a third-order nonlinear delay dynamic equation

(a((rx∆)∆)γ)∆(t) + f(t, x(τ(t))) = 0.

Şenel [26] examined a third-order dynamic equation

(a(rx∆)∆)∆(t) + p(t, x(t), x∆(t)) + F (t, x(t)) = 0.

Grace et al. [9] considered a third-order neutral delay dynamic equation

(r(t)(x(t)− a(t)x(τ(t)))∆∆)∆ + p(t)xγ(δ(t)) = 0.

So far, there are few results regarding the oscillation of dynamic equations with pos-
itive and negative coefficients. Karpuz and Öcalan [14] investigated a first-order delay
dynamic equation

x∆(t) +B(t)x(β(t))− C(t)x(γ(t)) = 0.

Chen et al. [7] considered a second-order nonlinear dynamic equation

(rx∆)∆(t) + p(t)f(x(ξ(t)))− q(t)h(x(δ(t))) = 0.

Karpuz and Öcalan [16] and Karpuz et al. [17] studied the first-order neutral delay
dynamic equations

[x(t)−A(t)x(α(t))]∆ +B(t)x(β(t))− C(t)x(γ(t)) = 0

and

[x(t) +A(t)x(α(t))]∆ +B(t)F (x(β(t)))− C(t)G(x(γ(t))) = ϕ(t),

respectively. Karpuz et al. [19] obtained some necessary and sufficient conditions which
guarantee that every solution y of a neutral differential equation

(y(t)− p(t)y(r(t)))(n) + q(t)G(y(g(t)))− u(t)H(y(h(t))) = f(t)

is either oscillatory or satisfies limt→∞ y(t) = 0.
In the real world, one can predict dynamic behavior of solutions of third-order partial

differential equations by using the qualitative behavior of the third-order differential
equations; see, for instance, Agarwal et al. [2]. In order to develop oscillation theory
of third-order dynamic equations with positive and negative coefficients, we present an
asymptotic test for equation (1.1) in the next section. As usual, all functional equalities
and inequalities considered in the paper are assumed to hold for all t large enough.



1159

2. Main results
In what follows, the notation δ−1 stands for the inverse of the function δ and

z(t) := x(t)−
∫ ∞
t

∫ ∞
v

1

r(u)

∫ u

δ(u)

B(δ−1(s))

δ∆(δ−1(s))
x(γ(s))∆s∆u∆v

for t ∈ [t0,∞)T.

2.1. Theorem. Assume that conditions (h1)–(h4) are satisfied and let

(2.1) lim
t→∞

∫ ∞
t

[σ(v)− t]F (v)∆v <∞,

where

F (v) :=
1

r(v)

∫ v

δ(v)

B(δ−1(s))

δ∆(δ−1(s))
∆s.

Then every bounded solution x of (1.1) is either oscillatory or limt→∞ x(t) exists (finite).

Proof. Without loss of generality, we may assume that x is a bounded eventually
positive solution of (1.1). Then there exists a t1 ∈ [t0,∞)T such that x(t) > 0, x(β(t)) >
0, and x(γ(t)) > 0 for all t ∈ [t1,∞)T. Differentiation of z yields

z∆(t) = x∆(t) +

∫ ∞
t

1

r(u)

∫ u

δ(u)

B(δ−1(s))

δ∆(δ−1(s))
x(γ(s))∆s∆u

and

z∆∆(t) = x∆∆(t)− 1

r(t)

∫ t

δ(t)

B(δ−1(s))

δ∆(δ−1(s))
x(γ(s))∆s.

Writing the latter equality in the form

r(t)z∆∆(t) = r(t)x∆∆(t)−
∫ t

δ(t)

B(δ−1(s))

δ∆(δ−1(s))
x(γ(s))∆s.

Using (1.1) and [5, Theorem 1.93], we deduce that

(rz∆∆)∆(t) = (rx∆∆)∆(t)− B(δ−1(t))

δ∆(δ−1(t))
x(γ(t)) +B(t)x(β(t))

= −B(t)x(β(t)) + C(t)x(γ(t))− B(δ−1(t))

δ∆(δ−1(t))
x(γ(t)) +B(t)x(β(t))

= C(t)x(γ(t))− B(δ−1(t))

δ∆(δ−1(t))
x(γ(t))

= −
(
B(δ−1(t))

δ∆(δ−1(t))
− C(t)

)
x(γ(t)).

Then, we obtain

(rz∆∆)∆(t) = − D(δ−1(t))

δ∆(δ−1(t))
x(γ(t)) < 0,(2.2)

which implies that rz∆∆ is decreasing, and thus the sign of z∆∆ is fixed. Next, we assert
that there exists a t2 ∈ [t1,∞)T such that z∆∆(t) > 0 for t ∈ [t2,∞)T. If z∆∆ < 0, then
there exist a t3 ∈ [t1,∞)T and a constant M > 0 such that, for t ∈ [t3,∞)T,

z∆∆(t) ≤ − M

r(t)
< 0.
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Integrating the latter inequality from t3 to t, we obtain

z∆(t) ≤ z∆(t3)−M
∫ t

t3

∆s

r(s)
.

Letting t→∞ and using condition (1.2), we have limt→∞ z
∆(t) = −∞. It follows from

inequalities z∆∆ < 0 and z∆ < 0 that

lim
t→∞

z(t) = −∞,

which contradicts the fact that z is bounded. Hence, there exists a t4 ∈ [t1,∞)T such
that, for t ∈ [t4,∞)T,

(2.3) z(t) > 0, z∆(t) < 0, z∆∆(t) > 0, (rz∆∆)∆(t) < 0,

or

(2.4) z(t) < 0, z∆(t) < 0, z∆∆(t) > 0, (rz∆∆)∆(t) < 0.

Assume first that (2.3) holds. Using condition (2.1) and the definition of z, we conclude
that there exists a constant ` ≥ 0 such that limt→∞ x(t) = limt→∞ z(t) = `. Assume
now that (2.4) holds. Then

x(t) ≤
∫ ∞
t

∫ ∞
v

1

r(u)

∫ u

δ(u)

B(δ−1(s))

δ∆(δ−1(s))
x(γ(s))∆s∆u∆v.

On the other hand, by virtue of [12, Lemma 2.1],∫ ∞
t

∫ ∞
v

1

r(u)

∫ u

δ(u)

B(δ−1(s))

δ∆(δ−1(s))
∆s∆u∆v =

∫ ∞
t

[σ(v)− t]F (v)∆v.

It follows now from condition (2.1) that limt→∞ x(t) = 0. This completes the proof.

2.2. Example. For t ≥ t0, consider a third-order differential equation

x′′′(t) +
b

t4
x(t)− c

t5
x(2t) = 0,(2.5)

where b and c are positive constants. It is not difficult to verify that all assumptions of
Theorem 2.1 are satisfied. Hence, every bounded solution x of (2.5) is either oscillatory
or limt→∞ x(t) exists (finite).

3. Conclusions
Most oscillation and asymptotic results reported in the literature for third-order dy-

namic equation (1.1) and its particular cases have been obtained in the case where
C(t) = 0. In this paper, we establish an asymptotic criterion for equation (1.1) un-
der the assumption that C(t) ≥ 0, which, in a certain sense, improves and complements
the related results in the cited papers.

We stress that the study of asymptotic behavior of equation (1.1) in the case C(t) ≥ 0
brings additional difficulties. The main difficulty one encounters lies in how to obtain
inequality such as (2.2). Since z∆ < 0, it is hard to establish criteria which ensure that
all bounded solutions of (1.1) are just oscillatory. The question regarding the study of
sufficient conditions which guarantee that all bounded solutions of (1.1) tend to zero
remains open at the moment.

It is not easy to use the technique exploited in this paper for deriving similar results
for the odd-order dynamic equation

(3.1)
(
rx∆n−1

)∆

(t) +B(t)x(β(t))− C(t)x(γ(t)) = 0,
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where n ≥ 3 is an odd natural number. Therefore, an interesting problem for future
research can be formulated as follows.

(P ) Is it possible to establish similar asymptotic tests for equation (3.1)?
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