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Morita equivalence based on Morita context for
arbitrary semigroups
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Abstract

In this paper, we study the Morita context for arbitrary semigroups. We
prove that, for two semigroups S and T, if there exists a Morita context
(S,T,P,Q, T, 1) (not necessary unital) such that the maps 7 and y are
surjective, the categories US-FAct and UT-FAct are equivalent. Using
this result, we generalize Theorem 2 in [2] to arbitrary semigroups.
Finally, we give a characterization of Morita context for semigroups.
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1. Introduction

Morita theory characterizes equivalences between module categories over rings with
1. Kyuno [5] studied Morita theory for rings without 1. Knauer [4] and Banschewski
[1] independently generalized this theory to monoids. Banschewski [1] proved that for
two semigroups S and 7, if the two categories S-Act and T-Act are equivalent, then S
is isomorphic to 7. Talwar [8] extended Morita theory to semigroups with local units.
He proved that for two semigroups with local units S and 7T, the two categories F'S-Act
and FT-Act are equivalent <= there is a unitary Morita context (5,7, P, Q, T, 1) such
that the maps 7 and p are surjective, where F'S-Act = {M € S-Act|]SM = M and S ®
Homg (S, M) = M}. In 7], Talwar investigated strong Morita equivalence for factorisable
semigroups. He got that if there is a unitary Morita context (S, T, P,Q, T, u) such that
the maps 7 and p are surjective, then S and T are strongly Morita equivalent. Chen
and Shum [2] showed that, for factorisable semigroups S and T, if there exists a unitary
Morita context (S,T,P,Q, T, ) such that the maps 7 and p are surjective, then the
categories US-FAct and UT-FAct are equivalent.

In this paper, we mainly use the techniques of paper [5] to study the corresponding
problems for arbitrary semigroups. The paper is constructed as follows: In Section 2, we
recall some basic notions; In Section 3, we give the main results of the paper. We prove
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that, for two semigroups S and T, if there exists a Morita context (S,7T, P,Q, T, u) (not
necessary unital) such that the maps 7 and p are surjective, the categories US-FAct and
UT-FAct are equivalent. Also, we extend Theorem 2 in [2] to arbitrary semigroups. In
Section 4, we give a characterization of Morita contexts for semigroups.

2. Preliminaries

Let S be a semigroup. A set M is a left S-act if there is a function from S x M to M,
denoted (s,m) — sm, such that (st)m = s(tm) (Vs,t € S,m € M). If M is a left S-act,
we write sM. A left S-act M is said to be unitary if M = SM. Similarly, we can define
right acts over semigroups.

Let M and N be two S-acts. A map f: M — N is an S-morphism if f satisfies
f(lsm) = sf(m), (VYm € M,s € S). Let Homg(M, N) denote the set of all S-morphisms
from sM to sN. Denote by Endgs (M) the set of all S-morphisms from M to itself. Let
S-Act denote the category of left acts over a semigroup S.

The unital left S-acts together with the S-morphisms form a full subcategory of S-Act,
which we shall denote by US-Act.

Let S and T be two semigroups. An S-T-biact is a set M which is both left S-act
and right T-act and (sm)t = s(mt) for all s € S,t € T and all m € M. A biact is
said to be unitary if it is left and right unitary. If M and N are S-T-biact, a map
f: M — N is called biact morphism if f satisfies f(sm) = sf(m) and f(mt) = f(m)t
forallme M,se S,teT.

Let S be a semigroup and M € S-Act. An equivalence R on S is a congruence if for
all s,t,a €S,

(s,t) € R= (as,at) € R, (sa,ta) € R.
An equivalence p on sM is a congruence if for all s € S,m,n € M,
(m,n) € p= (sm,sn) € p.

If p is a congruence on M, then M/p is also a left S-act. The act M/p is called a quotient
act. Let € be the identity congruence on M.
Let S be a semigroup and M € S-Act. According to [2], we use the following notations.
Cv =A{(z,y) € M x M|sx = sy,Vs € S};
US-FAct = {M € US-Act|Cy = €}.
Obviously, (ar is a congruence on M.
For a right S-act As and a left S-act sB, the tensor product A ®s B exists. In fact,
A®s B = (A x B)/o, where o is the equivalence on A x B generated by
R ={((zs,y), (z,sy))la € A,b € B,s € S}.

We denote the element (z,y)o of AQs B by z®y.
By Proposition 1.4.10 of [3], we have that a ® b=c®d <= (a,b) = (¢,d) or there
is a sequence
(a,b) = (x1,91) = (22,42) = -+ = (@n, yn) = (¢, d)

such that either ((zi,v:), (Tit1,v%i4+1)) € T or ((Ti+1,Yi+1), (xs,v:)) € T, where 1 < ¢ <

" If1;4 is a right S-act and B is an S-T-biact, then A ®s B is a right T-act with
(a®b)t =a® bt;

similarly, if A is a T-S-biact and B is a left S-biact, then A ®s B is a left T-act with
tla®b) =ta®b

(Proposition 3.1, [8]).
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3. Morita equivalence for semigroups

In this section, S and T are arbitrary semigroups. If there exists a Morita context
(S,T,P,Q, T, ), we shall prove that the two categories F' : US-FAct = UT-FAct : G are
equivalent. Furthermore, if (S,T, P,Q,, ;1) is unital, we get that F' = (Q ® —)/{oe-)
and G = (P ® —)/({(pg—)- This generalizes Theorem 2 in [2].

3.1. Definition. [8] Let S and T be two semigroups. If there exist sets P and @, such
that
1) P is an S-T-biact, @Q is a T-S-biact;
2) there are biact morphisms 7 : PQrQ — S and p : Q®sP — T written correspondingly
as
T(p®q) =<p,g> wWq@p)=I[q,p]

such that

<p,q>p2=pi-(gp2], a,pl e =q <pg>
for each p,p1,p2 € P,q,q1,q2 € Q. Then (S, T, P,Q, T, ) is called a Morita context.

By Proposition 3.1 in [8], we have 7(p ® q¢)s = 7((p ® q)s) = 7(p ® ¢s), where p €
P,qg e @,s € S. We will use this fact in the proof of Lemma 3.2 and Lemma 3.4.

3.2. Lemma. Let (S,T,P,Q,T,u) be a Morita context, where 7 and p are surjective.
Then —
1) For all M € US-FAct, set U = Q x M. Then (Q, M) = (Q x M)/pgxnm) € UT-FAct,

where poxar = {((g;m), (¢ ,m")) €U x Ulr(p@ ¢)m = 7(p® ¢ )m',¥p € P}.

o~

2) For all N € UT-FAct, set V.= P x N. Then (P,N) = (P x N)/ppxn) € UT-FAct,
where ppxn = {((p,;n), (p,n)) €V x V]u(g®@p)n = plg@p )n Vg € Q}.

—~— -

Proof 1) 1) Clearly, pu is an equivalence on U. Set (QQ, M) = U/py. Denote by (r,m)
the equivalence class (r,m)pu. For t € T, we can write t = u(q® p) since p is surjective.

For all (q,m) € (Q,M),u(q @p') €T, define

wg ©p)(gm) = (g7 @q)m).

If (q1,m1) = (g2, m2), for all p € P, we have < p,q1 > m1 =< p,q2 > ma. Hence, the
definition is independent of the choice of equivalence class representative.
If (g1 ® p1) = (g2 ® p2), for all x € P, we have

<z,q1 ><pr,g>m = <uz,q <pi,q>>m=<uz]|q,pi1]g>m
= <(q,p2lg >m=<z,q2 ><p2,q >m.

Hence,

(g1, <p1,q>m) = (g2, < p2,q >m).
Therefore, the definition is well-defined.
For all p(qn @ p1), p(g2 @ p2) € T, (¢, m) € (Q, M), we have

(1(qr ® p1)p(g2 ® p2))(g,m) = p([q1, p1]lg2 ® p2)(q, m) = ([q1,P1]g2, T(P2 ® ¢)m)

and

wlqr ® p1)(p(ge ® p2)(g,m)) = u(gr ® p1)(gz, T(p2 ® ¢)m) = (q1, 7(p1 ® g2)7(P2 ® ¢)m).

Then (1(q1 @p1) (g2 ®p2))(,m) = p(gr @p1) (g2 ®p2)(q, m)). This means that (Q, M)
is a left T-Act.

i) Suppose ((q,m), (¢',m’)) € C@Tﬁ)' For all y € Q,x € P, we have

wy @ x)(g,m) =y @z)(q',m).
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That s,

(.7 ®@q)m) = (y,7(x ® ¢ )m").
This implies that

’

TpRYT@gm=T(Eey)T(z®q)m
for all p € P. Since M € US-FAct, we have

’

Tz@gm=1(z® q/)m

For arbitrary of z, we get that (g,m) = (¢',m’).

i11) For all m € M, since M = SM and 7 is surjective, we have m = 7(p ® q/)m
where m’ € M. For all (¢,m) € (Q, M), we have

(@m) = (0.7 ® ¢ )m) = ua@p)(a.m') € T(Q, M),
Hence, we get T(Q,M) (Q M). Therefore, (Z),\]\Z) € UT-FAect.
2) For all (p,n) € (P, N),7(p ®q) €S, define

mp ®q)(p,n) = (', uld @p)n).
Similarly, we can prove (/P,\JV) € US-FAct.

3.3. Theorem. Let S and T be two semigroups. If (S, T, P,Q, T, 1) is a Morita context
with T and p surjective, then we have the category equivalence F : US-FAct = UT-FAct :
G, where F = (Q x —=)/pox—) and G = (P x =)/ppx—)-

Proof Let f : M —s N be an S-morphism, where M, N € US-FAct. Define f :

F((g,m)) = (q, f(m)).
Suppose (¢,m) = (¢',m’). For all p € P, we have T(p ® g)m = 7(p ® q/)m/. This
implies that f(r(p ® ¢)m) = f(r(p ® q')m'). Since f is an S-morphism, it follows that

T(p ® q)f(m) = 7(p @ ¢ ) f(m). Hence, (g, f(m)) = (¢, f(m")). This proves that f is
well-defined.

It is easy to check that f is a left T-morphism.

Let f U — V and and g : V — W be two S-morphlsms where U, V,W € US-FAct.

Let f : (Q, U) — (Q V) and g : (Q V) — (Q W) be T-morphisms determined by f
and g respectlvely Then gf gf In fact, since gf : U — W is an S- morphlsm we have
a T-morphism gf (Q U) — (Q W). This implies that dom(gf) = (Q, U) = dom(gf).
For all (¢, u) € (Q U), we have

9f (@) = (¢, 9 (w)) = §(q, f(w)) = §f(q, u).

Define F : US-FAct — UT-FAct by F(M) = (Q x M)/paxan = (Q, M) and
F(f) = f, for all M, N € US-FAct, f € Homg(M, N). Then F is a functor.
Similarly, for U,V € UT-FAct, if f : U — V is a T-morphism, we can define S-

morphism f: (P,U) — (P,V) by
T w) = (p, [ ().
Also, for U, V,W € UT-FAct, if f: U — V and g : V. — W be two T-morphisms, then
9f=3f.
We can define a functor G : UT-FAct — US-FAct by G(N) = (P x N)/p(pxn) =
(P,N) and G(f) = f, for all N € UT-FAct, g € Homr (M, N).
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For M € US-FAct, we have

Define na : M — (P, (Q, M)) by

m(p @ @)m = (p, (¢, m)).
For all p,p/ € P,q, q/ €Q,m, m € M, we have

Tp@qm=7(p ©q)m R
Tz@y)rp@gm=1(y)r(p @q)m,

for all x € P,y € Q (since M € US-FAct)

W gm) = .70 ©4)m), forally € Q

1y ®@p)(g,m) = ply®p)(g',m), forally € Q

(p.(g;m)) = (@, (a",m")).

This shows that nas is well-defined and injective. It is obvious that 7, is surjective. For
m € M, write m = ’T(p/ ®q/)m/7 where p’ € P,q' € Q7m/ € M.Forallpe P,qgeQ, we
have

i3

t 3

i3

’

mi(rp@ )T @qd)m’) = (. (¢ 7@ ®dIm)) = (p,ulg @ ') (g, m"))

= 1(p@q(p, (¢ ,m")) =

Hence, nas is an S-isomorphism. )
Let f: M — N be an S-morphism. For m = 7(p ® ¢)m € M, we have

GF(fimi(m) = GF(fHinu(r(p@ qym’) = GE(f)((p, (q,m")))
(p, F(£)((g;m"))) = (p, (g, f(m'))) = n f(m).

Hence, we have the following commutative diagram

’

T(p® @) (t(p' @ ¢ )m’).

M AN N
v Iy
arm) B arw).

Therefore, GF = 1, o pAct-
Similarly, we can prove that F'G = 1, pact- This get the desired result. O

3.4. Lemma. Let (S,T,P,Q,T,u) be a Morita contert and M € US-FAct. If g ® mq =
g2 @®m2 € Q ® M, we have (g1, m1) = (g2, m2).

Proof 1) Suppose ((q1,m1), (g2, m2)) € T. Without loss of generality, We suppose
q2 = @18, m1 = sma, where s € S. Then

T(p@q@)m1 =7(p® q1)sma = 7(p ® q15)ma2,

for all p € P. Hence, we have (q1,m1) = (q18, m2) = (g2, m2).
2) If ;1 ® m1 = g2 ® ma, By Proposition 1.4.10 of [3], we have that (q1, m1) = (g2, m2)
or for some positive integer n > 1, there is a sequence
(q1,m1) = (Y1, 21) = (y2,2) = -+ = (Yn, Tn) = (g2, M2)

in which, for each ¢ in {1,2,--- ,n — 1}, either ((yi, %), (Yi+1,Ti+1)) € R
or ((Yi+1,xi+1), (¥i,x:)) € R. By part 1), we can easily get that (g1, m1) = (g2, m2). O

3.5. Definition. Let S and T be two semigroups. A Morita context (S,T, P,Q, T, i) is
called unital, if P is a unital S-T-biact and @ is a unital 7-S-biact.
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3.6. Lemma. Let (S,T,P,Q,T,u) be a unital Morita context and M € US-FAct. Then
we have a T-isomorphism (Q x M)/poxm) = (Q ® M)/Cgam)-

Proof Define a map ¢ : (QxM)/poxm) = (QM) /(oo by ©((q,m)) = (¢q@m)(,
where (¢ ® m)( represent the congruence class (¢ ® m)(ggm)-

Suppose (q17m1)5 (q27m2) € (QaM) If (quml) = (q27m2)7 we have T(p X ql)ml =
7(p ® g2)ma, for all p € P. Then

p(y@z)(r@mi1) = p(y®r)a@my = y@T(x@q)m1 = yRT(2®g2)m2 = p(y®z)(g28®m2),

for all y € Q,x € P. This implies that (g1 ® m1)¢ = (g2 ® m2)(. Therefore, ¢ is well-
defined. Obviously, ¢ is surjective.
If (g1 ® m1)¢ = (g2 @ m2)¢, for all z € P,y € Q, we have

wy @ z)(qr ®@m1) = pu(y ® x)(g2 ® ma).
Since y @ T(z ® q1)m1 = y7(z @ ¢1) ® M1 = p(y ® z)(g1 ® m1), we get
YR T(z®q1)m =y 7(x ® g2)ma.

By Lemma 3.4, we have

(y, 7(z @ q)mi) = (y, 7(z @ g2)m2).
For all p € P, we have
T(r(p@y)r@q)m = T(pRY)T(z@q)mi = T(pRY)T( R g2)m2 = T(T(p@Y)T © g2)mo.
Since P is unitary and 7 is surjective, we get

{r(p@y)z|for all p,z € P,q € Q} = SP = P.

Then (g1, m1) = (g2, m2). This proves that ¢ is injective.
For all (¢,m) € (Q,M), u(y ® z) € T, we have

e(uly @ x)(g,m)) e((y, (z @ g)m)) = (y @
= (r(z®qeom)( = (uy®z)g®m)
m(y @ z)((q @ m)¢) = u(y ® )¢((g, m)).
Hence, ¢ is a T-isomorphism. That is, (Q x M)/poxnm) = (Q ® M)/{qenm) as left
T-act. O
By Theorem 3.3 and Lemma 3.6, we have the following theorem which generalizes
Theorem 2 in paper [2].

7(z ® q)m)

3.7. Theorem. Let S and T be two semigroups. If (S, T, P,Q, T, ) be a unital Morita
context with T and p are surjective, then we have the category equivalence F : US-FAct =
UT-FAct: G, where F = (Q ® —)/{0e—) and G = (P ® —)/{(po-)-

4. Characterization of Morita context

In this section, we give an equivalent condition of Morita context in semigroup settings.
Also, we give a characterization of Morita context for factorisable semigroups. Similar
to Theorem 1 in [6], we have the following.

4.1. Theorem. Let P and Q be two sets. We have the following equivalent conditions.
1) There exist two semigroups S and T such that (S, T, P,Q, T, i) is a Morita contest.
2) There exist maps T : P X Q X P — P and A : Q X P X Q — Q such that
I) T(T'((p1, q1,p2)), a2, p3) = L'((p1, Al(q1, P2, 42)), p3)) = T'(p1, a1, I'((p2, g2, p3)));
17) A(A((g1,p1,92)),p2,93) = A(qr, I'((p1, g2, p2)), a3) = A(q1, p1, A(g2,p2,43)))-
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Proof 1) = 2) : Suppose that (5,7, P,Q, T, 1) is a Morita context. Define I' : P X
QXP — Pand A: QX P xQ — Q by putting I'((p1,q1,p2)) = 7(p1 ® q1) - p2 and
A((q1,p1,q2)) = (g1 @ p1) - g2. We can easily check that I" and A satisfy the conditions
I) and II).

2) = 1) : Define H, : P — P by putting Ha(p) = I'((a,p)) and define K : Q — Q by
putting K, (q) = A((b,q)), where a € P x Q and b € Q x P.

We write X = {Hala € PxQ} and Y = {K|b € Q x P}. For all Hp,, 41y, Hpy.q0) € X,
for all p € P, we have

Hepyq1) Hipag0)(0) = T((P1,q1,T(p2,92,p))) = T((T(p1,91,02),42,0)) = H(r(py,q1,p2),02) (D)

That is, Hp, ,q1)H(ps,q2) = H(T((p1,q1,92)),a2) € X. Then we easily get that X is a subsemi-
group of End(P). Similarly, we have that Y is a subsemigroup of End(Q).

For all p € P, H, € X, Ky € Y, define H, - p = I'((a,p)) and p - Kp = T'((p,d)).
Then P is a X-Y-biact. Similarly, for all ¢ € Q, we can define K; - ¢ = A((b,q)) and
q- Ho = A((q,a)). This makes @ to be a Y-X-biact.

Now, we define o : P®y Q — X and 8 : Q ®x P — Y by putting a(p ® q) = Hp,q
and (g ®p) = K(q,p), where p € P and g € Q. It is easy to check that o and § are both
biact morphisms. Then

a(p1 ® q) - p2 = Hpy ) - P2 = T((P1,4,p2)) = P1 - K(g,p0) = P1 - B(q ® p2).
Similarly, we have
Blqr ® p)g2 = qra(p @ g2).
Then (X, Y, P,Q, «, 3) is a Morita context. O

4.2. Definition. [7] A semigroup S is called factorisable if S = S

4.3. Theorem. Let P and Q be two sets. We have the following equivalent conditions.
1) There exist two factorisable semigroups S and T such that (S,T,P,Q,T,u) is a
unital Morita contert and T and p are surjective.
In this case, (Q ® —)/{@a-) : US-Act = UT-Act : (P ® —)/(pg-) are equivalent
functors.
2) There ezist surjective maps ' : P X Q@ X P — P and A : Q@ X P X Q — Q satisfy
the two conditions in part 2) of Theorem 4.1 and
III) For all p,pl € P, q € Q, there exist p1,p2 € P,q1,q2 € Q such that

L(((p.a),p)) =T((C(p1,q1,p2), g2, ))-
IV) For allp € P, q,q, € Q, there exist p1,p2 € P,q1,q2 € Q such that
A(((g,p),q ) = A((Alq1,p1,G2),P2,9 )
Proof 1) = 2) : Since S is factorisable and 7 is surjective, for all p € P,q € Q, there
exist p1,p2 € P,q1,q2 € Q such that 7(p ® q) = 7(p1 ® ¢1)7(p2 ® ¢2). Hence,

’

M(pa)p) = 7p®ap =71 ©a)r(p2 ®g2)p’ = 7(p1 © )T (P2, 42,p))
= T((p1,q1,T(p2, 42,0 ))) = T((U((p1, 91, p2)), 42,0 ))-

Therefore, the condition IIT) holds. Similarly, we can get IV).

By Theorem 3.7 or Theorem 2 in [2], we have the category equivalence (Q®—)/(ge-) :
US-Act = UT-Act : (P X 7)/4‘(}3@7).

2) = 1) : For all H, q € I)C,p/ € P, by the condition IIT), we have

/ ’

T'(((p,q);p)) =T((T(p1,q1,p2),q2,p ))-
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This implies that

Hipo®) = F(((nq),p/))=F((F,(p1,q1,pz),q2,p/)) /
= T((p1,q1,T((p2,92:0 )))) = Hipy,a1) Hip,a2) (P )-

That is, H(pq) = H(p,,q1)H(ps,q0)- This proves that X is factorisable.

Similarly, we have that Y is a factorisable semigroup.

Since I' and A are surjective, we obviously have that P and @ are unital as biacts and
« and B are surjective. Hence, (X, Y, P,Q, «, 8) is a unital Morita context. O
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