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Morita equivalence based on Morita context for
arbitrary semigroups

Hongxing Liu∗

Abstract

In this paper, we study the Morita context for arbitrary semigroups. We
prove that, for two semigroups S and T, if there exists a Morita context
(S, T, P,Q, τ, µ) (not necessary unital) such that the maps τ and µ are
surjective, the categories US-FAct and UT -FAct are equivalent. Using
this result, we generalize Theorem 2 in [2] to arbitrary semigroups.
Finally, we give a characterization of Morita context for semigroups.
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1. Introduction

Morita theory characterizes equivalences between module categories over rings with
1. Kyuno [5] studied Morita theory for rings without 1. Knauer [4] and Banschewski
[1] independently generalized this theory to monoids. Banschewski [1] proved that for
two semigroups S and T, if the two categories S-Act and T -Act are equivalent, then S
is isomorphic to T. Talwar [8] extended Morita theory to semigroups with local units.
He proved that for two semigroups with local units S and T, the two categories FS-Act
and FT -Act are equivalent ⇐⇒ there is a unitary Morita context (S, T, P,Q, τ, µ) such
that the maps τ and µ are surjective, where FS-Act = {M ∈ S-Act|SM = M and S ⊗
HomS(S,M) ∼= M}. In [7], Talwar investigated strong Morita equivalence for factorisable
semigroups. He got that if there is a unitary Morita context (S, T, P,Q, τ, µ) such that
the maps τ and µ are surjective, then S and T are strongly Morita equivalent. Chen
and Shum [2] showed that, for factorisable semigroups S and T, if there exists a unitary
Morita context (S, T, P,Q, τ, µ) such that the maps τ and µ are surjective, then the
categories US-FAct and UT -FAct are equivalent.

In this paper, we mainly use the techniques of paper [5] to study the corresponding
problems for arbitrary semigroups. The paper is constructed as follows: In Section 2, we
recall some basic notions; In Section 3, we give the main results of the paper. We prove
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that, for two semigroups S and T, if there exists a Morita context (S, T, P,Q, τ, µ) (not
necessary unital) such that the maps τ and µ are surjective, the categories US-FAct and
UT -FAct are equivalent. Also, we extend Theorem 2 in [2] to arbitrary semigroups. In
Section 4, we give a characterization of Morita contexts for semigroups.

2. Preliminaries

Let S be a semigroup. A set M is a left S-act if there is a function from S×M to M,
denoted (s,m)→ sm, such that (st)m = s(tm) (∀s, t ∈ S,m ∈M). If M is a left S-act,
we write SM. A left S-act M is said to be unitary if M = SM. Similarly, we can de�ne
right acts over semigroups.

Let M and N be two S-acts. A map f : M → N is an S-morphism if f satis�es
f(sm) = sf(m), (∀m ∈ M, s ∈ S). Let HomS(M,N) denote the set of all S-morphisms
from SM to SN. Denote by EndS(M) the set of all S-morphisms from M to itself. Let
S-Act denote the category of left acts over a semigroup S.

The unital left S-acts together with the S-morphisms form a full subcategory of S-Act,
which we shall denote by US-Act.

Let S and T be two semigroups. An S-T -biact is a set M which is both left S-act
and right T -act and (sm)t = s(mt) for all s ∈ S, t ∈ T and all m ∈ M. A biact is
said to be unitary if it is left and right unitary. If M and N are S-T -biact, a map
f : M → N is called biact morphism if f satis�es f(sm) = sf(m) and f(mt) = f(m)t
for all m ∈M, s ∈ S, t ∈ T.

Let S be a semigroup and M ∈ S-Act. An equivalence R on S is a congruence if for
all s, t, a ∈ S,

(s, t) ∈ R⇒ (as, at) ∈ R, (sa, ta) ∈ R.
An equivalence ρ on SM is a congruence if for all s ∈ S,m, n ∈M,

(m,n) ∈ ρ⇒ (sm, sn) ∈ ρ.
If ρ is a congruence onM, thenM/ρ is also a left S-act. The actM/ρ is called a quotient
act. Let ε be the identity congruence on M.

Let S be a semigroup andM ∈ S-Act. According to [2], we use the following notations.
ζM = {(x, y) ∈M ×M |sx = sy,∀s ∈ S};

US-FAct = {M ∈ US-Act|ζM = ε}.
Obviously, ζM is a congruence on M.

For a right S-act AS and a left S-act SB, the tensor product A⊗S B exists. In fact,
A⊗S B = (A×B)/σ, where σ is the equivalence on A×B generated by

R = {((xs, y), (x, sy))|a ∈ A, b ∈ B, s ∈ S}.
We denote the element (x, y)σ of A⊗S B by x⊗ y.

By Proposition 1.4.10 of [3], we have that a⊗ b = c⊗ d ⇐⇒ (a, b) = (c, d) or there
is a sequence

(a, b) = (x1, y1)→ (x2, y2)→ · · · → (xn, yn) = (c, d)

such that either ((xi, yi), (xi+1, yi+1)) ∈ T or ((xi+1, yi+1), (xi, yi)) ∈ T, where 1 ≤ i ≤
n− 1.

If A is a right S-act and B is an S-T -biact, then A⊗S B is a right T -act with

(a⊗ b)t = a⊗ bt;
similarly, if A is a T -S-biact and B is a left S-biact, then A⊗S B is a left T -act with

t(a⊗ b) = ta⊗ b
(Proposition 3.1, [8]).
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3. Morita equivalence for semigroups

In this section, S and T are arbitrary semigroups. If there exists a Morita context
(S, T, P,Q, τ, µ), we shall prove that the two categories F : US-FAct 
 UT -FAct : G are
equivalent. Furthermore, if (S, T, P,Q, τ, µ) is unital, we get that F ∼= (Q ⊗ −)/ζ(Q⊗−)

and G ∼= (P ⊗−)/ζ(P⊗−). This generalizes Theorem 2 in [2].

3.1. De�nition. [8] Let S and T be two semigroups. If there exist sets P and Q, such
that
1) P is an S-T -biact, Q is a T -S-biact;
2) there are biact morphisms τ : P⊗TQ→ S and µ : Q⊗SP → T written correspondingly
as

τ(p⊗ q) =< p, q >, µ(q ⊗ p) = [q, p]

such that

< p1, q > ·p2 = p1 · [q, p2], [q1, p] · q2 = q1· < p, q2 >

for each p, p1, p2 ∈ P, q, q1, q2 ∈ Q. Then (S, T, P,Q, τ, µ) is called a Morita context.

By Proposition 3.1 in [8], we have τ(p ⊗ q)s = τ((p ⊗ q)s) = τ(p ⊗ qs), where p ∈
P, q ∈ Q, s ∈ S. We will use this fact in the proof of Lemma 3.2 and Lemma 3.4.

3.2. Lemma. Let (S, T, P,Q, τ, µ) be a Morita context, where τ and µ are surjective.
Then

1) For all M ∈ US-FAct, set U = Q×M. Then ˜(Q,M) = (Q×M)/ρ(Q×M) ∈ UT -FAct,
where ρQ×M = {((q,m), (q

′
,m

′
)) ∈ U × U |τ(p⊗ q)m = τ(p⊗ q

′
)m

′
, ∀p ∈ P}.

2) For all N ∈ UT -FAct, set V = P × N. Then (̃P,N) = (P × N)/ρ(P×N) ∈ UT -FAct,
where ρP×N = {((p, n), (p

′
, n

′
)) ∈ V × V |µ(q ⊗ p)n = µ(q ⊗ p

′
)n

′
, ∀q ∈ Q}.

Proof 1) i) Clearly, ρU is an equivalence on U. Set ˜(Q,M) = U/ρU . Denote by (r,m)
the equivalence class (r,m)ρU . For t ∈ T, we can write t = µ(q⊗ p) since µ is surjective.

For all (q,m) ∈ ˜(Q,M), µ(q
′
⊗ p

′
) ∈ T, de�ne

µ(q
′
⊗ p

′
)(q,m) = (q′ , τ(p′ ⊗ q)m).

If (q1,m1) = (q2,m2), for all p ∈ P, we have < p, q1 > m1 =< p, q2 > m2. Hence, the
de�nition is independent of the choice of equivalence class representative.

If µ(q1 ⊗ p1) = µ(q2 ⊗ p2), for all x ∈ P, we have

< x, q1 >< p1, q > m = < x, q1 < p1, q >> m =< x, [q1, p1]q > m
= < x, [q2, p2]q > m =< x, q2 >< p2, q > m.

Hence,

(q1, < p1, q > m) = (q2, < p2, q > m).

Therefore, the de�nition is well-de�ned.

For all µ(q1 ⊗ p1), µ(q2 ⊗ p2) ∈ T, (q,m) ∈ ˜(Q,M), we have

(µ(q1 ⊗ p1)µ(q2 ⊗ p2))(q,m) = µ([q1, p1]q2 ⊗ p2)(q,m) = ([q1, p1]q2, τ(p2 ⊗ q)m)

and

µ(q1 ⊗ p1)(µ(q2 ⊗ p2)(q,m)) = µ(q1 ⊗ p1)(q2, τ(p2 ⊗ q)m) = (q1, τ(p1 ⊗ q2)τ(p2 ⊗ q)m).

Then (µ(q1⊗p1)µ(q2⊗p2))(q,m) = µ(q1⊗p1)(µ(q2⊗p2)(q,m)). This means that ˜(Q,M)
is a left T -Act.

ii) Suppose ((q,m), (q′ ,m′)) ∈ ζ ˜(Q,M)
. For all y ∈ Q, x ∈ P, we have

µ(y ⊗ x)(q,m) = µ(y ⊗ x)(q′ ,m′).
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That is,

(y, τ(x⊗ q)m) = (y, τ(x⊗ q′)m′).

This implies that

τ(p⊗ y)τ(x⊗ q)m = τ(p⊗ y)τ(x⊗ q
′
)m

′
,

for all p ∈ P. Since M ∈ US-FAct, we have

τ(x⊗ q)m = τ(x⊗ q
′
)m

′
.

For arbitrary of x, we get that (q,m) = (q′ ,m′).

iii) For all m ∈ M, since M = SM and τ is surjective, we have m = τ(p ⊗ q
′
)m

′
,

where m
′
∈M. For all (q,m) ∈ ˜(Q,M), we have

(q,m) = (q, τ(p⊗ q′)m′) = µ(q ⊗ p)(q′ ,m′) ∈ T ˜(Q,M).

Hence, we get T ˜(Q,M) = ˜(Q,M). Therefore, ˜(Q,M) ∈ UT -FAct.
2) For all (p, n) ∈ (̃P,N), τ(p

′
⊗ q

′
) ∈ S, de�ne

τ(p
′
⊗ q

′
)(p, n) = (p′ , µ(q′ ⊗ p)n).

Similarly, we can prove (̃P,N) ∈ US-FAct.

3.3. Theorem. Let S and T be two semigroups. If (S, T, P,Q, τ, µ) is a Morita context
with τ and µ surjective, then we have the category equivalence F : US-FAct 
 UT -FAct :
G, where F = (Q×−)/ρ(Q×−) and G = (P ×−)/ρ(P×−).

Proof Let f : M −→ N be an S-morphism, where M,N ∈ US-FAct. De�ne f̃ :
˜(Q,M) −→ (̃Q,N) by

f̃((q,m)) = (q, f(m)).

Suppose (q,m) = (q′ ,m′). For all p ∈ P, we have τ(p ⊗ q)m = τ(p ⊗ q
′
)m

′
. This

implies that f(τ(p ⊗ q)m) = f(τ(p ⊗ q
′
)m

′
). Since f is an S-morphism, it follows that

τ(p ⊗ q)f(m) = τ(p ⊗ q
′
)f(m

′
). Hence, (q, f(m)) = (q′ , f(m′)). This proves that f̃ is

well-de�ned.
It is easy to check that f̃ is a left T -morphism.
Let f : U −→ V and g : V −→ W be two S-morphisms, where U, V,W ∈ US-FAct.

Let f̃ : (̃Q,U) −→ (̃Q,V ) and g̃ : (̃Q,V ) −→ ˜(Q,W ) be T -morphisms determined by f

and g respectively. Then g̃f = g̃f̃ . In fact, since gf : U −→W is an S-morphism, we have

a T -morphism g̃f : (̃Q,U) −→ ˜(Q,W ). This implies that dom(g̃f) = (̃Q,U) = dom(g̃f̃).

For all (q, u) ∈ (̃Q,U), we have

g̃f((q, u)) = (q, gf(u)) = g̃(q, f(u)) = g̃f̃(q, u).

De�ne F : US-FAct −→ UT -FAct by F (M) = (Q × M)/ρ(Q×M) = ˜(Q,M) and

F (f) = f̃ , for all M,N ∈ US-FAct, f ∈ HomS(M,N). Then F is a functor.
Similarly, for U, V ∈ UT -FAct, if f : U → V is a T -morphism, we can de�ne S-

morphism f̄ : (̃P,U) −→ (̃P, V ) by

f̄((p, u)) = (p, f(u)).

Also, for U, V,W ∈ UT -FAct, if f : U −→ V and g : V −→W be two T -morphisms, then
gf = ḡf̄ .

We can de�ne a functor G : UT -FAct −→ US-FAct by G(N) = (P × N)/ρ(P×N) =

(̃P,N) and G(f) = f̄ , for all N ∈ UT -FAct, g ∈ HomT (M,N).
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For M ∈ US-FAct, we have

GF (M) = G( ˜(Q,M)) =
˜

(P, ˜(Q,M)).

De�ne ηM : M −→
˜

(P, ˜(Q,M)) by

τ(p⊗ q)m 7→ (p, (q,m)).

For all p, p
′
∈ P, q, q

′
∈ Q,m,m

′
∈M, we have

τ(p⊗ q)m = τ(p
′
⊗ q

′
)m

′

⇔ τ(x⊗ y)τ(p⊗ q)m = τ(x⊗ y)τ(p
′
⊗ q

′
)m

′
,

for all x ∈ P, y ∈ Q (since M ∈ US-FAct)
⇔ (y, τ(p⊗ q)m) = (y, τ(p′ ⊗ q′)m′), for all y ∈ Q
⇔ µ(y ⊗ p)(q,m) = µ(y ⊗ p

′
)(q′ ,m), for all y ∈ Q

⇔ (p, (q,m)) = (p′ , (q′ ,m′)).

This shows that ηM is well-de�ned and injective. It is obvious that ηM is surjective. For

m ∈M, write m = τ(p
′
⊗ q

′
)m

′
, where p

′
∈ P, q

′
∈ Q,m

′
∈M. For all p ∈ P, q ∈ Q, we

have

ηM (τ(p⊗ q)τ(p
′
⊗ q

′
)m

′
) = (p, (q, τ(p′ ⊗ q′)m′)) = (p, µ(q ⊗ p′)(q′ ,m′))

= τ(p⊗ q)(p′ , (q′ ,m′)) = τ(p⊗ q)ηM (τ(p
′
⊗ q

′
)m

′
).

Hence, ηM is an S-isomorphism.

Let f : M −→ N be an S-morphism. For m = τ(p⊗ q)m
′
∈M, we have

GF (f)ηM (m) = GF (f)ηM (τ(p⊗ q)m
′
) = GF (f)((p, (q,m′)))

= (p, F (f)((q,m′))) = (p, (q, f(m′))) = ηNf(m).

Hence, we have the following commutative diagram

M
f−→ N

ηM ↓ ↓ ηN
GF (M)

GF (f)→ GF (N).

Therefore, GF ∼= 1
US-FAct.

Similarly, we can prove that FG ∼= 1
UT -FAct. This get the desired result. 2

3.4. Lemma. Let (S, T, P,Q, τ, µ) be a Morita context and M ∈ US-FAct. If q1 ⊗m1 =

q2 ⊗m2 ∈ Q⊗M, we have (q1,m1) = (q2,m2).

Proof 1) Suppose ((q1,m1), (q2,m2)) ∈ T. Without loss of generality, We suppose
q2 = q1s,m1 = sm2, where s ∈ S. Then

τ(p⊗ q1)m1 = τ(p⊗ q1)sm2 = τ(p⊗ q1s)m2,

for all p ∈ P. Hence, we have (q1,m1) = (q1s,m2) = (q2,m2).
2) If q1⊗m1 = q2⊗m2, By Proposition 1.4.10 of [3], we have that (q1,m1) = (q2,m2)

or for some positive integer n > 1, there is a sequence

(q1,m1) = (y1, x1)→ (y2, x2)→ · · · → (yn, xn) = (q2,m2)

in which, for each i in {1, 2, · · · , n− 1}, either ((yi, xi), (yi+1, xi+1)) ∈ R

or ((yi+1, xi+1), (yi, xi)) ∈ R. By part 1), we can easily get that (q1,m1) = (q2,m2). 2

3.5. De�nition. Let S and T be two semigroups. A Morita context (S, T, P,Q, τ, µ) is
called unital, if P is a unital S-T -biact and Q is a unital T -S-biact.



1088

3.6. Lemma. Let (S, T, P,Q, τ, µ) be a unital Morita context and M ∈ US-FAct. Then
we have a T -isomorphism (Q×M)/ρ(Q×M)

∼= (Q⊗M)/ζ(Q⊗M).

Proof De�ne a map ϕ : (Q×M)/ρ(Q×M) → (Q⊗M)/ζ(Q⊗M) by ϕ((q,m)) = (q⊗m)ζ,
where (q ⊗m)ζ represent the congruence class (q ⊗m)ζ(Q⊗M).

Suppose (q1,m1), (q2,m2) ∈ ˜(Q,M). If (q1,m1) = (q2,m2), we have τ(p ⊗ q1)m1 =
τ(p⊗ q2)m2, for all p ∈ P. Then

µ(y⊗x)(q1⊗m1) = µ(y⊗x)q1⊗m1 = y⊗τ(x⊗q1)m1 = y⊗τ(x⊗q2)m2 = µ(y⊗x)(q2⊗m2),

for all y ∈ Q, x ∈ P. This implies that (q1 ⊗m1)ζ = (q2 ⊗m2)ζ. Therefore, ϕ is well-
de�ned. Obviously, ϕ is surjective.

If (q1 ⊗m1)ζ = (q2 ⊗m2)ζ, for all x ∈ P, y ∈ Q, we have

µ(y ⊗ x)(q1 ⊗m1) = µ(y ⊗ x)(q2 ⊗m2).

Since y ⊗ τ(x⊗ q1)m1 = yτ(x⊗ q1)⊗m1 = µ(y ⊗ x)(q1 ⊗m1), we get

y ⊗ τ(x⊗ q1)m1 = y ⊗ τ(x⊗ q2)m2.

By Lemma 3.4, we have

(y, τ(x⊗ q1)m1) = (y, τ(x⊗ q2)m2).

For all p ∈ P, we have

τ(τ(p⊗y)x⊗q1)m1 = τ(p⊗y)τ(x⊗q1)m1 = τ(p⊗y)τ(x⊗q2)m2 = τ(τ(p⊗y)x⊗q2)m2.

Since P is unitary and τ is surjective, we get

{τ(p⊗ y)x|for all p, x ∈ P, q ∈ Q} = SP = P.

Then (q1,m1) = (q2,m2). This proves that ϕ is injective.

For all (q,m) ∈ ˜(Q,M), µ(y ⊗ x) ∈ T, we have

ϕ(µ(y ⊗ x)(q,m)) = ϕ((y, τ(x⊗ q)m)) = (y ⊗ τ(x⊗ q)m)ζ
= (yτ(x⊗ q)⊗m)ζ = (µ(y ⊗ x)q ⊗m)ζ

= µ(y ⊗ x)((q ⊗m)ζ) = µ(y ⊗ x)ϕ((q,m)).

Hence, ϕ is a T -isomorphism. That is, (Q × M)/ρ(Q×M)
∼= (Q ⊗ M)/ζ(Q⊗M) as left

T -act. 2
By Theorem 3.3 and Lemma 3.6, we have the following theorem which generalizes

Theorem 2 in paper [2].

3.7. Theorem. Let S and T be two semigroups. If (S, T, P,Q, τ, µ) be a unital Morita
context with τ and µ are surjective, then we have the category equivalence F : US-FAct 

UT -FAct : G, where F = (Q⊗−)/ζ(Q⊗−) and G = (P ⊗−)/ζ(P⊗−).

4. Characterization of Morita context

In this section, we give an equivalent condition of Morita context in semigroup settings.
Also, we give a characterization of Morita context for factorisable semigroups. Similar
to Theorem 1 in [6], we have the following.

4.1. Theorem. Let P and Q be two sets. We have the following equivalent conditions.
1) There exist two semigroups S and T such that (S, T, P,Q, τ, µ) is a Morita context.
2) There exist maps Γ : P ×Q× P → P and ∆ : Q× P ×Q→ Q such that
I) Γ(Γ((p1, q1, p2)), q2, p3) = Γ((p1,∆((q1, p2, q2)), p3)) = Γ(p1, q1,Γ((p2, q2, p3)));
II) ∆(∆((q1, p1, q2)), p2, q3) = ∆(q1,Γ((p1, q2, p2)), q3) = ∆(q1, p1,∆((q2, p2, q3))).
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Proof 1) ⇒ 2) : Suppose that (S, T, P,Q, τ, µ) is a Morita context. De�ne Γ : P ×
Q × P → P and ∆ : Q × P × Q → Q by putting Γ((p1, q1, p2)) = τ(p1 ⊗ q1) · p2 and
∆((q1, p1, q2)) = µ(q1 ⊗ p1) · q2. We can easily check that Γ and ∆ satisfy the conditions
I) and II).

2)⇒ 1) : De�ne Ha : P → P by putting Ha(p) = Γ((a, p)) and de�ne Kb : Q→ Q by
putting Kb(q) = ∆((b, q)), where a ∈ P ×Q and b ∈ Q× P.

We write X = {Ha|a ∈ P ×Q} and Y = {Kb|b ∈ Q×P}. For all H(p1,q1), H(p2,q2) ∈ X,
for all p ∈ P, we have

H(p1,q1)H(p2,q2)(p) = Γ((p1, q1,Γ(p2, q2, p))) = Γ((Γ(p1, q1, p2), q2, p)) = H(Γ(p1,q1,p2),q2)(p).

That is, H(p1,q1)H(p2,q2) = H(Γ((p1,q1,p2)),q2) ∈ X. Then we easily get that X is a subsemi-
group of End(P ). Similarly, we have that Y is a subsemigroup of End(Q).

For all p ∈ P, Ha ∈ X, Kb ∈ Y, de�ne Ha · p = Γ((a, p)) and p · Kb = Γ((p, b)).
Then P is a X-Y-biact. Similarly, for all q ∈ Q, we can de�ne Kb · q = ∆((b, q)) and
q ·Ha = ∆((q, a)). This makes Q to be a Y-X-biact.

Now, we de�ne α : P ⊗Y Q → X and β : Q ⊗X P → Y by putting α(p ⊗ q) = H(p,q)

and β(q⊗ p) = K(q,p), where p ∈ P and q ∈ Q. It is easy to check that α and β are both
biact morphisms. Then

α(p1 ⊗ q) · p2 = H(p1,q) · p2 = Γ((p1, q, p2)) = p1 ·K(q,p2) = p1 · β(q ⊗ p2).

Similarly, we have

β(q1 ⊗ p)q2 = q1α(p⊗ q2).

Then (X,Y, P,Q, α, β) is a Morita context. 2

4.2. De�nition. [7] A semigroup S is called factorisable if S = S2.

4.3. Theorem. Let P and Q be two sets. We have the following equivalent conditions.
1) There exist two factorisable semigroups S and T such that (S, T, P,Q, τ, µ) is a

unital Morita context and τ and µ are surjective.
In this case, (Q ⊗ −)/ζ(Q⊗−) : US-Act 
 UT -Act : (P ⊗ −)/ζ(P⊗−) are equivalent

functors.
2) There exist surjective maps Γ : P × Q × P → P and ∆ : Q × P × Q → Q satisfy

the two conditions in part 2) of Theorem 4.1 and

III) For all p, p
′
∈ P, q ∈ Q, there exist p1, p2 ∈ P, q1, q2 ∈ Q such that

Γ(((p, q), p
′
)) = Γ((Γ(p1, q1, p2), q2, p

′
)).

IV) For all p ∈ P, q, q
′
∈ Q, there exist p1, p2 ∈ P, q1, q2 ∈ Q such that

∆(((q, p), q
′
)) = ∆((∆(q1, p1, q2), p2, q

′
)).

Proof 1)⇒ 2) : Since S is factorisable and τ is surjective, for all p ∈ P, q ∈ Q, there
exist p1, p2 ∈ P, q1, q2 ∈ Q such that τ(p⊗ q) = τ(p1 ⊗ q1)τ(p2 ⊗ q2). Hence,

Γ(((p, q), p
′
)) = τ(p⊗ q)p

′
= τ(p1 ⊗ q1)τ(p2 ⊗ q2)p

′
= τ(p1 ⊗ q1)Γ((p2, q2, p

′
))

= Γ((p1, q1,Γ(p2, q2, p
′
))) = Γ((Γ((p1, q1, p2)), q2, p

′
)).

Therefore, the condition III) holds. Similarly, we can get IV).
By Theorem 3.7 or Theorem 2 in [2], we have the category equivalence (Q⊗−)/ζ(Q⊗−) :

US-Act 
 UT -Act : (P ⊗−)/ζ(P⊗−).

2)⇒ 1) : For all H(p,q) ∈ X, p
′
∈ P, by the condition III), we have

Γ(((p, q), p
′
)) = Γ((Γ(p1, q1, p2), q2, p

′
)).
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This implies that

H(p,q)(p
′
) = Γ(((p, q), p

′
)) = Γ((Γ(p1, q1, p2), q2, p

′
))

= Γ((p1, q1,Γ((p2, q2, p
′
)))) = H(p1,q1)H(p2,q2)(p

′
).

That is, H(p,q) = H(p1,q1)H(p2,q2). This proves that X is factorisable.
Similarly, we have that Y is a factorisable semigroup.
Since Γ and ∆ are surjective, we obviously have that P and Q are unital as biacts and

α and β are surjective. Hence, (X,Y, P,Q, α, β) is a unital Morita context. 2
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