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Complete qth moment convergence of weighted
sums for arrays of row-wise extended negatively

dependent random variables

M. L. Guo ∗

Abstract

In this paper, the complete qth moment convergence of weighted sums
for arrays of row-wise extended negatively dependent (abbreviated to
END in the following) random variables is investigated. By using
Hoffmann-Jφrgensen type inequality and truncation method, some gen-
eral results concerning complete qth moment convergence of weighted
sums for arrays of row-wise END random variables are obtained. As
their applications, we extend the corresponding result of Wu (2012) to
the case of arrays of row-wise END random variables. The complete qth
moment convergence of moving average processes based on a sequence
of END random variables is obtained, which improves the result of Li
and Zhang (2004). Moreover, the Baum-Katz type result for arrays of
row-wise END random variables is also obtained.
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1. Introduction and Lemmas

The concept of complete convergence was given by Hsu and Robbins[1] in the
following way. A sequence of random variables {Xn, n ≥ 1} is said to converge
completely to a constant θ if for any ε > 0,

∞∑

n=1

P (|Xn − θ| > ε) <∞.

In view of the Borel-Cantelli lemma, the above result implies that Xn → θ almost
surely. Hence the complete convergence is very important tool in establishing
almost sure convergence. When {Xn, n ≥ 1} is a sequence of independent and
identically distributed random variables, Baum and Katz[2] proved the following
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remarkable result concerning the convergence rate of the tail probabilities P (|Sn| >
εn1/p) for any ε > 0, where Sn =

∑n
i=1Xi.

1.1. Theorem. {X,Xn, n ≥ 1} be a sequence of independent and identically
distributed random variables, r > 1/2 and p > 1. Then

∞∑

n=1

np−2P (|Sn| > εnr) <∞ for all ε > 0,

if and only if E|X|p/r <∞, where EX = 0 whenever 1/2 < r ≤ 1.

Many useful linear statistics based on a random sample are weighted sums of
independent and identically distributed random variables, see, for example, least-
squares estimators, nonparametric regression function estimators and jackknife
estimates, among others. However, in many stochastic model, the assumption
that random variables are independent is not plausible. Increases in some random
variables are often related to decreases in other random variables, so an assumption
of dependence is more appropriate than an assumption of independence. The
concept of END random variables was firstly introduced by Liu[3] as follows.

1.2. Definition. Random variables {Xi, i ≥ 1} are said to be END if there exists
a constant M > 0 such that both

(1.1) P

(
n⋂

i=1

(Xi ≤ xi)
)
≤M

n∏

i=1

P (Xi ≤ xi)

and

(1.2) P

(
n⋂

i=1

(Xi > xi)

)
≤M

n∏

i=1

P (Xi > xi)

hold for each n ≥ 1 and all real numbers x1, x2, · · · , xn.

In the case M = 1 the notion of END random variables reduces to the well-
known notion of so-called negatively dependent (ND) random variables which was
introduced by Lehmann[4]. Recall that random variables {Xi, i ≥ 1} are said
to be positively dependent (PD) if the inequalities (1.1) and (1.2) hold both in
the reverse direction when M = 1. Not looking that the notion of END random
variables seems to be a straightforward generalization of the notion of ND, the
END structure is substantially more comprehensive. As it is mentioned in Liu[3],
the END structure can reflect not only a negative dependent structure but also
a positive one, to some extend. Joag-Dev and Proschan[5] also pointed out that
negatively associated (NA) random variables must be ND, therefore NA random
variables are also END. Some applications for sequences of END random vari-
ables have been found. We refer to Shen[6] for the probability inequalities, Liu[3]
for the precise large deviations, Chen[7] for the strong law of large numbers and
applications to risk theory and renewal theory.

Recently, Baek et al.[8] discussed the complete convergence of weighted sums
for arrays of row-wise NA random variables and obtained the following result:

1.3. Theorem. Let {Xni, i ≥ 1, n ≥ 1} be an array of row-wise NA random
variables with EXni = 0 and for some random variable X and constant C > 0,
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P (|Xni| > x) ≤ CP (|X| > x) for all i ≥ 1, n ≥ 1 and x ≥ 0. Suppose that β ≥ −1,
and that {ani, i ≥ 1, n ≥ 1} is an array of constants such that

(1.3) sup
i≥1
|ani| = O(n−r) for some r > 0

and

(1.4)

∞∑

i=1

|ani| = O(nα) for some α ∈ [0, r).

(i) If α + β + 1 > 0 and there exists some δ > 0 such that
α

r
+ 1 < δ ≤ 2, and

s = max(1 +
α+ β + 1

r
, δ), then, under E|X|s <∞, we have

(1.5)
∞∑

n=1

nβP

(∣∣∣∣∣
∞∑

i=1

aniXni

∣∣∣∣∣ > ε

)
<∞ for all ε > 0.

(ii) If α+ β + 1 = 0, then, under E|X| log(1 + |X|) <∞, (1.5) remains true.

If β < −1, then (1.5) is immediate. Hence Theorem 1.3 is of interest only for
β ≥ −1. Baek and Park [9] extended Theorem 1.3 to the case of arrays of row-wise
pairwise negatively quadrant dependent (NQD) random variables. However, there
is a question in the proofs of Theorem 1.3(i) in Baek and Park [9]. The Rosenthal
type inequality plays a key role in this proof, but it is still an open problem to
obtain Rosenthal type inequality for pairwise NQD random variables.

When β > −1, Wu [10] dealt with more general weight and proved the fol-
lowing complete convergence for weighted sums of arrays of row-wise ND random
variables. But, the proof of Wu[10] does not work for the case of β = −1.

1.4. Theorem. Let {Xni, i ≥ 1, n ≥ 1} be an array of row-wise ND random
variables and for some random variable X and constant C > 0, P (|Xni| > x) ≤
CP (|X| > x) for all i ≥ 1, n ≥ 1 and x ≥ 0. Let β > −1 and {ani, i ≥ 1, n ≥ 1}
be an array of constants satisfying (1.3) and
(1.6)
∞∑

i=1

|ani|θ = O(nα) for some 0 < θ < 2 and some α such that θ + α/r < 2.

Denote s = θ+ (α+ β + 1)/r. When s ≥ 1, further assume that EXni = 0 for any
i ≥ 1, n ≥ 1.

(i) If α+ β + 1 > 0 and E|X|s <∞, then (1.5) holds.
(ii) If α+ β + 1 = 0 and E|X|θ log(1 + |X|) <∞, then (1.5) holds.

The concept of complete moment convergence was introduced firstly by Chow
[11]. As we know, the complete moment convergence implies complete conver-
gence. Morover, the complete moment convergence can more exactly describe the
convergence rate of a sequence of random variables than the complete convergence.
So, a study on complete moment convergence is of interest. Liang et al. [12] ob-
tained the complete qth moment convergence theorems of sequences of identically
distributed NA random variables. Sung [13] proposed sets of sufficient conditions
for complete qth moment convergence of arrays of random variables satisfying
Marcinkiewicz-Zygmund and Rosenthal type inequalities. Guo [14] provided some
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sufficient conditions for complete moment convergence of row-wise NA arrays of
random variables. Li and Zhang [15] established the complete moment conver-
gence of moving average processes based on a sequence of identically distributed
NA random variables as follows.

1.5. Theorem. Suppose that Yn =
∑∞
i=−∞ ai+nXi, n ≥ 1, where {ai,−∞ < i <

∞} is a sequence of real numbers with
∑∞
−∞ |ai| < ∞ and {Xi,−∞ < i < ∞}

is a sequence of identically distributed and negatively associated random variables
with EX1 = 0, EX2

1 < ∞. Let 1/2 < r ≤ 1, p ≥ 1 + 1/(2r). Then E|X1|p < ∞
implies that

∞∑

n=1

nrp−2−rl(n)E

(∣∣∣∣∣
n∑

i=1

Yi

∣∣∣∣∣− εn
r

)+

<∞ for all ε > 0.

The aim of this paper is to give a sufficient condition concerning complete
qth moment convergence for arrays of row-wise END random variables. As an
application, we not only generalize and extend the corresponding results of Baek
et al. [8] and Wu [10] under some weaker conditions, but also greatly simplify
their proof. Moreover, the complete qth moment convergence of moving average
processes based on a sequence of END random variables is also obtained, which
improves the result of Li and Zhang [15]. The Baum-Katz type result for arrays
of row-wise END random variables is also established.

Before we start our main results, we firstly state some definitions and lemmas
which will be useful in the proofs of our main results. Throughout this paper, the
symbol C stands for a generic positive constant which may differ from one place
to another. The symbol I(A) denotes the indicator function of A. Let an � bn
denote that there exists a constant C > 0 such that an ≤ Cbn for all n ≥ 1. Denote
(x)q+ = (max(x, 0))q, x+ = max(x, 0), x− = max(−x, 0), log x= ln max(e, x).

1.6. Definition. A sequence {Xn, n ≥ 1} of random variables is said to be
stochastically dominated by a random variable X if there exists a positive constant
C, such that P (|Xn| > x) ≤ CP (|X| > x) for all x ≥ 0 and n ≥ 1.

The following lemma establish the fundamental inequalities for stochastic dom-
ination, the proof is due to Wu [16].

1.7. Lemma. Let the sequence {Xn, n ≥ 1} of random variables be stochastically
dominated by a random variable X. Then for any n ≥ 1, p > 0, x > 0, the following
two statements hold:

E|Xn|pI(|Xn| ≤ x) ≤ C (E|X|pI(|X| ≤ x) + xpP (|X| > x)) ,

E|Xn|pI(|Xn| > x) ≤ CE|X|pI(|X| > x).

The following lemma is the Hoffmann-Jφrgensen type inequality for sequences
of END random variables and is obtained by Shen [6].

1.8. Lemma. Let {Xi, i ≥ 1} be a sequence of END random variables with EXi =
0 and EX2

i < ∞ for every i ≥ 1 and set Bn =
∑n
i=1EX

2
i for any n ≥ 1. Then

for all y > 0, t > 0, n ≥ 1,

P

(∣∣∣∣∣
n∑

i=1

Xi

∣∣∣∣∣ ≥ y
)
≤ P

(
max

1≤k≤n
|Xk| > t

)
+ 2M · exp

{
y

t
− y

t
log

(
1 +

yt

Bn

)}
.
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1.9. Definition. A real-valued function l(x), positive and measurable on [A,∞)

for some A > 0, is said to be slowly varying if lim
x→∞

l(xλ)

l(x)
= 1 for each λ > 0.

1.10. Lemma. Let X be a random variable and l(x) > 0 be a slowly varying
function. Then

(i)
∞∑

n=1

n−1E|X|αI(|X| > nγ) ≤ CE|X|α log(1 + |X|) for any α ≥ 0, γ > 0,

(ii)
∞∑

n=1

nβl(n)E|X|αI(|X| > nγ) ≤ CE|X|α+(β+1)/γ l(|X|1/γ) for any β >

−1, α ≥ 0, γ > 0,

(iii)
∞∑

n=1

nβl(n)E|X|αI(|X| ≤ nγ) ≤ CE|X|α+(β+1)/γ l(|X|1/γ) for any β <

−1, α ≥ 0, γ > 0.

Proof. We only prove (ii). Noting that β > −1, we have by Lemma 1.5 in Guo[14]
that

∞∑

n=1

nβl(n)E|X|αI(|X| > nγ) =
∞∑

n=1

nβl(n)
∞∑

k=n

E|X|αI(kγ < |X| ≤ (k + 1)γ)

=

∞∑

k=1

E|X|αI(kγ < |X| ≤ (k + 1)γ)

k∑

n=1

nβl(n)

≤C
∞∑

k=1

kβ+1l(k)E|X|αI(kγ < |X| ≤ (k + 1)γ) ≤ CE|X|α+(β+1)/γ l(|X|1/γ).

�

2. Main Results and the Proofs

In this section, let {Xni, 1 ≤ i ≤ kn, n ≥ 1} be an array of row-wise END random
variables with the same M in each row. Let {kn, n ≥ 1} be a sequence of positive
integers and {an, n ≥ 1} be a sequence of positive constants. If kn = ∞ we will
assume that the series

∑∞
i=1Xni converges a.s. For any x ≥ 1, q > 0, set

X ′ni(x) = x1/qI(Xni > x1/q) +XniI(|Xni| ≤ x1/q)− x1/qI(Xni < −x1/q),

1 ≤ i ≤ kn, n ≥ 1. For any x ≥ 1, q > 0, it is clear that {X ′ni(x), 1 ≤ i ≤ kn, n ≥ 1}
is an array of row-wise END random variables, since it is a sequence of monotone
transformations of {Xni, 1 ≤ i ≤ kn, n ≥ 1}.
2.1. Theorem. Suppose that q > 0 and the following three conditions hold:

(i)
∞∑

n=1

an

kn∑

i=1

E|Xni|qI(|Xni| > ε) <∞ for all ε > 0,

(ii) there exist 0 < r ≤ 2 and s > q/r such that

∞∑

n=1

an

(
kn∑

i=1

E|Xni|r
)s

<∞,
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(iii) sup
x≥1

x−1/q
kn∑

i=1

|EX ′ni(x)| → 0, as n→∞. Then for all ε > 0,

(2.1)
∞∑

n=1

anE

(∣∣∣∣∣
kn∑

i=1

Xni

∣∣∣∣∣− ε
)q

+

<∞.

Proof. By Fubini’s theorem, we get that

∞∑

n=1

anE

(∣∣∣∣∣
kn∑

i=1

Xni

∣∣∣∣∣− ε
)q

+

=
∞∑

n=1

an

∫ ∞

0

P

(∣∣∣∣∣
kn∑

i=1

Xni

∣∣∣∣∣ > ε+ x1/q

)
dx

≤
∞∑

n=1

anP

(∣∣∣∣∣
kn∑

i=1

Xni

∣∣∣∣∣ > ε

)
+

∞∑

n=1

an

∫ ∞

1

P

(∣∣∣∣∣
kn∑

i=1

Xni

∣∣∣∣∣ > x1/q

)
dx =: I1 + I2.

We prove only I2 <∞, the proof of I1 <∞ is analogous. Using a simple integral
and Fubini’s theorem, we obtain that for any q > 0 and a random variable X,

(2.2)

∫ ∞

1

P (|X| > x1/q)dx ≤ E|X|qI(|X| > 1).

Then by (2.2) and the subadditivity of probability measure we obtain the estimate

I2 ≤
∞∑

n=1

an

∫ ∞

1

P

(∣∣∣∣∣
kn∑

i=1

X ′ni(x)

∣∣∣∣∣ > x1/q

)
dx+

∞∑

n=1

an

∫ ∞

1

kn∑

i=1

P
(
|Xni| > x1/q

)
dx

≤
∞∑

n=1

an

∫ ∞

1

P

(∣∣∣∣∣
kn∑

i=1

X ′ni(x)

∣∣∣∣∣ > x1/q

)
dx+

∞∑

n=1

an

kn∑

i=1

E|Xni|qI(|Xni| > 1)

=: I3 + I4.

By assumption (i), we have I4 <∞. By assumption (iii), we deduce that

(2.3) I3 �
∞∑

n=1

an

∫ ∞

1

P

(∣∣∣∣∣
kn∑

i=1

(X ′ni(x)− EX ′ni(x))

∣∣∣∣∣ > x1/q/2

)
dx.

Set Bn =
∑kn
i=1E(X ′ni(x) − EX ′ni(x))2, y = x1/q/2, t = x1/q/(2s), we have by

assumption (iii) and Lemma 1.8 that

(2.4)

P

(∣∣∣∣∣
kn∑

i=1

(X ′ni(x)− EX ′ni(x))

∣∣∣∣∣ > x1/q/2

)

≤P
(

max
1≤i≤kn

|X ′ni(x)− EX ′ni(x)| > x1/q/(2s)

)
+ 2Mes ·

(
1 +

x2/q

4sBn

)−s

≤P
(

max
1≤i≤kn

|X ′ni(x)| > x1/q/(4s)

)
+ 2Mes(4s)sx−2s/qBsn

≤
kn∑

i=1

P
(
|X ′ni(x)| > x1/q/(4s)

)
+ 2Mes(4s)sx−2s/q

(
kn∑

i=1

E(X ′ni(x))2

)s

�
kn∑

i=1

P
(
|X ′ni(x)| > x1/q/(4s)

)
+ x−2s/q

(
kn∑

i=1

E(X ′ni(x))2

)s
.
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By (2.3) and (2.4), we obtain that

I3 �
∞∑

n=1

an

∫ ∞

1

kn∑

i=1

P
(
|X ′ni(x)| > x1/q/(4s)

)
dx(2.1)

+
∞∑

n=1

an

∫ ∞

1

x−2s/q

(
kn∑

i=1

E(X ′ni(x))2

)s
dx

= I4 + I5.

Since |X ′ni(x)| ≤ |Xni|, we have P
(
|X ′ni(x)| > x1/q/(4s)

)
≤ P

(
|Xni| > x1/q/(4s)

)
.

By (2.2) and assumption (i), we conclude that

I4 ≤
∞∑

n=1

an

∫ ∞

1

kn∑

i=1

P
(
|Xni| > x1/q/(4s)

)
dx

≤
∞∑

n=1

an

kn∑

i=1

(4s)qE|Xni|qI(|Xni| > 1/(4s)) <∞.

Hence, to complete the proof, it suffices to show that I5 <∞. From the definition
of X ′ni(x), since 0 < r ≤ 2, we have by Cr-inequality that
(2.5)

E(X ′ni(x))2 � EX2
niI(|Xni| ≤ x1/q) + x2/qP (|Xni| > x1/q) ≤ 2x(2−r)/qE|Xni|r.

Noting that s > q/r, it is clear that

∫ ∞

1

x−sr/qdx < ∞. Then we have by (2.5)

and assumption (ii) that

I5 �
∞∑

n=1

an

∫ ∞

1

x−2s/q

(
kn∑

i=1

x(2−r)/qE|Xni|r
)s

dx

≤
∞∑

n=1

an

(
kn∑

i=1

E|Xni|r
)s ∫ ∞

1

x−sr/qdx�
∞∑

n=1

an

(
kn∑

i=1

E|Xni|r
)s

<∞.

Therefore, (2.1) holds. �

2.2. Remark. Note that

∞∑

n=1

anE

(∣∣∣∣∣
kn∑

i=1

Xni

∣∣∣∣∣− ε
)q

+

=

∫ ∞

0

∞∑

n=1

anP

(∣∣∣∣∣
kn∑

i=1

Xni

∣∣∣∣∣ > ε+ x1/q

)
dx.

Thus, we obtain that the complete qth moment convergence implies the complete
convergence, i.e., (2.1) implies

∞∑

n=1

anP

(∣∣∣∣∣
kn∑

i=1

Xni

∣∣∣∣∣ > ε

)
<∞ for all ε > 0.

2.3. Theorem. Suppose that β > −1, p > 0, q > 0. Let {Xni, i ≥ 1, n ≥ 1} be
an array of row-wise END random variables which are stochastically dominated by
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a random variable X. Let {ani, i ≥ 1, n ≥ 1} be an array of constants satisfying
(1.3) and

(2.6)
∞∑

i=1

|ani|t � n−1−β+r(p−t) for some 0 < t < p.

Furthermore, assume that

(2.7)

∞∑

i=1

a2
ni � n−µ for some µ > 0

if p ≥ 2. Assume further that EXni = 0 for all i ≥ 1 and n ≥ 1 when p ≥ 1. Then

(2.8)





E|X|q <∞, if q > p,

E|X|p log(1 + |X|) <∞, if q = p,

E|X|p <∞, if q < p,

implies

(2.9)

∞∑

n=1

nβE

(∣∣∣∣∣
∞∑

i=1

aniXni

∣∣∣∣∣− ε
)q

+

<∞ for all ε > 0.

Proof. We will apply Theorem 2.1 with an = nβ , kn =∞ and {Xni, i ≥ 1, n ≥ 1}
replaced by {aniXni, i ≥ 1, n ≥ 1}. Without loss of generality, we can assume
that ani > 0 for all i ≥ 1, n ≥ 1(otherwise, we use a+

ni and a−ni instead of ani,
respectively, and note that ani = a+

ni − a−ni). From (1.3) and (2.6), we can assume
that

(2.10) sup
i≥1
|ani| ≤ n−r,

∞∑

i=1

|ani|t ≤ n−1−β+r(p−t).

Hence for any q ≥ t, we obtain by (2.10) that

(2.11)

∞∑

i=1

|ani|q =

∞∑

i=1

|ani|t|ani|q−t ≤ n−r(q−t)
∞∑

i=1

|ani|t ≤ n−1−β+r(p−q).
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For all ε > 0 , we have by (1.3), (2.8), (2.11), Lemma 1.7 and Lemma 1.10 that

(2.12)

∞∑

n=1

nβ
∞∑

i=1

E|aniXni|qI(|aniXni| > ε)

�
∞∑

n=1

nβ
∞∑

i=1

|ani|qE|X|qI(|X| > εnr)

≤
∞∑

n=1

n−1+r(p−q)E|X|qI(|X| > εnr)

≤





∞∑

n=1

n−1+r(p−q)E|X|q, if q > p,

∞∑

n=1

n−1E|X|pI(|X| > εnr), if q = p,

�





∞∑

n=1

n−1+r(p−q), if q > p,

E|X|p log(1 + |X|), if q = p,

<∞.

When q < p, taking q′ such that max (q, t) < q′ < p, we have by (1.3), (2.8),
(2.11), Lemma 1.7 and Lemma 1.10 that

(2.13)

∞∑

n=1

nβ
∞∑

i=1

E|aniXni|qI(|aniXni| > ε)

≤εq−q′
∞∑

n=1

nβ
∞∑

i=1

E|aniXni|q
′
I(|aniXni| > ε)

�
∞∑

n=1

nβ
∞∑

i=1

|ani|q
′
E|X|q′I(|X| > εnr)

≤
∞∑

n=1

n−1+r(p−q′)E|X|q′I(|X| > εnr)

�E|X|p <∞.

It is obvious that (2.8) implies E|X|p <∞. When p ≥ 2, It is clear that EX2 <∞.
Noting that µ > 0, we can choose sufficiently large s such that β − µs < −1 and
s > q/2. Then, by Lemma 1.7, (2.7) and EX2 <∞ we get that

(2.14)

∞∑

n=1

nβ

( ∞∑

i=1

Ea2
niX

2
ni

)s
�

∞∑

n=1

nβ

( ∞∑

i=1

a2
ni

)s
�

∞∑

n=1

nβ−µs <∞.
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When p < 2, since β > −1, we can choose sufficiently large s such that β+s(−1−
β) < −1 and s > q/p, we have by (2.11), E|X|p <∞ and Lemma 1.7 that
(2.15)

∞∑

n=1

nβ

( ∞∑

i=1

E|aniXni|p
)s
�

∞∑

n=1

nβ

( ∞∑

i=1

|ani|p
)s
≤
∞∑

n=1

nβ+s(−1−β) <∞.

When p < 1, combining (2.11), E|X|p < ∞ , β > −1, Cr-inequality and Lemma
1.7, we obtain that

(2.16)

sup
x≥1

x−1/q
∞∑

i=1

|EX ′ni(x)| ≤

∞∑

i=1

P (|aniXni| > 1) + sup
x≥1

x−1/q
∞∑

i=1

E |aniXni| I(|aniXni| ≤ x1/q)

≤
∞∑

i=1

P (|aniXni| > 1) + sup
x≥1

x−p/q
∞∑

i=1

E |aniXi|p I(|aniXni| ≤ x1/q)

≤2

∞∑

i=1

E|aniXni|p �
∞∑

i=1

|ani|p

≤n−1−β → 0, as n→∞.
When p ≥ 1, since EXni = 0, we get that

EaniXniI(|aniXni| ≤ x1/q) = −EaniXniI(|aniXni| > x1/q).

Thus, we have by E|X|p <∞, β > −1, Cr-inequality and Lemma 1.7 that
(2.17)

sup
x≥1

x−1/q
∞∑

i=1

|EX ′ni(x)|

≤
∞∑

i=1

P (|aniXni| > 1) + sup
x≥1

x−1/q
∞∑

i=1

∣∣∣EaniXniI(|aniXni| > x1/q)
∣∣∣

≤2
∞∑

i=1

E|aniXni|I(|aniXni| > 1)�
∞∑

i=1

|ani|pE|X|pI(|X| > nr)�
∞∑

i=1

|ani|p

≤n−1−β → 0, as n→∞.
Thus, by (2.12)–(2.17), we see that assumptions (i), (ii) and (iii) in Theorem 2.1
are fulfilled. Therefore (2.9) holds by Theorem 2.1. �

2.4. Remark. When 1+α+β > 0, the conditions (1.3), (2.6) and (2.7) are weaker
than the conditions (1.3) and (1.6). In fact, taking t = θ, p = θ + (1 + α + β)/r,
we immediately get (2.6) by (1.6). Noting that θ < 2, we obtain by (1.3) and (1.6)
that

∞∑

i=1

a2
ni ≤ sup

i≥1
|ani|2−θ

∞∑

i=1

|ani|θ � n−(r(2−θ)−α).

Since θ < 2 − α/r, we have µ =: r(2 − θ) − α > 0. Therefore (2.7) holds. So,
Theorem 2.3 not only extends the result of Wu [10] for ND random variables to
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END case, but also obtains the weaker sufficient condition of complete qth moment
convergence of weighted sums for arrays of row-wise END random variables. It
is worthy to point out that the method used in this article is novel, which differs
from that of Wu [10]. Our method greatly simplify the proof of Wu [10].

Note that conditions (1.3) and (2.6) together imply

(2.18)

∞∑

i=1

|ani|p � n−1−β .

From the proof of Theorem 2.3, we can easily see that if q > 0 of Theorem 2.3 is
replaced by q ≥ p, then condition (2.6) can be replaced by the weaker condition
(2.18).

2.5. Theorem. Suppose that β > −1, p > 0. Let {Xni, i ≥ 1, n ≥ 1} be an
array of row-wise END random variables which are stochastically dominated by a
random variable X. Let {ani, i ≥ 1, n ≥ 1} be an array of constants satisfying
(1.3) and (2.18). Furthermore, assume that (2.7) holds if p ≥ 2. Assume further
that EXni = 0 for all i ≥ 1 and n ≥ 1 when p ≥ 1. Then

(2.19)

{
E|X|q <∞, if q > p,

E|X|p log(1 + |X|) <∞, if q = p,

implies that (2.9) holds.

2.6. Remark. As in Remark 2.4 , when 1 +α+β = 0, the conditions (1.3), (2.7)
and (2.18) are weaker than the conditions (1.3) and (1.6).

Take q < p in Theorem 2.3 and q = p in Theorem 2.5, by Remark 2.2 we can
immediately obtain the following corollary:

2.7. Corollary. Suppose that β > −1, p > 0. Let {Xni, i ≥ 1, n ≥ 1} be an
array of row-wise END random variables which are stochastically dominated by a
random variable X. Assume further that EXni = 0 for all i ≥ 1 and n ≥ 1 when
p ≥ 1. Let {ani, i ≥ 1, n ≥ 1} be an array of constants satisfying (1.3), (2.7) and

(2.20)
∞∑

i=1

|ani|t � n−1−β+r(p−t) for some 0 < t ≤ p.

(i) If t < p, then E|X|p <∞ implies (1.5).
(ii) If t = p, then E|X|p log(1 + |X|) <∞ implies (1.5).

The following corollary establish complete qth moment convergence for moving
average processes under a sequence of END non-identically distributed random
variables, which extends the corresponding results of Li and Zhang [15] to the case
of sequences of END non-identically distributed random variables. Moreover, our
result covers the case of r > 1, which was not considered by Li and Zhang [15].

2.8. Corollary. Suppose that Yn =
∑∞
i=−∞ ai+nXi, n ≥ 1, where {ai,−∞ < i <

∞} is a sequence of real numbers with
∑∞
−∞ |ai| < ∞ and {Xi,−∞ < i < ∞}

is a sequence of END random variables with mean zero which are stochastically

333



dominated by a random variable X. Let r > 1/2, p ≥ 1 + 1/(2r), q > 0. Then

(2.21)





E|X|q <∞, if q > p,

E|X|p log(1 + |X|) <∞, if q = p,

E|X|p <∞, if q < p,

implies that

(2.22)
∞∑

n=1

nrp−2E

(∣∣∣∣∣n
−r

n∑

i=1

Yi

∣∣∣∣∣− ε
)q

+

<∞, for all ε > 0.

Proof. Note that

n−r
n∑

i=1

Yi =
∞∑

i=−∞


n−r

n∑

j=1

ai+j


Xi.

We will apply Theorem 2.3 with β = rp − 2, t = 1, ani = n−r
∑n
j=1 ai+j and

{Xni, i ≥ 1, n ≥ 1} replaced by {Xi,−∞ < i < ∞}. Noting that
∑∞
−∞ |ai| < ∞,

r > 1/2 and p ≥ 1 + 1/(2r), we can easily see that the conditions (1.3) and (1.6)
hold for θ = 1, α = 1 − r. Therefore (2.22) holds by (2.21), Theorem 2.3 and
Remark 2.2. �

Similar to the proof of Corollary 2.8, we can get the following Baum-Katz type
result for arrays of row-wise END random variables as follows.

2.9. Corollary. Let {Xni, 1 ≤ i ≤ n, n ≥ 1} be an array of row-wise END
random variables which are stochastically dominated by a random variable X. Let
r > 1/2, p > 1, q > 0. Assume further that EXni = 0 for all i ≥ 1 and n ≥ 1
when p ≥ r. Then





E|X|q <∞, if q > p/r,

E|X|p/r log(1 + |X|) <∞, if q = p/r,

E|X|p/r <∞, if q < p/r,

implies that

∞∑

n=1

np−2−rqE

(∣∣∣∣∣
n∑

i=1

Xni

∣∣∣∣∣− εn
r

)q

+

<∞, for all ε > 0.
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