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Abstract

In this paper, a family of generalized gamma distributions, T -gamma
family, has been proposed using the T -R{Y } framework. The family of
distributions is generated using the quantile functions of uniform, ex-
ponential, log-logistic, logistic and extreme value distributions. Several
general properties of the T -gamma family are studied in details includ-
ing moments, mean deviations, mode and Shannon’s entropy. Three
new generalizations of the gamma distribution which are members of
the T -gamma family are developed and studied. The distributions in
the T -gamma family are very flexible due to their various shapes. The
distributions can be symmetric, skewed to the right, skewed to the left,
or bimodal. Four data sets with various shapes are fitted by using
members of the T -gamma family of distributions.
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1. Introduction
The origin of gamma distribution, from the book by Johnson et al. (1994, p. 343), can

be attributed to Laplace (1836) who obtained a gamma distribution as the distribution
of a “precision constant". The gamma distribution has been used to model waiting times.
For example in life testing, the waiting time until “death" is a random variable that has
a gamma distribution (Hogg et al. 2013, p. 156). The gamma distribution is used in
Bayesian statistics, where it is used as a conjugate prior distribution for various types
of scale parameters such as the parameter θ in an exponential distribution or a normal
distribution with a known mean. Other applications include the size of insurance claims
(Boland, 2007), hydrology (Aksoy, 2000), and bacterial gene expression (Friedman et
al. 2006). For other types of applications, see for example the works of Costantino and
Desharnais (1981), Dennis and Patil (1984), and Johnson et al. (1994, Chapter 17) and
the references therein.

The early generalization of gamma distribution can be traced back to Amoroso (1925)
who discussed a generalized gamma distribution and applied it to fit income rates. John-
son et al. (1994, Chapter 8) gave a four parameter generalized gamma distribution
which reduces to the generalized gamma distribution defined by Stacy (1962) when the
location parameter is set to zero. Mudholkar and Srivastava (1993) introduced the ex-
ponentiated method to derive a distribution. The generalized gamma defined by Stacy
(1962) is a three-parameter exponentiated gamma distribution. Agarwal and Al-Saleh
(2001) applied generalized gamma to study hazard rates. Balakrishnan and Peng (2006)
applied this distribution to develop generalized gamma frailty model. Cordeiro et al.
(2012) derived another generalization of Stacy’s generalized gamma distribution using
exponentiated method, and applied it to life time and survival analysis. Nadarajah and
Gupta (2007) proposed another type of generalized gamma distribution with application
to fitting drought data.

Eugene et al. (2002) introduced the beta-generated family of distributions and since
then, many variants of this family have been studied. Based on the beta-generated
family and its variants, more generalized gamma distributions have been defined and
studied. Some examples are the beta-gamma distribution by Kong et al. (2007), the
Kumaraswamy-gamma distribution by Cordeiro and de Castro (2011), the Kumaraswamy-
generalized gamma distribution by de Pascoa et al. (2011), and the beta generalized
gamma distribution by Cordeiro et al. (2013).

The beta-generated family was extended by Alzaatreh et al. (2013) to the T -R(W )
family. The cumulative distribution function (CDF) of the T -R(W ) distribution is
G(x) =

∫W (F (x))

a
r(t)dt, where r(t) is the probability density function (PDF) of a ran-

dom variable T with support (a, b) for −∞ ≤ a < b ≤ ∞. The function W (F (x)) of the
CDF F (x) is monotonic and absolutely continuous. Aljarrah et al. (2014) considered
the function W (F (x)) to be the quantile function of a random variable Y and defined
the T -R{Y } family. This framework can be applied to derive generalized families of any
existing distribution.

Some generalizations of the gamma distribution that fall into the T -R{Y } framework
include the family of generalized gamma-generated distributions by Zografos and Bal-
akrishnan (2009), the gamma-Pareto distribution by Alzaatreh et al. (2012) and the
gamma-normal distribution by Alzaatreh et al. (2014a). These distributions belong to
the gamma-R{exponential} family. Various applications to biological data, lifetime data,
hydrological data and others were provided in these literatures. For a review of methods
for generating continuous distributions, one may refer to Lee et al. (2013).
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Various distributions in the T -R{Y } family have been studied in the literature. The
distributions, in general, have more parameters which add more flexibility to their use-
fulness. These distributions have shown their usefulness in many fields. They have been
applied in many areas and found to provide better fit to complex real life situations.
Examples include the following: the beta-normal (Eugene et al., 2002) was applied to
bimodal data; the Kumaraswamy-Weibull (Cordeiro et al., 2010) was applied to model
failure time data; the beta-Weibull (Famoye et al., 2005), the beta Pareto (Akinsete et
al., 2008) and the beta generalized Pareto (Mahmoudi, 2011) were applied to model flood
data.

This article focuses on the generalization of the gamma distribution using the T -
gamma{Y } framework and studies some new distributions in this family and their ap-
plications. Section 2 gives a brief review of the T -R{Y } framework, defines several
new generalized gamma sub-families. Section 3 gives some general properties of the T -
gamma{Y } distributions. Section 4 develops several new T -gamma{Y } distributions and
derives some properties. Section 5 gives some applications. Summary and conclusions
are given in section 6.

2. The T -gamma{Y } family of distributions
The T -R{Y } framework defined in Aljarrah et al. (2014) (see also Alzaatreh et al.,

2014b) is briefly described in the following. Let T , R and Y be random variables with
CDF FT (x) = P (T ≤ x), FR(x) = P (R ≤ x), FY (x) = P (Y ≤ x) and corresponding
quantile functions QT (p), QR(p) and QY (p), where the quantile function is defined as
QZ(p) = inf{z : FZ(z) ≥ p}, 0 < p < 1. If densities exist, we denote them by fT (x),
fR(x) and fY (x). Now assume the random variables T, Y ∈ (a, b) for −∞ ≤ a < b ≤ ∞.
The random variable X in T -R{Y } family of distributions is defined as

(2.1) FX(x) =

∫ QY (FR(x))

a

fT (t)dt = FT (QY (FR(x))).

The corresponding PDF associated with (2.1) is

(2.2) fX(x) = fT (QY (FR(x)))×Q′Y (FR(x))× fR(x).

Alternatively, (2.2) can be written as

(2.3) fX(x) = fR(x)× fT (QY (FR(x)))

fY (QY (FR(x)))
.

The hazard function of the random variable X can be written as

(2.4) hX(x) = hR(x)× hT (QY (FR(x)))

hY (QY (FR(x)))
.

Alzaatreh et al. (2013) studied the T -R{exponential} distributions. Aljarrah et al.
(2014) studied the general framework and some properties of T -R{Y }.

Let R be a gamma random variable with PDF fR(x) = β−α(Γ(α))−1xα−1e−x/β , x > 0

and CDF FR(x) = β−α(Γ(α))−1 ∫ x
0
tα−1e−t/βdt, then (2.2) reduces to

fX(x) =
1

βαΓ(α)
xα−1e−x/β × fT (QY (FR(x)))

fY (QY (FR(x)))

= gamma(α, β)× fT (QY (FR(x)))

fY (QY (FR(x)))
.(2.5)

Gamma(α, β) is the PDF of gamma random variable. Hereafter, the family of distribu-
tions in (2.5) will be called the T -gamma{Y } family and it will be denoted by T -G{Y }.
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It is clear that the PDF in (2.5) is a generalization of gamma distribution. For con-
sistency, the notation fG(x) and FG(x) will respectively be used in place of fR(x) and
FR(x) for the gamma random variable in the remaining sections. From (2.1), if T d

=Y ,
then X d

= gamma(α β). Also, if Y d
= gamma(α β), then X d

=T .
Various existing generalizations of the gamma distributions can be seen as members

of T -G{Y } family. When T ∼ beta(a, b) and Y ∼ uniform(0, 1), the T -G{Y } reduces
to the beta-gamma distribution (Kong et al., 2007). When T ∼ Power(a) and Y ∼
uniform(0, 1), the T -G{Y } reduces to the exponentiated-gamma distribution (Nadarajah
and Kotz, 2006) and when T ∼ Kumaraswamy(a, b) and Y ∼ uniform(0, 1), the T -G{Y }
reduces to the Kumaraswamy-gamma distribution (Cordeiro and de Castro, 2011). Table
1 gives five quantile functions of known distributions which will be applied to generate
T -G{Y } sub-families in the following subsections.

Table 1. Quantile functions for different Y distributions

Y QY (p)

(a) Uniform p
(b) Exponential −b log(1− p), b > 0

(c) Log-logistic a(p/(1− p))1/b, a, b > 0
(d) Logistic a+ b log[p/(1− p)], b > 0
(e) Extreme value a+ b log[− log(1− p)], b > 0

2.1. T -gamma{uniform} family of distributions (T -G{uniform}). By using the
quantile function of the uniform distribution in Table 1, the corresponding CDF to (2.1)
is

(2.6) FX(x) = FT {FG(x)} ,

and the corresponding PDF to (2.6) is

fX(x) =
1

βαΓ(α)
xα−1e−x/β × fT (FG(x))

= gamma(α, β)× fT (FG(x)) , x > 0.(2.7)

2.2. T -gamma{exponential} family of distributions (T -G{exponential}). By
using the quantile function of the exponential distribution in Table 1, the corresponding
CDF to (2.1) is

(2.8) FX(x) = FT {−b log(1− FG(x))} ,

and the corresponding PDF to (2.8) is

fX(x) =
b

βαΓ(α)(1− FG(x))
xα−1e−x/β × fT (−b log (1− FG(x)))

= gamma(α, β)× b

(1− FG(x))
× fT (−b log (1− FG(x))) , x > 0.(2.9)

Note that the CDF and the PDF in (2.8) and (2.9) can be written as FX(x) = FT (−bHG(x))
and fX(x) = bhG(x)fT (−bHG(x)) where hG(x) and HG(x) are the hazard and cumu-
lative hazard functions for the gamma distribution, respectively. Therefore, the T -
G{exponential} family of distributions arises from the ‘hazard function of the gamma
distribution’.



873

2.3. T -gamma{log-logistic} family of distributions (T -G{log-logistic}). By us-
ing the quantile function of the log-logistic distribution in Table 1, the corresponding
CDF to (2.1) is

(2.10) FX(x) = FT
{
a(FG(x)/[1− FG(x)])1/b

}
,

and the corresponding PDF is

fX(x) =
a

bβαΓ(α)

xα−1e−x/β

(1− FG(x))2

(
FG(x)

1− FG(x)

)1/b−1

fT

(
a

(
FG(x)

1− FG(x)

)1/b
)

=
a · gamma(α, β)

b(1− FG(x))2

[
FG(x)

1− FG(x)

]1/b−1

fT

{
a

[
FG(x)

1− FG(x)

]1/b
}
, x > 0.(2.11)

Note that if a = b = 1, (2.11) reduces to

fX(x) =
gamma(α, β)

(1− FG(x))2 × fT (FG(x)/[1− FG(x)]) , x > 0,

which is a family of generalized gamma distributions arising from the ‘odds’ of the gamma
distribution.

2.4. T -gamma{logistic} family of distributions (T -G{logistic}). By using the
quantile function of the logistic distribution in Table 1, the corresponding CDF to (2.1)
is

(2.12) FX(x) = FT {a+ b log (FG(x)/[1− FG(x)])} ,

and the corresponding PDF is

(2.13) fX(x) =
bxα−1e−x/β

βαΓ(α)FG(x)[1− FG(x)]
fT

(
a+ b log

(
FG(x)

1− FG(x)

))
, x > 0.

Note that if a = 0 and b = 1, (2.13) reduces to

fX(x) =
hG(x)

FG(x)
× fT

(
log

(
FG(x)

1− FG(x)

))
, x > 0,

which is a family of generalized gamma distributions arising from the ‘logit function’ of
the gamma distribution.

2.5. T -gamma{extreme value} family of distributions (T -G{extreme
value}). By using the quantile function of the extreme value distribution in Table 1,
the corresponding CDF to (2.1) is

(2.14) FX(x) = FT {a+ b log(− log[1− FG(x)])} ,

and the corresponding PDF is

(2.15) fX(x) =
bxα−1e−x/βfT {a+ b log[− log(1− FG(x))]}

βαΓ(α)[FG(x)− 1] log(1− FG(x))
, x > 0.

The CDF in (2.14) and the PDF in (2.15) can be written as

FX(x) = FT (a+ b logHG(x))

and
fX(x) = b {hG(x)/HG(x)} fT (a+ b logHG(x))

respectively.
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3. Some properties of the T -G{Y } family of distributions
In this section, we discuss some general properties of the T -gamma family of distri-

butions in detail. We omit the proof for some straightforward results.

3.1. Lemma. Let T be a random variable with PDF fT (x), then the random variable
X = QG(FY (T )), where QG(.) is the quantile function of gamma(α, β), follows the T -
gamma{Y } distribution.

3.2. Corollary. Based on Lemma 3.1, we have
(i) X = QG(T ) follows the distribution of T -G{uniform} family.
(ii) X = QG(1− e−T/b) follows the distribution of T -G{exponential} family.
(iii) X = QG

(
[1 + (T/a)−b]

−1
)
follows the distribution of T -G{log-logistic} family.

(iv) X = QG
(

[1 + e−(T−a)/b]
−1
)
follows the distribution of T -G{logistic} family.

(v) X = QG
(

1− e−e
(T−a)/b

)
follows the distribution of T -G{extreme value} family.

3.3. Lemma. The quantile functions for T -gamma{Y } family is given by QX(p) =
QG(FY (QT (p))).

3.4. Corollary. Based on Lemma 3.3, the quantile function for the
(i) T -G{uniform}, (ii) T -G{exponential}, (iii) T -G{log-logistic}, (iv) T -G{logistic} and
(v) T -G{extreme value}, are respectively,

(i) QX(p) = QG (QT (p)),
(ii) QX(p) = QG

(
1− e−b

−1QT (p)
)
,

(iii) QX(p) = QG
(

[1 + (QT (p)/a)−b]
−1
)
,

(iv) QX(p) = QG
(

[1 + e−(QT (p)−a)/b]
−1
)
,

(v) QX(p) = QG
(

1− e−e
(QT (p)−a)/b

)
.

3.5. Proposition. The mode(s) of the T -gamma{Y } family are the solutions of the
equation

(3.1) x =
α− 1

β−1 −Ψ{fT (QY (FG(x)))} −Ψ{Q′Y (FG(x))} ,

where Ψ(f) = f ′/f .

Proof. For gamma distribution,

fG(x) = β−α(Γ(α))−1xα−1e−x/β ,

we have f ′G(x) = [(α − 1)/x − β−1]fG(x). Using this fact; one can show the result in
(3.1) by equating the derivative of the equation (2.5) to zero and then solving for x. �

The entropy of a random variable X is a measure of variation of uncertainty (Rényi,
1961). Shannon’s entropy has been used in many fields such as engineering and infor-
mation theory. Shannon’s entropy (Shannon, 1948) for a random variable X with PDF
f(x) is defined as ηX = −E {log (f(X))}.

3.6. Proposition. The Shannon’s entropy for the T -G{Y } family (2.1) is given by

(3.2) ηX = ηT + E (log fY (T ))− E {log fG(QG(FY (T )))} .

Proof. See Theorem 2 of Aljarrah et al. (2014). �
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3.7. Corollary. The Shannon’s entropy for the T -G{Y } family can be written as

ηX = ηT + E (log fY (T )) + log Γ(α) + α log(β) + (1− α)E (logX) + β−1µX .

Proof. For the T -G{Y } family, we have log(fG(x)) = − log(Γ(α)) − α log(β) + (α −
1) log(x)− x/β. The result follows from Proposition 3.6. �

3.8. Corollary. Based on Corollary 3.7, the Shannon’s entropies for the (i) T -G{uniform},
(ii) T -G{exponential}, (iii) T -G{log-logistic}, (iv) T -G{logistic} and (v) T -G{extreme
value}, distributions, respectively, are given by

(i) ηX = C1 + ηT + (1− α)E (logX) + β−1µX ,
(ii) ηX = C2 + ηT − b−1µT + (1− α)E (logX) + β−1µX ,
(iii) ηX = C3 +ηT +(b−1)E(log T )−2E(log(1+(T/a)b))+(1−α)E (logX)+β−1µX ,
(iv) ηX = C4 + ηT − b−1µT − 2E(log(1 + e−(T−a)/b)) + (1− α)E (logX) + β−1µX ,
(v) ηX = C5 + ηT + b−1µT − E(e(T−a)/b) + (1− α)E (logX) + β−1µX ,

where C1 = log Γ(α) +α log(β), C2 = − log b+ log Γ(α) +α log(β), C3 = log b− b log a+
log Γ(α) + α log(β), C4 = − log b+ ab−1 + log Γ(α) + α log(β) and C5 = − log b− ab−1 +
log Γ(α) + α log(β).

3.9. Proposition. The rth moment for the T -gamma{Y } family of distributions is given
by

(3.3) E(Xr) = βr
∑∞

k=0
ckE[FY (T )]k+r,

where c0 = 1, cm = m−1∑m
k=1 (kr −m+ k)gk+1cm−k, m ≥ 1 and gk satisfies the fol-

lowing:

g1 = 1, n(n+ α)gn+1 =
∑n

i=1

∑n−i+1

j=1
gigjgn−i−j+2j(n− i− j + 2)

− ∆(n)
∑n

i=2
gign−i+2i[i− α− (1− α)(n+ 2− i)],

and ∆(n) =

{
0, n < 2
1, n ≥ 2.

Proof. From Lemma 3.1, the rth moment for the T -G{Y } family can be written as
E(Xr) = E(QG(FY (T )))r, where QG(p) is the quantile function of gamma distribution
with parameters α and β. Steinbrecher and Shaw (2008) showed that a power series
expansion of QG(p) is possible and can be written as QG(p) = β

∑∞
n=1 gn p

n where gn
can be obtained from the recurrence relation defined in the statement of Proposition 3.9.
For example, the first three terms of gn are 1, (α+ 1)−1 and (3α+ 5)/[2(α+ 1)2(α+ 2)].
Other terms can be similarly obtained. Therefore, (QG(p))r = βr

∑∞
k=0 ck p

k+r (see
Gradshteyn and Ryzhik, 2007), where ck can be obtained from the recurrence relation
defined in Proposition 3.9. �

3.10. Corollary. Based on Proposition 3.9, the rth moments for the (i) T -G{uniform},
(ii) T -G{exponential}, (iii) T -G{log-logistic}, (iv) T -G{logistic} and (v) T -G{extreme
value} distributions, respectively, are given by

(i) E(Xr) = βr
∑∞
k=0 ckE(T k+r),

(ii) E(Xr) = βr
∑∞
k=0

∑k+r
j=0 (−1)j

(
k + r
j

)
ckMT (−j/b),

(iii) E(Xr) = βr
∑∞
k=0 ckE

(
1 + (T/a)−b

)−k−r
,

(iv) E(Xr) = βr
∑∞
k=0

∑∞
j=0 (−1)jckMT−a(−j/b),

(v) E(Xr) = βr
∑∞
k=0

∑k+r
j=0

∑∞
i=0 (−1)i+j (j)i

i!

(
k + r
j

)
ckMT−a(i/b),
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where MX(t) = E(etX).

3.11. Proposition. The mean deviations from the mean and the median for the T -
gamma{Y } family, respectively, are given by

(3.4) D(µ) = 2µFT (QY (FG(µ)))− 2Πµ and D(M) = µ− 2ΠM ,

where µ and M are the mean and median for X, and

Πc = β
∑∞

k=1
gk

∫ QY (FG(c))

−∞
fT (u)(FY (u))kdu.

Proof. For a nonnegative random variable X, we have D(µ) = 2µFX(µ) − 2Πµ and
D(M) = µ− 2ΠM , where Πc =

∫ c
0
xfX(x)dx. From (2.5) and Lemma 3.1, one can easily

see that Πc = β
∫ QY (FG(c))

−∞ fT (u)QG(FY (u))du. The results in (3.4) can be obtained
using the series expansion of QG(.) in Proposition 3.9. �

3.12. Corollary. Based on Proposition 3.11, the Πc’s for (i) T -G{uniform}, (ii) T -
G{exponential}, (iii) T -G{log-logistic}, (iv) T -G{logistic} and (v) T -G{extreme value}
distributions, are respectively given by

(i)

(3.5) Πc = β

∞∑
k=1

gkSu(c, 0, k),

where Sξ(c, a, k) =
∫ QY (FG(c))

a
ξkfT (u)du and QY (FG(c)) = FG(c) for uniform

distribution.
(ii)

(3.6) Πc = β

∞∑
k=1

k∑
j=0

gk

(
k
j

)
(−1)jSeu/b(c, 0,−j),

where QY (FG(c)) = −b log(1− FG(c)) for exponential distribution.
(iii)

(3.7) Πc = β

∞∑
k=1

k∑
j=0

gk

(
k
j

)
(−1)jS1+(u/a)b(c, 0,−j),

where QY (FG(c)) = a[FG(c)/(1− FG(c))]1/b for log-logistic distribution.
(iv)

(3.8) Πc = β

∞∑
k=1

gkS1+e−(u−a)/b(c,−∞,−j),

where QY (FG(c)) = a+ b log{FG(c)/(1− FG(c))} for logistic distribution.
(v)

(3.9) Πc = β

∞∑
k=1

k∑
j=0

(−1)j
(
k
j

)
gkS

ee
(u−a)/b (c,−∞,−j),

where QY (FG(c)) = a+ b log{− log(1− FG(c))} for extreme value distribution.

Proposition 3.11 and Corollary 3.12 can be used to obtain the mean deviations for
T -G{uniform}, T -G{exponential}, T -G{log-logistic}, T -G{logistic} and T -G{extreme
value} distributions.
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3.13. Proposition. Let X be a random variable that follows the T -gamma{Y } family
in (2.5). Assume that E(Xn) < ∞ for all n, then E(Xn) ≤ [βnΓ(α + n)/Γ(α)] ×
E (1/[1− FY (T )]).

Proof. If the random variable R is nonnegative and X follows the T -R{Y } family in (2.1)
with E(Xn) < ∞, one can show that E(Xn) ≤ E(Rn)E[1/(1 − FY (T ))] (see Theorem
1 in Aljarrah et al., 2014). The result follows by using the fact that R follows a gamma
distribution with parameters α and β, and E(Rn) = βnΓ(α+ n)/Γ(α). �

3.14. Corollary. If E(Xn) < ∞ and by using Proposition 3.13, we have the following
results:

(i) If X follows T -G{uniform}, then E(Xn) ≤
[
βnΓ(α+n)

Γ(α)

]
E
(
(1− T )−1).

(ii) If X follows T -G{exponential}, then E(Xn) ≤
[
βnΓ(α+n)

Γ(α)

]
MT (1/b).

(iii) If X follows T -G{log-logistic}, then E(Xn) ≤
[
βnΓ(α+n)

Γ(α)

]
[1 + E(T/a)b].

(iv) If X follows T -G{logistic}, then E(Xn) ≤
[
βnΓ(α+n)

Γ(α)

]
[1 +MT−a(1/b)].

(v) If X follows T -G{extreme value}, then E(Xn) ≤
[
βnΓ(α+n)

Γ(α)

]
E(ee

(T−a)/b

).

4. Some examples of T -G{Y } family of distributions
In this section, we present some members of the T -G{Y } family, namely, Weibull-

G{exponential}, Weibull-G{log-logistic} and Cauchy-G{logistic}. For simplicity, we only
use the standard form (i.e. no parameters in the distribution of Y ) of the quantile
functions in Table 1.

4.1. The Weibull-G{exponential} distribution. If a random variable T follows the
Weibull distribution with parameters c and γ, then

fT (t) = cγ−1(t/γ)c−1e−(t/γ)c , c, γ > 0.

From (2.9), the PDF of the Weibull-G{exponential} is given by

fX(x) =
c

γcβαΓ(α)

xα−1e−x/β

1− FG(x)
(− log(1− FG(x)))c−1(4.1)

× exp
{
−γ−c(− log(1− FG(x)))c

}
, x > 0.

When c = 1, (4.1) reduces to the exponential-G{exponential}. When c = γ = 1, equa-
tion (4.1) reduces to the gamma distribution. From (2.8), the CDF of the Weibull-
G{exponential} is given by

FX(x) = 1− exp
{
−γ−c(− log(1− FG(x)))c

}
, x > 0.

In Figure 1, various graphs of Weibull-G{exponential} PDF for different parameter
values are provided. These plots show that the PDF can be left skewed, right skewed,
approximately symmetric or have a reversed J-shape.
Some properties of the Weibull-G{exponential} are obtained in the following by using
the general properties discussed in section 3.

(1) Quantile function: By using Lemma 3.3, the quantile function of the Weibull-
G{exponential} distribution is given by

QX(p) = QG
{

1− e−γ(− log(1−p))1/c
}
.
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Figure 1. The PDFs of Weibull-G{exponential} for various parameter values
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(2) Mode: By using Proposition 3.5, the mode of Weibull-G{exponential} distribu-
tion can be obtained by solving the following equation numerically

x = (α− 1)

(
β−1 − hG(x)

{
c− 1

(1− FG(x))HG(x)
+ γ−c+1(HG(x))c−1

})−1

.

(3) Shannon entropy: By using Corollary 3.8 and the fact that µT = γΓ(1+1/c) and
ηT = 1+ξ(1−1/c)+log(γ/c), the Shannon’s entropy of Weibull-G{exponential}
distribution is

ηX = C + (1− α)E (logX) + β−1µX ,

where C = log Γ(α) + α log(β) + ξ(1 − 1/c) + log(γ/c) − γΓ(1 + 1/c) + 1 and
ξ ≈ 0.5772 is the Euler’s constant.

(4) Moments: By using Corollary 3.10, the rth moment of the Weibull-G{expo-
nential} distribution can be written as

E(Xr) = βr
∑∞

k=0

∑k+r

j=0

∑∞

i=0

(−1)j+ijiγi

i!

(
k + r
j

)
ckΓ(1 + i/c).

(5) Mean deviations: By using Corollary 3.12, the mean deviation from the mean
and the mean deviation from the median of Weibull-G{exponential} distribution
can be obtained from (3.4) where

Πc = β

∞∑
k=1

k∑
j=0

∞∑
i=0

(−1)jkiγi

i!

(
k
j

)
gkΓ [1 + i/c, (QY (FG(c))/γ)c],

QY (FG(c)) = − log(1 − FG(c)) and Γ(α, x) =
∫ x

0
uα−1e−udu is the incomplete

gamma function.
(6) Moments upper bound: By Corollary 3.14, E(Xn) ≤ [βnΓ(α+n)/Γ(α)]×MT (1),

where T follows Weibull(c, γ). If c = 1 and γ < 1, one can show that E(Xn) ≤
βnΓ(α+n)
(1−γ)Γ(α)

.

4.2. The Weibull-G{log-logistic} distribution. If a random variable T follows the
Weibull distribution with parameters c and γ, then

fT (t) = cγ−1(t/γ)c−1e−(t/γ)c , c, γ > 0.
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From (2.11), the PDF of the Weibull-G{log-logistic} is given by

fX(x) =
c

γcβαΓ(α)

xα−1e−x/β

(1− FG(x))2

(
FG(x)

1− FG(x)

)c−1

(4.2)

× exp

{
−
(

FG(x)

γ(1− FG(x))

)c}
, x > 0.

When c = 1, the Weibull-G{log-logistic} reduces to the exponential-G{log-logistic}.
From (2.10), the CDF of the Weibull-G{log-logistic} is given by

FX(x) = 1− exp

{
−
(

FG(x)

γ(1− FG(x))

)c}
, x > 0.

Various graphs of Weibull-G{log-logistic} PDF for different parameter values are pro-
vided in Figures 2 and 3. These plots show the PDF has great shape flexibility. It can
be left skewed, right skewed, approximately symmetric or have a reversed J-shape. Also,
the distribution can be unimodal or bimodal.

Figure 2. The PDFs of Weibull-G{log-logistic} for various parameter values

Figure 2: The PDFs of Weibull-G{log-logistic} for various parameter values
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4.3. The Cauchy-G{logistic} distribution. If a random variable T follows the Cauchy
distribution with parameters c and γ, then

fT (t) = π−1{1 + [(t− c)/γ]2}−1
, γ > 0, c ∈ R.

From (2.13), the PDF of the Cauchy-G{logistic} is defined as

fX(x) =
xα−1e−x/β

πγβαΓ(α)FG(x)(1− FG(x))
(4.3)

×
[
1 + γ−2(log(FG(x)/(1− FG(x))− c)2]−1

, x > 0.

In Figure 4, various graphs of the Cauchy-G{logistic} distribution for various param-
eter values are provided. These graphs indicate that the Cauchy-G{logistic} distribution
can be right skewed, approximately symmetric or have a reversed J-shape.
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Figure 3. Some bimodal PDFs of Weibull-G{log-logistic} for various
parameter values

Figure 3: Some bimodal PDFs of Weibull-G{log-logistic} for various parameter values
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Figure 4. The PDFs of Cauchy-G{logistic} for various parameter values
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5. Applications
In this section, the applications of the T -gamma distribution are illustrated by fitting

some members of the family to different data sets including unimodal and bimodal data
sets.

5.1. Unimodal data sets. In this subsection, we fit theWeibull-G{exponential}, Weibull-
G{log-logistic} and Cauchy-G{logistic} in equations 4.1, 4.2 and 4.3, respectively, to three
data sets with various shapes that are approximately symmetric or left skewed or right
skewed. The maximum likelihood method is used to estimate the model parameters.
The initial values for the parameters α and β are obtained by assuming the random
sample xi, i = 1, 2, . . . , n is from the gamma distribution with parameters α and β. The
moment estimates from the gamma distribution are used as the initial values, which are
α0 = x̄2/s2 and β0 = s2/x̄. Now, by Lemma 3.1, ti = QY (FG(xi)), i = 1, 2, . . . , n follows
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the T distribution with parameters c and γ in all the examples in section 4. The moment
estimates or the maximum likelihood estimates of the T -distribution can be used as the
initial values for c and γ.

The first data set (n = 80) in Table 2 represents the annual maximum temperatures
at Oxford and Worthing in England for the period of 1901-1980. Chandler and Bate
(2007) used the generalized extreme value distribution to model the annual maximum
temperatures in Table 2. The summary statistics from the first data set are: x̄ = 85.3250,
s = 4.2658, γ1 = −0.0162 and γ2 = 2.7309, where γ1 and γ2 are the sample skewness
and kurtosis respectively. The second data set (n = 202) in Table 3 is from Weisberg
(2005) and it represents the sum of skin folds in 202 athletes collected at the Australian
Institute of Sports. The summary statistics from the second data set are: x̄ = 69.0218,
s = 32.5653, γ1 = 1.1660 and γ2 = 4.3220. The third data set (n = 40) in Table 4 is from
Xu et al. (2003) and it represents the time to failure (103 h) of turbocharger of one type
of engine. The summary statistics from the third data set are: x̄ = 6.2525, s = 1.9555,
γ1 = −0.6542 and γ2 = 2.5750.

The data sets are fitted to the Weibull-G{exponential}, Weibull-G{log-logistic} and
Cauchy-G{logistic} distributions. The maximum likelihood estimates, the log-likelihood
value, the Akaike Information Criterion (AIC), the Kolmogorov-Smirnov (K-S) test statis-
tic, and the p-value for the K-S statistic for the fitted distributions to the three data sets
are reported in Table 5. The results in Table 5 show that all the generalized gamma
distributions provide adequate fit to the data set in Table 2. For the data set in Table 3,
the Weibull-G{exponential} provides the best fit followed by the Weibull-G{log-logistic},
while the Cauchy-G{logistic} does not provide an adequate fit. For the data set in Table
4, all the three generalized gamma distributions provide an adequate fit.

On examining the summary statistics of the data sets, it is noticed that the data set
in Table 2 is approximately symmetric, the data set in Table 3 is right skewed and the
data set in Table 4 is left skewed. This shows the flexibility of these generalized gamma
distributions in fitting various data sets with different distribution shapes. We also fit
the three data sets to the gamma distribution. The resulting K-S statistics p-values are
less than 0.0001 for all data sets. Figure 5 displays the histogram and the fitted density
functions for the three data sets, which support the results in Table 5.

Table 2. The annual maximum temperatures data (n = 80)

75 92 87 86 85 95 84 87 86 82 77
89 79 83 79 85 89 84 84 82 86 81
84 84 87 89 80 86 85 84 89 80 87
84 85 82 86 87 86 89 90 90 91 81
85 79 83 93 87 83 88 90 83 82 80
81 95 89 86 89 87 92 89 87 87 83
89 88 84 84 77 85 77 91 94 80 80
85 83 88

5.2. Bimodal data. In this subsection, we fit the Weibull-G{log-logistic} to a bimodal
data set obtained from Emlet et al. (1987) on the asteroid and echinoid egg size. The
data consists of 88 asteroids species divided into three types; 35 planktotrophic larvae,
36 lecithotrophic larvae, and 17 brooding larvae. The logarithm of the egg diameters of
the asteroids data has a bimodal shape. We fit the logarithm of the egg diameters of the
asteroids data and compared it with the beta-normal distribution (Famoye et al., 2004)
and logistic-normal{logistic} distribution (Alzaatreh et al., 2014b). The results of the
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Table 3. The sum of skin folds data (n = 202)

28.0 98 89.0 68.9 69.9 109.0 52.3 52.8 46.7 82.7 42.3
109.1 96.8 98.3 103.6 110.2 98.1 57.0 43.1 71.1 29.7 96.3
102.8 80.3 122.1 71.3 200.8 80.6 65.3 78.0 65.9 38.9 56.5
104.6 74.9 90.4 54.6 131.9 68.3 52.0 40.8 34.3 44.8 105.7
126.4 83.0 106.9 88.2 33.8 47.6 42.7 41.5 34.6 30.9 100.7
80.3 91.0 156.6 95.4 43.5 61.9 35.2 50.9 31.8 44.0 56.8
75.2 76.2 101.1 47.5 46.2 38.2 49.2 49.6 34.5 37.5 75.9
87.2 52.6 126.4 55.6 73.9 43.5 61.8 88.9 31.0 37.6 52.8
97.9 111.1 114.0 62.9 36.8 56.8 46.5 48.3 32.6 31.7 47.8
75.1 110.7 70.0 52.5 67 41.6 34.8 61.8 31.5 36.6 76.0
65.1 74.7 77.0 62.6 41.1 58.9 60.2 43.0 32.6 48 61.2
171.1 113.5 148.9 49.9 59.4 44.5 48.1 61.1 31.0 41.9 75.6
76.8 99.8 80.1 57.9 48.4 41.8 44.5 43.8 33.7 30.9 43.3
117.8 80.3 156.6 109.6 50.0 33.7 54.0 54.2 30.3 52.8 49.5
90.2 109.5 115.9 98.5 54.6 50.9 44.7 41.8 38.0 43.2 70.0
97.2 123.6 181.7 136.3 42.3 40.5 64.9 34.1 55.7 113.5 75.7
99.9 91.2 71.6 103.6 46.1 51.2 43.8 30.5 37.5 96.9 57.7
125.9 49.0 143.5 102.8 46.3 54.4 58.3 34.0 112.5 49.3 67.2
56.5 47.6 60.4 34.9

Table 4. The time to failure of turbocharger data (n = 40)

1.6 3.5 4.8 5.4 6.0 6.5 7.0 7.3 7.7 8.0 8.4
2.0 3.9 5.0 5.6 6.1 6.5 7.1 7.3 7.8 8.1 8.4
2.6 4.5 5.1 5.8 6.3 6.7 7.3 7.7 7.9 8.3 8.5
3.0 4.6 5.3 6.0 8.7 8.8 9.0

maximum likelihood estimates, the log-likelihood value, the AIC, the K-S test statistic,
and the p-value for the K-S statistic for the fitted distributions are reported in Table 6.
The results in Table 6 show that all distributions provide an adequate fit to the data set.
Figure 6 displays the histogram and the fitted density functions for the data.

6. Summary and Conclusions
The gamma distribution is a commonly used distribution for fitting lifetime data, sur-

vival data, hydrological data, and others. The generalization of the gamma distribution
provides more flexible distributions for these different applications. This article applies
the T -R{Y } framework proposed by Aljarrah et al. (2014) to define T -gamma{Y } fam-
ily by using the gamma random variable. Some general properties of the family are
studied. Five types of generalized gamma sub-families are defined by using five different
quantile functions for uniform, exponential, log-logistic, logistic, and extreme value distri-
butions. Various properties for each of these sub-families are studied including moments,
modes, entropy, deviation from the mean and deviation from the median. Three general-
ized gamma distributions, namely, Weibull-G{exponential}, Weibull-G{log-logistic} and
Cauchy-G{logistic} are defined and some of their properties investigated. It is noticed
that the shapes of T -G{Y } distributions can be symmetric, skewed to the right, skewed
to the left or bimodal. This shows that the new generalized gamma distributions are very
flexible in fitting real world data. For future research, many other types of generalizations
of gamma distribution can be derived using the methodology described in this paper.
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Table 5. Parameter estimates for the three data sets in Tables 2, 3, and 4

Parameter estimates for the annual maximum temperatures data in Table 2

Distribution ĉ ˆ ˆ ˆ ˆ AIC K-S K-S p-value

Weibull-G{E} 1.4579

(0.7993)*

2.8324

(4.0113)

392.4465

(169.4705)

0.2048

(0.0901)

–228.9830 465.9661 0.0638 0.9006

Weibull-G{LL} 0.4753

(0.1934)

0.0481

(0.1168)

423.0032

(169.6370)

0.2232

(0.0904)

–229.0198 466.0396 0.0635 0.9041

Cauchy-G{L} 0.1349

(0.8799)

1.1913

(0.2113)

534.8853

(90.7804)

0.1591

(0.0269)

–239.0094 486.0187 0.0727 0.7922

Parameter estimates for the sum of skin folds data in Table 3

Distribution ĉ ˆ ˆ ˆ ˆ AIC K-S K-S p-value

Weibull-G{E} 0.7291

(0.0404)

3.9319

(0.4010)

17.3862

(0.0025)

2.6521

(0.0025)

–953.5709 1915.1420 0.0634 0.3921

Weibull-G{LL} 0.3184

(0.0518)

0.0219

(0.0131)

13.4018

(2.7954)

10.4219

(2.8058)

–962.2296 1932.4590 0.0793 0.1578

Cauchy-G{L} -0.9076

(0.3571)

3.2642

(0.3125)

29.4223

(0.0203)

2.1914

(0.0236)

–977.9650 1963.9300 0.1174 0.0076

Parameter estimates for the time to failure of turbocharger data in Table 4

Distribution ĉ ˆ ˆ ˆ ˆ AIC K-S K-S p-value

Weibull-G{E} 8.3877

(1.8836)

4.2085

(0.9729)

0.1116

(0.0714)

4.9569

(1.6596)

–81.3549 170.7098 0.1114 0.7039

Weibull-G{LL} 0.6094

(0.2749)

28.3338

(43.2957)

7.5745

(5.5233)

0.5396

(0.3396)

–78.9643 165.9286 0.0820 0.9507

Cauchy-G{L} 1.6246

(1.4562)

3.3557

(1.1973)

57.8285

(21.4393)

0.1015

(0.0354)

–85.9245 179.8491 0.1442 0.3766

*standard error

Table 6. Parameter estimates for the asteroids data

Distribution Weibull-G{LL} Beta-normal∗ Logistic-N{L}
Parameter α̂ = 410.7779(16.1145) α̂ = 0.0129 λ̂ = 0.1498(0.0185)

Estimates β̂ = 0.0151(0.0196) β̂ = 0.0070 µ̂ = 6.0348(0.0685)
ĉ = 0.1390(0.0865) µ̂ = 5.7466 σ̂ = 0.2604(0.0100)
γ̂ = 3.6233(0.4476) σ̂ = 0.0675

Log-likelihood −111.2091 −109.4800 −111.4287
AIC 230.4182 226.9600 228.4974
K-S statistic 0.1088 0.1233 0.0988
p-value 0.2486 0.1377 0.3572
∗From Famoye et al. (2004) and the MLE standard errors were not provided
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