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Variable selection for high dimensional partially
linear varying coe�cient errors-in-variables models
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Abstract

In this paper, we consider variable selection procedure for the high
dimensional partially linear varying coe�cient models where the para-
metric part covariates are measured with additive errors. The penalized
bias-corrected pro�le least squares estimators are conducted, and their
asymptotic properties are also studied under some regularity condi-
tions. The rate of convergence and the asymptotic normality of the
resulting estimates are established. We further demonstrate that, with
proper choices of the penalty functions and the regularization parame-
ter, the resulting estimates perform asymptotically as well as an oracle
property. Choice of smoothing parameters is also discussed. Finite
sample performance of the proposed variable selection procedures is
assessed by Monte Carlo simulation studies.
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1. Introduction

With the development of applied sciences, semiparametric regression models have been
well researched and popularly used for their �exibility and interpretability. [16] present
diverse semiparametric regression models along with their inference procedures and appli-
cations. Of particular interests to us in this paper is the partially linear varying coe�cient
(PLVC) model. Let {(Yi, Xi, Zi, Ti), i = 1, . . . , n} be an iid copies of (Y,X,Z, T ), where
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Y is a scalar response variable and (X,Z, T ) ∈ Rp × Rq × R is its associated regressors.
The PLVC models take the form

(1.1) Yi = X>i β + Z>i α(Ti) + εi,

where β = (β1, . . . , βp)
> is a p-dimensional vector of unknown parameters, α(·) =

(α1(·), . . . , αq(·))> is an q-dimensional vector of unknown coe�cient functions, and εi's
are iid model error with E(εi|Xi, Zi, Ti) = 0. In this model, the dependence of α(·) on
T implies a special kind of interaction between the covariate Z and T . Due to the curse
of dimensionality, we assume, for simplicity, that T is univariate. This model presents a
novel and general structure, which indeed covers many well-studied, important semipara-
metric regression models, e.g. linear model, partially linear model and varying coe�cient
model.

Model (1.1) has been studied by many authors recently. Examples include but are
not limited to [1, 26, 13, 12, 10, 3, 23]. An essential assumption in their papers is
that all data can be observed directly. However, measurement error data are often
encountered in many �elds, including engineering, economics, biomedical sciences and
epidemiology. Simply ignoring measurement errors, known as the naive method, will
result in biased estimators. There is a long standing literature on statistical modeling
subject to measurement errors. Comprehensive reviews can be found in [2, 7]. PLVC
models have been used to study measurements with errors, see, for instance, [21, 8, 20,
19, 6].

Concerns about model bias often prompt us to build models that contain many vari-
ables, especially when the sample size becomes large. A reasonable way to capture such
a tendency is to consider the situation where the dimension of the parameter increases
along with the sample size. On the other hand, to enhance predictability and to select
signi�cant variables is practically interesting, but is always a tricky task for data analysis.
When the number of covariates is large, traditional variable selection methods such as
stepwise regression and best subset selection is computationally infeasible and statistical
properties of the estimators are di�cult to analyze, as argued in [14], this is part of
the reason why penalization based method (e.g., Lasso [17], Elastic net [28], Adaptive
Lasso [27], SCAD [4], MCP [22], among others) has gained popularity in recent years.
There has been much work on variable selection for semiparametric regression models.
In particular, examples for �xed dimensional PLVC models include [25, 24, 11, 18] and
references therein.

In these studies, however, high dimensional vector X, variable selection in X and
measurement error problem were not considered at the same time. The goal of this
paper intends to develop an uni�ed estimation and variable selection method for high
dimensional PLVC errors-in-variables models. To be precise, we allow p → ∞ as the
sample size n → ∞ and denote it by pn whenever necessary, but q is a �xed and �nite
integer in (1.1). In addition, the covariate X is measured with additive errors, while Z
and T are errors free. More speci�c, we cannot observe Xi but we can observe Wi with

(1.2) Wi = Xi + Ui,

and Ui's are iid measurement error, which is independent of (Xi, Zi, Ti, εi), and has
mean zero and the known covariance Cov(Ui) = ΣU (for simplicity). If ΣU is unknown,
its estimation usually requires multiple observations of W or instrumental variables, see
[15] for details. We term (1.1) and (1.2) with PLVCE models. To our best knowledge,
variable selection for PLVCE models with high dimension has not been systematically
studied yet.
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We propose penalized bias-corrected pro�le least squares estimator and systematically
study the asymptotic properties of the estimators. It is worth pointing out that theo-
retic results in this paper provide explicit results on the asymptotic properties under the
setting in which both the dimension of the true non-zero components of β and the total
length of β tend to in�nity as n goes to in�nity. This resonates with the perspective that
a more complex statistical model can be �t when more data are collected. The issue of
a diverging number of parameters has also been considered in [5] in the context of pe-
nalized likelihood. This advances the results in current literature, where estimation and
inference are studied only for �xed �nite dimensional parameters for measurement error
models. We demonstrate how the convergence rate of the resulting estimator depends
on the regularization parameter. Furthermore, with a proper choice of the regularization
parameters and the penalty function, we show that this variable selection procedure is
consistent, and the regularized estimators of the regression coe�cients have oracle prop-
erty. This indicates that the penalized estimators work as well as if the subset of true
zero coe�cients were already known. In addition, we address issues of practical imple-
mentation of the proposed methodology. Monte-Carlo simulation studies are conducted
to assess �nite sample performance.

The rest of this paper is organized as follows. A variable selection procedure for
PLVCE models is proposed in Section 2, assumptions and the asymptotic properties of the
proposed estimators are given in this section. We give the computational algorithms and
discuss the selections of tuning parameters in Section 3. In Section 4, some simulations
are conducted to illustrate the performance of our methodology. Given in Section 5 are
conclusions. All technical proofs are relegated to Section 6.

Notation: The gradient and hessian matrix of a function f(x) are denoted by ∇f(x)
and ∇2f(x) respectively. We write ‖f‖2 and ‖f‖∞ for the L2 and sup norm of a function

f , respectively. The Lq norm of a p-vector v is de�ned as ‖v‖q = (
∑p
j=1 |vj |

q)1/q for

q ≥ 1 with ‖v‖∞ = max1≤j≤p |vj |, and ‖v‖0 = |supp(v)| where supp(v) = {j : vj 6= 0}
and |S| is the cardinality of a set S. LetMi·,M·j andMij be the ith row, jth column and
(i, j) entry of the matrix M , respectively. Let ‖M‖q = sup‖v‖q=1 ‖Mv‖q be the matrix

Lq operator norm. We use ‖ · ‖ as a shorthand for ‖ · ‖2. We use c and C to denote
generic positive constants that may vary from place to place. Moreover, the operator
P−→ denotes convergence in probability, and

D−→ denotes convergence in distribution.

2. Methods and results

2.1. Penalized bias-corrected pro�le least squares estimator. As in [3], if Xi is
observable we can apply the pro�le least squares estimation to estimate the parametric
component and apply the local polynomial estimation to estimate the nonparametric
component. Pro�le least squares is a useful approach and will be showed to be semi-
parametrically e�cient for model (1.1). When εi ∼ N(0, σ2), the approach becomes
pro�le likelihood estimation. For the paper to be self-contained, we summarize the main
ingredients as follows. If β is known, (1.1) can be written as

(2.1) Yi −X>i β = Z>i α(Ti) + εi,

which can be treated as a varying coe�cient model. Thus, we may apply a local linear
regression technique to estimate the varying coe�cient functions {αj(·), j = 1, . . . , q}.
For T in a small neighbourhood of t, approximate each αj(t) by αj(T ) ≈ αj(t)+α′j(t)(T−
t), j = 1, . . . , q. This leads to the following weighted local least-squares problem: �nd
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αj(t), α
′
j(t) to minimize

(2.2)
n∑
i=1

[
Yi −X>i β −

q∑
j=1

Zij
{
αj(t) + α′j(t)(Ti − t)

}]2

Kh(Ti − t),

where Kh(·) = K(·/h)/h, K(·) is a kernel function and h is a bandwidth.
For the sake of descriptive convenience, we denote Y = (Y1, . . . , Yn)>, write X, Z, ε

in a similar fashion. Let ωt = diag{Kh(T1 − t), . . . ,Kh(Tn − t)} and

Dt =

(
Z1 · · · Zn

T1−t
h
Z1 · · · Tn−t

h
Zn

)>
.

It is easy to show that the minimizers of (2.2) are given by

(α̃(t)>, hα̃′(t)>)> = {D>t ωtDt}−1D>t ωt(Y −Xβ).

This solutions depend on β implicitly. Then we can estimate α(t), when β is given, by

(2.3) α̃(t;β) = (Iq×q, 0q×q){D>t ωtDt}−1D>t ωt(Y −Xβ),

where Iq×q denote the q by q identity matrix, and 0q×q denote a q by q matrix of zeros.
Substituting α̃(t;β) into model (2.1), we can obtain the pro�le least square estimator of
β by the following regression problem

(2.4) β̃ = arg min
β

1

2

n∑
i=1

(Yi −X>i β − Z>i α̃(Ti;β))2

Moreover, plug β̃ into (2.3), the estimators of α(t) can be obtained, see [3] for details.
However, in our case, Xi cannot be exactly observed. If one ignores the measurement

error and replaces Xi by Wi in (2.4), one can show that the resulting estimator is incon-
sistent. By the correction for attenuation technique as in [21], the bias-corrected pro�le
least squares estimator of β can be de�ned by minimizing

(2.5) L̂n(β) =
1

2

n∑
i=1

(Yi −W>i β − Z>i α̂(Ti, β))2 − n

2
β>ΣUβ,

where α̂(Ti, β) is obtained by replace X with W in the right hand side of (2.3). The sec-
ond term is included to correct the bias in the squared loss function due to measurement
error.

In high dimensional data analysis, to perform variable selection and estimation simul-
taneously, based on (2.5) we propose the penalized bias-corrected pro�le least squares
function de�ned as

(2.6) Q̂n(β) = L̂n(β) + n

pn∑
j=1

pλ(|βj |),

where pλ(·) is a prespeci�ed penalty function with a tuning parameter λ, which may
be chosen by a data-driven method. It is worth noting that the penalty functions and
the tuning parameters are not necessarily the same for all coe�cients. For instance, we
want to keep important variables in the �nal model, and therefore we should not penalize
their coe�cients. For ease of presentation, we assume that the penalty functions and the
regularization parameters are the same for all coe�cients in this paper.

The choice of the penalty functions has been studied in [4] in depth. A property of
(2.6) is that with a proper choice of penalty functions, such as the SCAD and Lasso
penalty, the resulting estimate contains some exact zero coe�cients. This is equivalent
to excluding the corresponding variables from the �nal selected model, thus variable

selection is achieved at the same time as parameter estimation. Solving for β̂ from (2.6)
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gives the estimate of β. Moreover, the fact that E(Yi − X>i β|Ti) = E(Yi − W>i β|Ti)
suggests us to estimate α(·) by

(2.7) α̂(t) = (Iq×q, 0q×q){D>t ωtDt}−1D>t ωt(Y −W β̂).

2.2. Asymptotic properties. In this subsection we consider the large sampling prop-
erties of the proposed estimator. For convenience of notation, we assume the true value
β∗ = (β∗>I , β∗>II )>, where β∗I consists of all nonzero components of β∗ and β∗II = 0. Let
sn denote the dimension of β∗I . Furthermore, denote

B = (p′λn
(|β∗1 |)sign(β∗1 ), . . . , p′λn

(|β∗sn |)sign(β∗sn))> and

Σλn = diag{p′′λn
(|β∗1 |), . . . , p′′λn

(|β∗sn |)},

where we write λ as λn to emphasize its dependence on the sample size n. To give the
asymptotic results, here are regularity conditions required.

(C1) The random variable T has a bounded support T. Its density function fT (t) is
Lipschitz continuous and bounded away from 0 on T.

(C2) The q × q matrix E(ZZ>|T ) is nonsingular for each T ∈ T. E(XX>|T ),
E(ZZ>|T ) and E(XZ>|T ) are all Lipschitz continuous.

(C3) There is an κ > 2 such that E‖X‖2κ < ∞, E‖Z‖2κ < ∞, E‖ε‖2κ < ∞ and
E‖U‖2κ <∞, and for some δ < 2− κ−1 there is n2δ−1h→∞ as n→∞.

(C4) All of the coe�cient functions {αj(·), j = 1, . . . , q} are Lipschitz continuous and
have continuous second order derivatives on T.

(C5) The function K(·) is a symmetric density function with compact support and
the bandwidth h satis�es nh8 → 0 and nh2/(logn)2 →∞ as n→∞.

(C6) min{|β∗j |, j = 1, . . . , sn}/λn →∞ as n→∞.
(C7) There exist constant c and C such that 0 < c < Λmin(Σ1) < Λmax(Σ1) < C <∞

for all n, where Λmin(M) and Λmax(M) denote respectively the smallest and largest
eigenvalues of symmetric matrix M .

(P1) Let an = max1≤j≤pn{p′λn
(|β∗j |), β∗j 6= 0} and bn = max1≤j≤pn{p′′λn

(|β∗j |), β∗j 6=
0}. Assume that an = O(n−1/2) and bn → 0 as n→∞. In addition, there exist constants
c and C such that, when θ1, θ2 ≥ cλn, |p′′λn

(θ1)− p′′λn
(θ2)| ≤ C|θ1 − θ2|.

(P2) lim infn→∞ lim infθ→0+ p′λn
(θ)/λn > 0.

These conditions, while a little bit lengthy at �rst look, are actually quite mild and
may be further relaxed. Conditions (C1)�(C5) are also used by [3]. Conditions (C6)�
(C7) and (P1)�(P2) are adopted from [5], see [5] for details. Condition (C6) gives the
rate at which the penalized estimator can distinguish nonvanishing parameters from 0,
which is necessary for obtaining the oracle property. In the �nite-parameter situation
this condition is implicitly assumed, and is in fact stronger than that imposed here.
Condition (C7) assumes that the Σ1 is positive de�nite and its eigenvalues are uniformly
bounded. Conditions (P1)�(P2) are regularity conditions on penalty function.

The following theorem demonstrates that the convergence rate for the penalized bias-
corrected estimator depends on the penalty function and the regularization parameter
λn through an.

2.1. Theorem. (Existence) Suppose the penalty function satis�es condition (P1). Under
regularity conditions (C1)�(C5), if λn → 0 and p4

n/n→ 0 as n→∞, then with probability

tending to 1, there is a local minimizer β̂ of (2.6) such that ‖β̂−β∗‖ = OP {
√
pn(n−1/2 +

an)}.

The proof of this theorem is given in Section 6. As it can be seen from the statement
of Theorem 2.1, it requires that λn and the penalty function must be chosen such that
an = O(n−1/2) to achieve

√
n/pn convergence rate (or

√
n convergence rate for �nite and
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�xed p). For the L1 penalty, an = λn. Thus, the
√
n/pn convergence rate requires that

λn = O(n−1/2). This requirement will make it di�cult to choose λn in practice. However,
if condition (C6) is satis�ed, it is clear that an = 0 as when n is large enough for the SCAD

penalty. Thus, the resulting estimator is
√
n/pn consistent, and no requirements are

imposed on the convergence rate of λn. Note that the optimal bandwidth h = O(n−1/5)

is included in Theorem 2.1. Hence
√
n/pn-consistency is achieved without the need of

undersmoothing of the nonparametric component.

2.2. Theorem. (Oracle property). Suppose the penalty function satis�es conditions

(P1)�(P2). Under regularity conditions (C1)�(C7), if λn → 0, p5
n/n→ 0 and

√
n/pnλn →

∞ as n → ∞, then with probability tending to 1, the
√
n/pn-consistent local minimizer

β̂ = (β̂>I , β̂
>
II)
> in Theorem 2.1 must satisfy: (i) (Sparsity) β̂II = 0; (ii)(Asymptotic

normality) Let An be a determinstic l×sn matrix with l �xed and AnA
>
n → G, a positive

de�nite matrix. Then

√
nAnΣ

−1/2
2I {Σ1I + Σλn}[β̂I − β

∗
I + {Σ1I + Σλn}

−1B]
D−→ N(0l, G),

where Σ1I and Σ2I are the top left-hand sn × sn submatrix of Σ1 and Σ2, respectively.

Theorem 2.2 is proved in Section 6. It is easy to see that sparsity and asymptotic
normality are still valid when the number of parameter diverges in PLVCE models. For
some penalty functions, including the SCAD penalty, B and Σλn are zero when n is
large enough. Hence the results in Theorem 2.2 imply that the proposed procedure has

the celebrated oracle property, i.e., β̂II = 0 and
√
nAnΣ

−1/2
2I Σ1I(β̂I − β∗I )

D−→ N(0l, G).
On the other hand, the Lq penalty, q ≥ 1, cannot simultaneously satisfy the conditions

λn = OP (n−1/2) and
√
n/pnλn → ∞ as n → ∞. These penalty functions cannot

produce estimators with the oracle property. The Lq penalty, q < 1, may satisfy these
two conditions at same time, but the bias term in Theorem 2.2(ii) cannot be ignored.

To make statistical inference on β∗I , we need to estimate the standard error of the

estimator of β̂I . The standard errors for estimated parameters can be obtained directly
because we are estimating parameters and selecting variables at the same time. From
Theorem 2.2, we can further approximate the estimation variance of the resulting esti-
mator by the sandwich formula. Namely

(2.8)
1

n
{Σ̂1I + Σλn(β̂I)}−1Σ̂2I{Σ̂1I + Σλn(β̂I)}−1,

where Σ̂1I , a consistent estimate of Σ1I , is de�ned as

Σ̂1I =
1

n
∇2L̂nI(β̂I) =

1

n

n∑
i=1

(
WIi +

∂α̂(Ti; β̂I)

∂βI
Zi

)⊗2

− ΣUI ,

and Σ̂2I = Cov(∇L̂nI(β̂I)) is given by

1

n

n∑
i=1

{
(Yi −W>Ii β̂I − Z>i α̂(Ti; β̂I))(WIi +

∂α̂(Ti; β̂I)

∂βI
Zi) + ΣUI β̂I

}⊗2

,

furthermore, Σλn(β̂I) is obtained by replacing β∗I by β̂I in Σλn .
The consistency of the proposed sandwich formula can be shown by using similar

techniques as in [5]. The accuracy of this sandwich formula will be tested in our simulation
studies.
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3. Issues in practical implementation

In this section, we present a computational algorithm for obtaining the estimator and
selection methods for the tuning parameters.

3.1. Computational algorithm. Since some penalty functions such as the SCAD
penalty and Lq, 0 ≤ q ≤ 1 penalty are singular at the origin, it is challenging to minimize
the penalized bias-corrected least squares function of (2.6). Following the idea of [4],
we apply iterative algorithm based on the local quadratic approximation (LQA) of the
penalty function. More speci�cally, suppose that at the kth step of the iteration, we

obtain the value β̂(k) that is close to the true value β∗. If β̂
(k)
j is very close to 0, then

set β̂
(k+1)
j = 0, and exclude the corresponding covariate from the model. Otherwise, an

approximation of the penalty function at value β̂
(k)
j can be given by

pλ(|βj |) ≈ pλ(|β̂(k)
j |) +

1

2

p′λ(|β̂(k)
j |)

|β̂(k)
j |

(β2
j − β̂

(k)2
j ),

Consequently, with a slight abuse of notation, removing irrelevant terms we undate the
estimate of β repeatedly until convergence with

(3.1) β(k+1) = arg min
β

{
L̂n(β) +

n

2
β>ΣLQA

λn
(β̂(k))β

}
,

where ΣLQA
λn

(β̂(k)) = diag{p′λn
(|β̂(k)

1 |)/|β̂
(k)
1 |, . . . , p′λn

(|β̂(k)
pn |)/|β̂

(k)
pn |}. Hence, the foregoing

discussion leads to the following iterating algorithm:

Step 1. Given an initial estimate β̂(0).

Step 2. Update β̂(1) by (3.1).

Step 3. Set β̂(0) = β̂(1). Iterate Step 1 and 2 until convergence, and denote the �nal

estimator β̂.
In the initialization step, the initial estimators do not a�ect the degree of sparsity

of the solution and the accuracy of the �nal estimator, but they will a�ect the speed
of convergence of our iterative algorithm. In the following simulations, we obtain an
initial estimator using a bias-corrected ordinary least-squares method based on (2.5).
The simulation results show that such a choice is workable. During the iterations, to
avoid numerical instability we need to keep track of zero coe�cients and modify the

penalty terms accordingly once |β̂(0)
j | drops below a certain threshold ε (ε = 10−4 in our

implementation). Speci�cally, in Step 2, if |β̂(0)
j | < ε, then set β̂

(1)
j = 0, delete the jth

component of the covariates from the iteration.

3.2. Tuning parameters selection. To implement the proposed method, the band-
width h and the tuning parameters λn in the penalty functions should be chosen. It is
desirable to have automatic, data-driven methods to select h and λn.

Bandwidth selection. Condition (C5) reveal the rate of h. Any bandwidths with this

rate lead to the same limiting distribution for β̂. Therefore, the bandwidth selection can
be done in a standard routine. For simple calculation, the bandwidth h is taken to be
h = 0.5n−1/5 in this paper, which we �nd to work satisfactorily in a variety of setting.
We also conduct a sensitivity analysis by shifting bandwidths around the selected values,
and found that the results are stable. Thus, the simulation results are not sensitive to
the choice of h within certain range.

Regularization parameters selection. Here, given h, we use the "leave one sample out"
method to select the tuning parameter λn. This method has been widely applied in
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practice. The cross-validation score for λn is de�ned as

(3.2) CV(λn) =

n∑
i=1

(Yi −W>i β̂−i − Z>i α̂−i(Ti))2 −
n∑
i=1

(β̂−i)>ΣU β̂
−i

where β̂−i is the solution based on (2.6) after deleting the ith observation, and α̂−i(Ti)

is the estimator de�ned in (2.7) with β̂ replaced by β̂−i. The CV tuning parameter λCV
n

is selected to minimize (3.2), that is, λCV
n = arg minλn CV(λn).

We also can use any other appropriate selection method to select the tuning parameters
such as GCV, AIC and BIC. However, the de�nition of the degrees of freedom for the
e�ective parameters in our variable selection procedure poses great challenges. Then,
it is inconvenient to use such selection criteria for our variable selection procedure. In
addition, from our simulation experience, we found that the CV method used in this
paper works well. Further study of the asymptotic property of the proposed tuning
parameter selection is needed, but it is outside the scope of this paper.

4. Simulation studies

In this section we corroborate our theoretical results with numerical experiments on
synthetic data examples. That is, we conduct simulations to evaluate the �nite sample
performance of the proposed methods. We focus on only the SCAD penalty and referred
to the proposed procedure as CSCAD. The CSCAD is compared with four alternative pro-
cedures as follows. The �rst is the naive penalized procedures with a direct replacement
of X by W ignoring measurement error (NSCAD). The second is the estimators with con-
sidering measurement errors, but not penalized for complexity (Full). As a benchmark,
two oracle methods in which the nonzero subset of slope β were known are implemented.
In particular, the �rst (Oracle1) serves as the gold standard, in which X can be observed.
The second (Oracle2) is another type, in which using W based on bias-corrected due to
measurement errors.

We simulate data from model (1.1) and (1.2) with q = 2 and pn = b1.8n1/3c where
bkc denote the largest integer not greater than k, in which α1(t) = 2 sin(2πt) and α2(t) =
16t(1− t)− 2, and β = (2,−1.5, 4, 0, . . . , 0)>. Thus the �rst sn = 3 regression variables

were signi�cant, but the remaining were not. The rate pn = b1.8n1/3c is not the same as
presented in the theorems in Section 2, but we use this to show the capability of handling
a higher rate of parameters growth for proposed method. The index variable T is sampled
uniformly on [0, 1]. The covariates (X,Z) are taken from multivariate normal distribution

Npn+q(0,Σ). We consider Toeplitz convariance matrices Σij = %|i−j|, in which both
independent (% = 0) and correlated cases (% = 0.5) are taken into account. Y is generated
according to the model, where noise term ε ∼ N(0, σ2), and two di�erent value σ2 = 0.5
and 1, which represent strong and weak signal-to-noise ratios, were considered. Moreover,
we assume that measurement error U ∼ N(0, σ2

UIpn), where we take σU = 0.2 and 0.4
to represent di�erent level of measurement errors. We perform 1000 simulations for all
con�gurations with sample size n = 100 and n = 400 respectively. In all simulations, as
a commonly adopted strategy we use the Epanechnikov kernel function K(t) = 0.75(1−
t2)+.

To assess the performance of di�erent methods, we adopt the following criteria. For

model error, the performance of estimator β̂ will be assessed by using the generalized
mean square error (GMSE), de�ned as

GMSE = (β̂ − β∗)>(EWW> − ΣU )(β̂ − β∗).
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Table 1. Simulation results with di�erent methods for σ2 = 1 over
1000 repetitions

σU = 0.2 σU = 0.5
% Method True C IC GMSE RASE True C IC GMSE RASE

(n, pn) = (100, 8)

0 CSCAD 99.9 5.000 0.001 0.072 0.556 91.0 4.970 0.063 0.546 1.030
NSCAD 99.6 5.000 0.004 0.100 0.550 80.0 5.000 0.205 1.377 0.897
Full 0.00 0.020 0.000 0.188 0.571 0.00 0.016 0.000 1.060 1.107
Oracle1 100 5 0 0.033 0.551 100 5 0 0.033 0.950
Oracle2 100 5 0 0.071 0.556 100 5 0 0.399 1.018

0.5 CSCAD 99.6 5.000 0.004 0.076 0.621 69.3 4.447 0.078 2.051 1.448
NSCAD 88.7 5.000 0.114 0.244 0.622 1.70 4.999 1.112 2.071 0.985
Full 0.00 0.008 0.000 0.202 0.647 0.00 0.006 0.000 2.801 1.638
Oracle1 100 5 0 0.033 0.614 100 5 0 0.035 1.075
Oracle2 100 5 0 0.071 0.620 100 5 0 0.607 1.220

(n, pn) = (400, 13)

0 CSCAD 100 10.00 0.000 0.015 0.274 99.9 10.00 0.001 0.072 0.469
NSCAD 100 10.00 0.000 0.046 0.271 97.7 10.00 0.023 0.982 0.430
Full 0.0 0.12 0.000 0.067 0.277 0.0 0.055 0.000 0.300 0.481
Oracle1 100 10 0 0.008 0.273 100 10 0 0.007 0.463
Oracle2 100 10 0 0.015 0.274 100 10 0 0.071 0.469

0.5 CSCAD 99.9 9.999 0.000 0.016 0.314 99.2 10.00 0.009 0.099 0.548
NSCAD 98.7 10.00 0.013 0.085 0.310 0.0 10.00 1.008 1.873 0.475
Full 0.0 0.090 0.000 0.073 0.321 0.0 0.032 0.000 0.384 0.589
Oracle1 100 10 0 0.007 0.313 100 10 0 0.007 0.534
Oracle2 100 10 0 0.016 0.314 100 10 0 0.087 0.548

The performance of estimator α̂(·) will be assessed by using the square root of average
errors (RASE)

RASE =

N−1
grid

Ngrid∑
k=1

‖α̂(tk)− α(tk)‖2


1/2

,

over Ngrid = 200 grid points {tk}. Table 1 presents the mean of GMSE and RASE over
the 1000 simulations. For the selected model, the model complexity is summarized in
terms of the number of zero coe�cients for the parametric components, as also reported
in Table 1. In Table 1, the column labeled �C" is the average numbers of zero coe�cients
correctly estimated to be zero, and the column labeled �IC" depicts the average numbers
of nonzero coe�cients erroneously set to zero. Furthermore, the column labeled �True"
is the proportion of times the true model is exactly identi�ed.

From Table 1, we can make the following observations: (i) The performances of both
CSCAD and NSCAD procedures become better in terms of model error and model complex-
ity as the level of measurement error decreases. (ii) Both variable selection procedures
perform very similarly when the level of measurement error is small. However, when
the level of measurement error is large, the performance of CSCAD is signi�cantly better
than that of NSCAD. The latter cannot eliminate some unimportant variables and gives
larger model errors. This implies that the estimators based on the NSCAD procedure are
biased. (iii) In addition, as expected, the performance of the Oracle1 procedure is best
in all cases in terms of model error. Furthermore, the performance of CSCAD becomes
increasingly closer to that based on the Oracle2 procedure as the level of measurement
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error decreases or % decreases. (iv) As the sample size increases, the performance of all
methods becomes better. To save space the simulation results, for others settings with
σ2 = 0.5, are not showed here. The above conclusions can also be drawn similarly except
now all approaches perform better than they done when σ2 = 1 as presented in Table
1. These �ndings imply that the model selection result based on the CSCAD approach is
satisfactory and the selected model is very close to the true model in terms of nonzero
coe�cients.

Table 2. Bias and standard deviations of estimators for σ2 = 1, σU =
0.5 and % = 0.5

β̂1 β̂2 β̂3

Method Bias SD SDE(sd(SDE)) Bias SD SDE(sd(SDE)) Bias SD SDE(sd(SDE))

(n, pn) = (100, 8)

CSCAD 0.769 3.689 0.687(2.701) 1.378 9.414 0.973(4.749) 1.532 13.419 0.823(3.894)
NSCAD 0.875 0.492 0.251(0.063) 1.471 0.178 0.263(0.049) 1.215 0.252 0.228(0.033)
Oracle1 0.101 0.127 0.119(0.049) 1.111 0.139 0.139(0.146) 0.100 0.126 0.121(0.084)
Oracle2 0.430 0.532 0.785(6.753) 0.597 0.678 1.364(4.364) 0.521 0.585 0.837(8.114)
Full 0.847 3.695 1.091(7.934) 1.534 9.477 1.784(8.565) 1.806 13.476 1.211(9.255)

(n, pn) = (400, 13)

CSCAD 0.162 0.200 0.193(0.023) 0.212 0.282 0.241(0.039) 0.180 0.217 0.206(0.026)
NSCAD 0.758 0.145 0.117(0.021) 1.500 0.000 0.125(0.010) 1.253 0.101 0.111(0.008)
Oracle1 0.046 0.058 0.058(0.004) 0.055 0.068 0.064(0.004) 0.050 0.063 0.058(0.004)
Oracle2 0.159 0.193 0.194(0.023) 0.204 0.249 0.243(0.045) 0.177 0.211 0.207(0.026)
Full 0.181 0.208 0.200(0.025) 0.249 0.277 0.249(0.044) 0.263 0.280 0.215(0.030)

We now verify the consistency of the estimators and test the accuracy the standard
error formula. Table 2 displays the bias (columns labeled Bias) and sample standard
deviation (columns labeled SD) of the estimates for three nonzero coe�cients, over 1000
simulations. These can be regard as the true standard errors and compared with 1000
estimated standard errors. The 1000 estimated standard errors by using the sandwich
formula are summarized by their mean (columns labeled SDE) and the sample standard
deviations (sd(SDE)). The accuracy gets better when n increases. We omit here the
results for other con�gurations, only for case σ2 = 1, σU = 0.5 and % = 0.5. Overall, the
estimators are consistent and the sandwich formula works well.

5. Discussion

In this paper, we have proposed a variable selection procedure for the high dimensional
PLVCE models. Our method extends the variable selection procedure to the setting, in
which high dimension, measurement error, semiparametric models are considered at the
same time. We have shown that the proposed method is consistent in variable selections,
and the estimators of the regression coe�cients have oracle property. Simulation studies
indicate that the proposed method seems rather encouraging. To conclude this article,
we would like to discuss some interesting topics for future study. Firstly, in this paper,
we assume that the covariance matrix of measurement errors is known. However, it is
usually unknown in many applications. If the covariance matrix is unknown, the vari-
able selection procedure proposed by this paper will not work any more unless repeated
measurements of the data are available. As a future research topic, it is interest to con-
sider the variable selection for the high dimensional PLVCE models when the covariance
matrix of measurement errors is unknown. Secondly, it is interesting to perform variable
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selection for pn � n. Variable selection for large pn, small n setting is a very active
research topic. However, it is challenging to extend the existing procedures for large pn,
small n problems to measurement error data. The details will also be further investigated
in the future.

6. Proofs

In order to prove the main results, we �rst introduce several lemmas. Let µk =∫
tkK(t)dt, νk =

∫
tkK2(t)dt, cn = h2 + [log(1/h)/nh]1/2. Set Ψ(T1) = E(X1Z

>
1 |T1),

Υ(T1) = E(Z1Z
>
1 |T1) and Ξ(T1;β) = E[Z1(Y1 − X>1 β)|T1]. Furthermore, denote by

α(t;β) the 'least favorable curve' of the nonparametric function α(t), which is de�ned as

(6.1) α(t;β) = arg min
η

E[(Yi −W>i β − Z>i η)2|Ti = t] = Υ−1(t)Ξ(t;β),

and letQn(β) = Ln(β)++n
∑pn
j=1 pλ(|βj |), where 2Ln(β) =

∑n
i=1(Yi−W>i β−Z>i α(Ti;β))2

−nβ>ΣUβ. Apparently, α(t;β∗) = α∗(t) and ∂α(t;β)
∂β

= Ψ(t)Υ−1(t) is a pn by q matrix.

The following Lemma 6.1 can be found in [3].

6.1. Lemma. Let (Xi, Yi), i = 1, . . . , n be be i.i.d. random vectors, where the Yi are
scale random variables. Further assume that E|y|κ < ∞ and supx

∫
|y|κf(x, y)dy < ∞,

where f denotes the joint density of (X,Y ). Let K be a bounded positive function with

a bounded support, satisfying a Lipschitz condition. Given that n2δ−1h → ∞ for some
δ < 1− κ−1, then

sup
x

∣∣∣∣∣ 1n
n∑
i=1

{
Kh(Xi − x)Yi − E[Kh(Xi − x)Yi]

}∣∣∣∣∣ = OP

({
log(1/h)

nh

}1/2
)
.

6.2. Lemma. Under regularity conditions (C1)�(C5), the following holds uniformly in
t ∈ T,

α̂(t;β)− α(t;β) = OP (cn),

∂α̂(t;β)

∂βk
− ∂α(t;β)

∂βk
= OP (cn), for k = 1, . . . , pn.

Proof. From Lemma 6.1, we have that

1

n
D>t ωtDt =

1

n

n∑
i=1

(
ZiZ

>
i ZiZ

>
i
Ti−t
h

ZiZ
>
i
Ti−t
h

ZiZ
>
i (Ti−t

h
)2

)
Kh(Ti − t)

=

(
1 0
0 µ2

)
⊗Υ(t)fT (t){1 +OP (cn)} and

1

n
D>t ωt(Y −Wβ) =

1

n

n∑
i=1

(
Zi(Yi −W>i β)

Zi(Yi −W>i β)Ti−t
h

)
Kh(Ti − t)

=

(
1
0

)
⊗ Ξ(t;β)fT (t){1 +OP (cn)}

hold uniformly in t ∈ T. Here the symbol ⊗ represent the Kronecker product between
matrices. Hence, invoking equation (6.1) and α̂(t;β) in Section 2, the �rst conclusion
follows. The second assertion can get similarly. �

6.3. Lemma. Under regularity conditions (C1)-(C5), if pκn/n → 0 for κ > 5/4, h =
O(n−ς) with (4κ)−1 < ς < 1− κ−1, then for any β,

n−1/2‖∇L̂n(β)−∇Ln(β)‖ = oP (1).
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Proof. Invoking Lemma 6.2, the column vector n−1/2(∇L̂n(β) − ∇Ln(β)) has the kth
component equals

1√
n

n∑
i=1

{
(Yi −W>i β − Z>i α̂(Ti;β))(−Wik −

∂α̂(Ti;β)

∂βk
Zi)

− (Yi −W>i β − Z>i α(Ti;β))(−Wik −
∂α(Ti;β)

∂βk
Zi)
}

=
1√
n

n∑
i=1

{
(Yi −W>i β − Z>i α(Ti;β))

∂α(Ti;β)

∂βk
Zi + Z>i α(Ti;β)Wik

}
OP (cn)

=OP (cn).

Hence we have shown

n−1/2‖∇L̂n(β)−∇Ln(β)‖ = OP (
√
pncn) = oP (1),

and the proof is complete. �

6.4. Lemma. Under the conditions of Theorem 1, we have

[n−1/2∇>Ln(β∗)](Σ2)−1[n−1/2∇Ln(β∗)]− pn√
2pn

D−→ N(0, 1),

where Σ2 = E[(εi − U>i β∗)(Ψ(Ti)Υ
−1(Ti)Zi −Xi) − ΣUβ

∗]⊗2. In addition, ∇Ln(β∗) =

OP (
√
npn). Likewise, the results above hold also by Ln(β∗) replaced with L̂n(β∗).

Proof. From (6.1), we get the following formulas E[Zi(Yi−X>i β−Z>i α(Ti;β))|Ti = t] = 0

and E[XiZ
>
i + ∂α(Ti;β)

∂β
ZiZ

>
i |Ti = t] = 0. Then E[∇Ln(β)] = 0 follows. Direct calculation

yields

∇Ln(β) =

n∑
i=1

(Yi −W>i β − Z>i α(Ti;β))(Ψ(Ti)Υ
−1(Ti)Zi −Wi)− nΣUβ.

Thus,

1√
n
∇Ln(β∗) =

1√
n

n∑
i=1

{
(εi − U>i β∗)(Ψ(Ti)Υ

−1(Ti)Zi −Wi)− ΣUβ
∗
}
.

By applying the martingale central limit theorem as given in [9], we can easily obtain
the �rst part. The second part follows from Lemma 6.3. �

6.5. Lemma. Under regularity conditions C1�C5, and p4/n = o(1),

‖ 1

n
∇2Ln(β)− Σ1‖ = oP (p−1

n ),

‖ 1

n
∇2L̂n(β)− Σ1‖ = oP (p−1

n ) +OP (pncn),

where Σ1 = E(X1X
>
1 )− E{Ψ(T1)Υ−1(T1)Ψ>(T1)}.

Proof. Direct calculation yields n−1∇2Ln(β) = n−1∑n
i=1(Wi −Ψ(Ti)Υ

−1(Ti)Zi) (Wi −
Ψ(Ti)Υ

−1(Ti)Zi)
> − ΣU . Then E[n−1∇2Ln(β)] = E{E[(Wi − Ψ(Ti)Υ

−1(Ti)Zi) (Wi −
Ψ(Ti)Υ

−1(Ti)Zi)
>|Ti]} − ΣU = Σ1. The �rst conclusion follows from

Ep2
n‖

1

n
∇2Ln(β)− Σ1‖2 = p2

nE

pn∑
j,k=1

{
1

n
∇2Ln(β)− Σ1

}2

jk

= O

(
p4
n

n

)
= o(1).
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From this, triangle inequality immediately gives the second conclusion if we can show
that

(6.2) ‖ 1

n
∇2L̂n(β)− 1

n
∇2Ln(β)‖ = OP (pncn).

To this end, for k = 1, . . . , pn,

n−1 ∂

∂βk
(∇L̂n(β)−∇Ln(β))

=n−1 ∂

∂βk

n∑
i=1

{
(Yi −W>i β − Z>i α̂(Ti;β))(−Wi −

∂α̂(Ti;β)

∂β
Zi)

−(Yi −W>i β − Z>i α(Ti;β))(−Wi −
∂α(Ti;β)

∂β
Zi)

}
=n−1

n∑
i=1

{
(Wik +

∂α̂(Ti;β)

∂βk
Zi)(Wi +

∂α̂(Ti;β)

∂β
Zi)

−(Wik +
∂α(Ti;β)

∂βk
Zi)(Wi +

∂α(Ti;β)

∂β
Zi)

}
=OP (

√
pncn)

where the last line follows from Lemma 6.2. Hence (6.2) follows and the proof completes.
�

Proof of Theorem 2.1. Let ϑn =
√
pn(n−1/2 +an) and set ‖v‖ = C, where C is a large

enough constant. Our aim is to show that for any given ε > 0 there is a large constant
C such that, for large n we have

(6.3) Pr

{
inf
‖v‖=C

Q̂n(β∗ + ϑnv) > Q̂n(β∗)

}
≥ 1− ε.

This implies that with probability tending to 1 there is a local minimizer β̂ in the ball

{β∗ + ϑnv : ‖v‖ ≤ C} such that ‖β̂ − β∗‖ = OP (ϑn).

Let ∆n(v) = Q̂n(β∗ + ϑnv) − Q̂n(β∗). Recall that the �rst sn components of β∗ are
nonzero, and pλ(·) is nonnegative and pλ(0) = 0. By the Taylor expansion and the fact

that L̂n(β) is quadratic, we have

∆n(v) ≥ L̂n(β∗ + ϑnv)− L̂n(β∗) + n

sn∑
j=1

{pλ(|β∗j + ϑnvj |)− pλ(|β∗j |)}

≥ ϑnv>∇L̂n(β∗) +
1

2
ϑ2
nv
>∇2L̂n(β∗)v

+

sn∑
j=1

nϑnp
′
λ(|β∗j |)sign(β∗j )vj +

1

2

sn∑
j=1

nϑ2
np
′′
λ(|β∗j |)v2

j {1 + o(1)}

4
= D1 +D2 +D3 +D4.

By Lemma 6.4 and
√
pn ≤

√
nϑn, we get

|D1| = |ϑnv>∇L̂n(β∗)| ≤ ϑn‖∇L̂n(β∗)‖‖v‖

≤ OP (ϑn
√
npn)‖v‖ ≤ OP (nϑ2

n)‖v‖
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Next we consider D2, An application of Lemma 6.5 yields that

D2 =
1

2
ϑ2
nv
>∇2L̂n(β∗)v =

1

2
nϑ2

nv
>[

1

n
∇2L̂n(β∗)− Σ1]v +

1

2
nϑ2

nv
>Σ1v

=
1

2
nϑ2

nv
>Σ1v + oP (1)nϑ2

n‖v‖2.

With regard to D3 and D4, for
√
snan ≤

√
sn(n−1/2 + an) ≤ ϑn, we have

|D3| ≤
sn∑
j=1

∣∣nϑnp′λ(|β∗j |)sign(β∗j )vj
∣∣

≤ nϑnan
sn∑
j=1

|vj | ≤ nϑnan
√
sn‖v‖ ≤ nϑ2

n‖v‖, and

|D4| =
1

2

sn∑
j=1

nϑ2
np
′′
λ(|β∗j |)v2

j {1 + o(1)} ≤ bnnϑ2
n‖v‖2.

Therefore, under the condition (P1), by allowing C to be large enough, all terms D1,
D3, D4 are dominated by D2, which is positive. This proves (6.3) and completes the
proof. �

Proof of Theorem 2.2. Let ζn = C
√
pn/n. It is su�cient to show that with probability

tending to 1 as n → ∞, for any β satisfying ‖β − β∗‖ = OP (
√
pn/n) we have, for

j = sn + 1, . . . , pn,

(6.4)
∂Q̂n(β)

∂βj
< 0 for βj ∈ (−ζn, 0) and

∂Q̂n(β)

∂βj
> 0 for βj ∈ (0, ζn).

By Taylor expansion and the fact that L̂n(β) is quadratic in β, we get

∂Q̂n(β)

∂βj
=
∂L̂n(β)

∂βj
+ np′λ(|βj |)sign(βj)

=
∂L̂n(β∗)

∂βj
+

pn∑
k=1

∂2L̂n(β∗)

∂βj∂βk
(βk − β∗k) + np′λ(|βj |)sign(βj)

4
= J1 + J2 + J3.

Next, we consider J1, J2. Invoking Lemma 6.4, we have

J1 = OP (
√
n) = OP (

√
npn).

The term J2 can be written as J2 =
∑pn
k=1

{
∂2L̂n(β∗)
∂βj∂βk

− nΣ1,jk

}
(βk−β∗k)+n

∑pn
k=1 Σ1,jk(βk−

β∗k)
4
= J21 + J22. Using the Cauchy-Schwarz inequality and ‖β − β∗‖ = OP (

√
pn/n), we

have

|J22| ≤ n
pn∑
k=1

|Σ1,jk(βk − β∗k)| ≤ nOP (
√
pn/n)

[
pn∑
k=1

(Σ1,jk)2

]1/2

.

As the eigenvalues of Σ1 are bounded according to condition (C7), we have
∑pn
k=1(Σ1)2

jk

= O(1). This entails that J22 = OP (
√
npn). For J21, applying the Cauchy-Schwarz

inequality,

|J21| ≤ ‖β − β∗‖

[
pn∑
k=1

{
∂2L̂n(β∗)

∂βj∂βk
− nΣ1,jk

}2]1/2

.
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By a standard argument from condition (C7), we have[
pn∑
k=1

{
∂2Ln(β∗)

∂βj∂βk
− nΣ1,jk

}2
]1/2

= OP (n).

Then J21 = OP (
√
npn) follows form ‖β̂ − β∗‖ = OP (

√
pn/n). Now we have

J2 = OP (
√
npn).

Hence we have

∂Q̂n(β)

∂βj
= nλ

{
p′λ(|βj |)

λ
sign(βj) +OP

(√
pn/n

λ

)}
.

Because of
√
pn/n/λ → 0 and (P2), the sign of βj completely determines the sign of

∂Q̂n(β)/∂βj . Then (6.4) follows from the continuity of ∂Q̂n(β)/∂βj . Combining with

the result of Theorem 2.1, there is a
√
n/pn-consistent local minimizer β̂ of Q̂n(β) and

β̂ has the form (β̂>I , 0
>)>, i.e. part (i) holds.

Now we prove part (ii). As shown in Theorem 2.1, we let λn be su�ciently small so

that an = o(n−1/2), then β̂ is
√
n/pn consistent. By part (i), each component of β̂I stays

away from zero for a su�ciently large sample size n because β∗I is away from zero. At

the same time, β̂II = 0 with probability tending to 1. As a consequence, the estimate β̂I
based on the penalized estimation are necessarily the solution of the following estimation
equation

(6.5) ∇L̂nI(β̂I) + nP ′λ(|β̂I |) = 0

where P ′λ(|β̂I |) is a sn-vector whose jth element is p′λ(|β̂j |)sign(β̂j). Applying a Taylor
expansion to (6.5) and re-arranging the resulting terms, we have

(Σ1I + Σλn)(β̂I − β∗I ) + P ′λ(|β∗I |) = − 1

n
∇LnI(β∗I ) +R1 +R2

where R1 = −
[

1
n
∇2L̂nI(β

∗
I ) + P ′′λ (|β̃I |)− Σ1I − Σλn

]
(β̂I−β∗I ) and R2 = 1

n
∇LnI (β∗I )−

1
n
∇L̂nI(β∗I ). By Lemma 6.5 and Cauchy-Schwarz inequality, ‖R1‖ = oP ((npn)−1/2) +

OP (
√
p3
n/ncn) = oP (n−1/2). By Lemma 6.3, we have R2 = oP (n−1/2). Hence, we have

√
nAnΣ

−1/2
2I {Σ1I + Σλ}{(β̂I − β∗I ) + {Σ1I + Σλ}−1B}

=− 1√
n
AnΣ

−1/2
2I ∇LnI(β∗I ) + oP (1),

Since ‖AnΣ
−1/2
2I ‖ = O(1) by conditions of this theorem.

Next, we verify the Lindeberg-Feller Central Limit Theorem for the last term above.
Let

ψni =
1√
n
AnΣ

−1/2
2I ∇LnIi(β∗I ), i = 1, . . . , n,

where ∇LnIi(β∗I ) =
{

(Yi −W>Iiβ∗I − Z>i α(Ti;β
∗
I ))(WIi + ∂α(Ti;β̂I )

∂βI
) + ΣUIβ

∗
I

}
. For any

ε > 0,

n∑
i=1

E‖ψni‖2I{‖ψni‖ > ε} = nE‖ψn1‖2I{‖ψn1‖ > ε}

≤ n{E‖ψn1‖4}1/2{Pr(‖ψn1‖ > ε)}1/2.
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Using Chebyshev's inequality, we have Pr(‖ψn1‖ > ε) ≤ E‖ψn1‖2
ε2

=
E‖AnΣ

−1/2
2I

∇LnIi(β
∗
I )‖2

nε2
= O(n−1) and E‖ψn1‖4 = E(ψ>niψni)

2 ≤ 1
n2 Λ2

max(AnA
>
n )

Λ2
max(Σ−1

2I )E‖∇L>nIi(β∗I ) ∇LnIi(β∗I )‖2 = O(
s2n
n2 ), by condition (C7). Hence, we get

n∑
i=1

E‖ψni‖2I{‖ψni‖ > ε} = O(n
sn
n

1√
n

) = o(1).

Also, note that Eψni = 0 and

n∑
i=1

Cov(ψni) = nCov(ψn1) = Cov(AnΣ
−1/2
2I ∇LnIi(β∗I )) = AnA

>
n → G.

From the foregoing argument, ψni satis�es the conditions of the Lindeberg-Feller central
limit theorem, then we complete the proof of part (ii). �
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