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Numerical solution of fourth order parabolic
partial differential equation using parametric
septic splines
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Abstract

In this paper, we report three level implicit method of high accuracy
schemes for the numerical solution of fourth order nonhomogeneous
parabolic partial differential equation, that governs the behavior of a
vibrating beam. Parametric septic spline is used in space and finite
difference discretization in time. The linear stability of the presented
method is investigated. The computed results for three examples are
compared wherever possible with those already available in literature
which shows the superiority of the proposed method.
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1. Introduction

In this paper, we consider the problem of undamped transverse vibration of a flexible
straight beam in such a way that its support do not contribute to the strain energy of
the system and is represented by the fourth order parabolic partial differential equation
of the form

Pu  9*u
- 4+ = <z< 1.1
9 +8x4 f(z,t), a<z<b, t>0, (1.1)

subject to the initial conditions

u(z,0) = go(z), a<z<b,
(1.2)
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and the boundary conditions

u(a,t) = fo(t), u(b,t) = fi(t), t=>0,
(1.3)
Uz (a,t) = qo(t), Uazz(b,t) =qi(t), t >0,

where u is the transverse displacement of the beam, go(z), g1(x), fo(t), f1(t), qo(¥), q1(¢)
are continuous functions, ¢t and x are time and distance variables respectively and f(z,t)
is dynamic driving force per unit mass [10,21,22,35].

Numerical methods for the solution of equation (1.1) have been carried out by many
authors. Jain et al. [24], Danaee and Evans [1], Evans [8], Collatz [20], Andrade and
Mckee [7] and Evans and Yousif [9] used finite difference methods for the numerical solu-
tion of transverse vibrations. Fairweather and Gourlay [13] derived explicit and implicit
finite difference methods based on the semi explicit method. Parametric quintic spline
methods are given by Rashidinia and Aziz [16] using nodal points. Collatz [20], Crandall
[33], Jain [23], Conte [32], Jain et al. [24] and Todd [18] have proposed both explicit and
implicit methods successfully. Five level, unconditionally stable, explicit method with
truncation error of O(k* + h® 4+ (%)?) has been given by Albrecht [15]. All the above
authors considered the homogeneous case of equation (1.1) with a constant coefficients.
The analytical solution of homogeneous case of equation (1.1) has been obtained by using
Adomain decomposition method by Wazwaz [3,4]. The nonhomogeneous problem with
constant coefficients has been studied by Aziz et al. [34] based on parametric quintic
spline and by Khan et al. [2] based on sextic spline by using nodal points. Khaliq and
Twizell [6] and Twizell and Khaliq [11] developed a family of numerical methods, which
are second order accurate in space and time, based on exact recurrence relation for a ho-
mogeneous case of equation (1.1) with a variable coefficient. Rashidinia and Mohammadi
[17] developed three level implicit methods of O(k* 4- h*) and O(k* + h*) for the numer-
ical solution of equation (1.1) with variable coeflicients by using sextic spline. Wazwaz
[5] has developed analytical solution of variable coefficient fourth order parabolic partial
differential equation in two and three space dimensions. Khan et al. [25] have introduced
a new algorithm, namely Laplace Decomposition Algorithm for fourth order parabolic
partial differential equations with variable coefficients. In [26], the homotopy analysis
method (HAM) is applied to solve such problems. Khan et al. [27] have studied numer-
ical solution of time fractional fourth order partial differential equations with variable
coefficients. They have implemented reliable series solution techniques namely, Adomian
Decomposition Method (ADM) and He’s Variational Iteration Method (HVIM). A fam-
ily of B-spline methods have been considered by Caglar [14]. In [28], Mittal and Jain
discussed two methods. In Method-I, they decomposed equation (1.1) in a system of
second order equations and have solved them by using cubic B-spline and in Method-II,
they have solved equation (1.1) directly by using quintic B-spline method. Talwar et al.
[19] and Mohanty et al. [29-31] have used high accuracy spline scheme for solving one
dimensional partial differential equations.

In this paper, parametric septic spline relations have been derived using nodal points.
We have used parametric septic spline functions to develop a new numerical method for
obtaining smooth approximations to the solution of nonhomogeneous parabolic partial
differential equations dealing with vibrations of beams. In section 2, parametric septic
spline and spline relations are developed. In section 3, we have presented the formulation
of our method. Development of boundary equations are given in section 4. In section 5,
truncation error and class of methods are given. Stability analysis is discussed in section
6. Finally in section 7, three examples are given to demonstrate the practical usefulness
and superiority of our method.
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2. Parametric septic spline
Let a set of grid points in the interval [a, b] such that
(b—a)

z; =a+jh, j=0(1)N, h= N (2.1)

A function Sa(z,7) of class C®[a,b] which interpolates u(z) at the mesh point z;
depends on a parameter 7, and as 7 — 0 it reduces to septic spline Sa(z) in [a,d] is
termed as parametric septic spline function. Since the parameter T can occur in Sa(z)
in many ways such a spline is not unique.

If Sa(z,7) = Sa(z) is a piecewise function satisfying the following differential equation
in the interval [x;_1, z]

SO (x) - 7°SK(x) = (Q;— TZMJ)% +(Qj-1 — TQMj—l)mj}; ud
= Ajz+ A%,
(2.2)
where
z= L}zw, z=1—2 A; IQZ‘—T2MZ‘7
SK(wi,7) = Mi, SO (wi,7)=Qi, i=3j—1,j; 7>0,
then it is termed as parametric septic spline II.
Solving equation (2.2), we get
Sa(x) = A1+ Asx + Az cosh /Tz + Aysinh/7x + A5 cos /T2 + Ag sin/7x
1 20,y (@ —x-1)° 2 (z; — )
—;{(Qj—T Mj) + Qi1 — M)
(2.3)

To develop the consistency relations between the value of spline and its derivatives at
knots, let

Sa(z;) = vz, Sa(@jt1) = uj1,
R(xj) = My, SA(xj+1) = M1, (2.4)

SO () = Fy, S (2j51) = Fjpa.
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To define spline in terms of w;’s, M;’s and F}’s, the coefficients introduced in Eq.(2.3)
are calculated as

A = oy 1+ (Qy 1- TQM]’—l)—

T h? 1
- Jh ! [(Uj —uj_1) — 67-2 (QJ 1 — T2 Mj1) + @(Qa‘ — 7 M;) + ;(Fj—l - Fj)}

1 h 1
Ay = E(Uj —uj-1) + 62 {*(ijl — 7 M) + (@) - TQMj):| + %(qu - Fj),
_ 1 Qi 1 Qa
As = g smhfh[ smhf@( i1 . ) sinh /7, 1(

—-= sinh VTTi—1Qj + 1 sinh \Eijj—l} )
T T

Ay = m[ 2coshfxg( i— 1—Qj71> *COShf% 1< QJ)

fcosh\ij 1Q]**COSh\f$]QJ 1],

S S TS R (F -
As = 572 sinh /7 h [smfmJ( Y—1 = ) sm\/FmJ,l(FJ sy I

_ 1 _ Qi1 , _Q
As = 2TQSinh\/Fh[ cosf@( j—1 - )—i—cos\/;x],l(Fj =

(2.5)
Substituting these values in (2.3), we get
2 4

Sa@) = st s+ oM+ M| + @R 4 R ]

6

e 190+ a0, .

6
(2.6)
where
(2)723_2, (Z)ii_i_’_?)sinhwz_ 3sinwz
Pz} = » BT AT AT sinhw | wPsinw’
—2z sinhwz sinwz

= = d = h. 2.7
m(z) w? wisinhw = wisinw and w =T (2.7)

Applying the first, third and fifth derivative continuities at the knots, i.e. SXO(ZE;) =

SX”(QU}'L u=1,3 and 5, the following consistency relations are derived:

6

Mjr +4M; + M1 = 75 (uj1 = 2u;j +uj-1) + 3h* (a2 Fy1 + 282 Fj + aFj 1)
+h'(1Qi41 +261Q; + 1Qj-1), j=1(1)N - L (2.8)
h'2 4 4 4

Mjer =2Mj + Mj—1 = (1 -0 a)Fu +2(2 - ) Fj + (1~ w a1)Fj-1]

4

L (02Qs11 42620, + 2Qy), S=IMN -1 (29)
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P21 - w'on)Qj1 +2(2 - w'B)Q; + (1 —w'ar)Qy 1] =
3[(whas +2)Fj1 +2(w' B2 — 2)F) + (w'az + 2)Fj-a], j=1(1)N -1,

(2.10)
where
WL 3 3
YTt T WSsinhw  wisinw’
2 3 3
1= — — — cothw + — cotw,
w w w
_ ;2 4 1 !
2T AT Ssinhw | Wisnw’
2 1 1
B2 = J—Fcothw—ﬁcotw. (2.11)
As 7 — 0 that is w — 0 then (a1, 81, a2, 82) — (2’5—%, 3’—1‘;, ﬁ, i)
Using equations (2.8)-(2.10), we obtain the following scheme
(eruj—3 + eauj_2 + esuj_1 + eau; + esujr1 + eaujyo + e1ujt3)
n* .
= 5 (P1Fi—atp2Fj—24psFj 14 paFj+psFiatp2Fjatpr Figs), j = 3(1)N =3,
(2.12)

where the coefficients (e1, e2, €3, e4) and (p1, p2, p3, p4) of the developed scheme are given
by
er = 1-3wrar + Swsaf — wma?,

dwaq — 2wt By — 8wla? + dwBas B1 — 2w'a3 B,

€2 =
es = T7(1 —w4a1)3 -8(1 —(,u4051)2(2—o.1451)7
e = 1201 —w'm)’2—w'B1) —8(1 —w'm)?,
po= all-wa),
pr = 20(1—wo)2—w'B)+ (1l —w'ar)? —3di(1 — w'ar)(2 + w'as),
pz = (c+e)(1—won)’46di(1—war)(2—wBe) +2e2(1 —w'on)(2 — w'Bi)
—3da(1 — w'e1)(2 + w'an),
ps = 2c(1—w'on)? —6di(1—w'ar)(2+w'as) —6di(2 —w'B1)(2 - w!b)
+2¢3(1 —w'a1) (2 — w*B1) 4 6d2(1 — war)(2 — w'Ba).
(2.13)
Also
. = éwsaf - gw4a§ — %w‘lal — 6a; — 6ax + %,
c2 = gwsaf + %wsalﬁl — 18w aias — 3w'asfe — 6w'al — 2wha; — %W451
—12a7 — 682 + %,
cg = %wsa% + gwgmﬁl — 36w a1 B2 — 12w s — 3w'aj — %Ow%él - §w4ﬂ1
+36c1 + 12a2 + 1282 + 3,
di = w4a261 — w4a162 + 6w4a§ — 101 — 2ai2 + 281 + Ba,
dy = 4dw'asf —4wrar e + 12wran 1 — 1601 — 18, — 481 + 45s.

(2.14)
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As 7 — 0 that is w — 0, we have

(i)(elv €2, €3, 64) — (17 0,-9, 16)7

.. 1 17 249 9 4

(11)(017027037(117 d2) i (ma ﬁa 7703 m7 %)a

(iii)(p17p27p37p4) — (L7 95 @7 %>

140777 140 ° 35

[Remarks:] For these values our scheme reduces to the polynomial septic spline for
fourth order boundary value problem which is given as equation (7) in G. Akram and S.
S. Siddigi [12].

Here, we have taken (e1, ez, es,es) = (1,0, -9, 16), therefore scheme (2.12) becomes

p1(Fj—3 + Fjy3) + p2(Fj—2 + Fjt2) + p3(Fj—1 + Fj11) + paF}
6 .
= ﬁ (uj,3 + Uj+3) — 9(Uj71 + u]’+1) + 16u; |, j = 3(1)N — 3. (2.15)

We can also write (2.15) as
6

AoFy = 57 (60; +0)uj, (2.16)
where ¢ is the central difference operator and operator A, for any function W is defined
by

AW =p1(Wi—s + Wiys) + p2(Wj—a + Wjto) + ps(Wj—1 + Wit1) + paW;.  (2.17)

3. Derivation of the method

Let the region R = [a,b] x [0,00) be discretized by a set of points Rj, which are
the vertices of a grid points (xj,tm), where z; = jh,j = 0(1)N,Nh = b — a and
tm = mk, m = 0,1,2,3,... The quantities h and k are mesh sizes in the space and
time directions respectively.

We have developed an approximation for (1.1) in which the time derivative is replaced
by a finite difference approximation and space derivative is replaced by the parametric
septic spline function approximation. We need the following finite difference approxima-
tion for the time partial derivative of u :

afy, = k726 (14 067) uf, (3.1)
where o is a parameter such that the finite difference approximation to the time derivative
is O(k?) for arbitrary o and O(k*) for o = 1/12. u}" is the approximate solution of (1.1)

at (zj,tm) and 0: is the central difference operator with respect to t so that

m—1

m—+1
j J

6t2u§”:u] —2uj' 4+ u
At the grid point (j,m) the differential equation may be discretized by
Uit; + Uppan; = f5 (3.2)
where %]}, ; is the fourth order spline derivative at (z;, ) denoted by F}" = SXI) (zj,tm)
with respect to the space variable f;" = f(z;,tm). Using (3.1) and replacing fourth order
spline derivative by F}", we have

k7207 (14 007) M)t + F = f] (3.3)
Operating A, on both sides of (3.3) and using (2.16), we obtain
07 pr (w5 +uls) +p2 (o +ulhe) Fpa (U a - ufn) +pan] 467 (14067) (60, + 0 )uy!

=K (14+06)) 1 (f" s+ fvs) +p2(f o+ Fita) +pa(f + f5a) +paff], 5 = 3(1)]\7(—3),
3.4
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where r = h% is the mesh ratio and pi,p2, p3, ps are parameters. After simplifying the
above equation, we obtain

52[(2p1 + 2p2 + 2ps + pa) + (9p1 + 4pa + ps)33 + (6p1 + p2 + 3607°)3; + (p1 + 607?55 |u”
+6r7 (66, +02)u" = k* (14+067) [pr (s + fika) +p2(fi22+ Fi52) +ps (f i+ [ +paf]"],

j=3(1)N —3. (3.5)
This scheme (3.5) is finite difference in time and spline scheme in space variable, which
on simplification can be written as

[Pr(ufs" + ufi5h) + Pa(uf + ulsh) + Po(ufth + ufih) + Pruy ]
+[S1 (ug 3t ujts) + Sa(ufls + UJ+2) + S3(ufly + ujt1) 4+ Sauj']
H[Pr(u] 5 +U3+3 )+P2(u;n;1 +ulis Y+ Ps(u)! Uj_q +UJ+1 )+P4UM71}
= Kilpo (fi25" + f7E80) +p2(f28 + f70) +os (F25 + f710) +pafi ]
+K2[p1(f]73 + fi%s) +p2(fi2 + fie) + o3 (i1 + fi1) + pafi]
K (5 f5 ) A (5 + F ) +ps (P + 50 ) +paf] 7, 5 = 3(1N =3,

(3.6)
The final scheme (3.6) may be written in the schematic form as
P P P3s Py P3 P P Kip1 Kip: Kips Kips Kips Kip: Kipr
S1 Sz S3 Sy S3 Sz Si uj' = Kopr Kopz Kops Kops Kops Kop2 Kopr
P P, P3 Py P3s P, P, Kip1r Kip2 Kips Kips Kips Kipa Kipi

where
Pr=p1+ 60r2,P2 = p2, P3s = p3 — 5401“2,P4 =ps+ 960r2,

S1 = —2P, + 6012, Sy = —2P,, S3 = —2Ps — 540r?, Sy = —2P, + 960712,
K1 = 0k* K> = k*(1 — 20).

4. Development of boundary equations

The relation (3.6) gives N — 5 linear algebraic equations in N — 1 unknowns u;, j =
3(1)N — 3. We need four more equations, two at each end of the range of integration, for
the direct computation of uj,j = 1(1)N — 1.

(i)

1392 . 2340 . 20320 ,, 1320 ,. 432 ,, 548 , _ 464 , 80

7t 7 2T e B TS g3 T g 0y

G - 10280 v 8746 19309, 11287 b0 960 . 9793 . 464 .
469 87 2 97 ° 52 ° 7 % U207 % 67 "

h2(u6n)”aj =1,

) g =2,
Giy _A6%,n L 9793 . 960 . o 12T . 19309 . o 8TIG o
67 207 7 52 97 87
. 548 432 1320 ,, 20320 ,, 2340 ,, 1392 .
(iv) g3 UN-6 + T UN-—5 T T UN—4 + UN-—3 = —mUN-2 + T UN-1

464 ,, 80

=g Un 7}12(“%)”7]‘ =N-1

£
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For high accuracy formula of O(k® + h'?), we use the following equations for approxi-
mating the boundary equations:

(i)
15928 iy 5141 o 32427 . 11441 ., 15875 . 17741 . G919 .. 3853 .
35 1 5 2T 29 B g AT oqr P y5 6T g1 7T 359 08

6985 ., 12600 o, mus .
= =" h =1
72 Ug 761 (U‘O ) yJ )
(i) _ 4883, 18192 .. 38050 .. 21181 . 275354 . 138411 ., 25063 .,
125 * 79 2 61 ° 21 ¢ 261 ° 191 ¢ 79 7

BT0T e 4288 o 96T 0 i
6" T ™ T T62s =

(i) 4288 . 3707 . 25063 ., 138411 .. 275354 ., 21181 ..
473 NTOT 4 N8 g9 TN-TT g N6 9gp NS gp TN

38050 ., 18192 .. 4883 , 967
61 N8 79 N727 195 N1 T Tgos

R (uf)’,j =N -2,

(i) 3853 m L0919 L 177D L, 15875, 11441, 32427
359 N=8 T T UN=T T T UN 6 T T UN s g N4 o9 N3

5141 ,, 15928 ,, 6985 ,, 12600

_TUN—2 + TUN—l = WUN - WhQ(um”,j =N-1

5. Truncation error and class of methods

Expanding (3.5) in Taylor series in terms of u(z;,tm) and its derivatives, we obtain
the following relations
1008

105840 1013760

6 _ [ 6 6 8 8 10 10 12 12
Sul@ytm) = |WD+ g hSDE + o h DY + =S n D
+9369360 IRTYSTRN I
141

12 101 204
Sau(zy tm) = hD +—0h6D6 505h8D8+ fo,ﬁhmD;%%h D+ .. } u(zj, tm)
S2u(zi t,) = 2Dt 4 = 4h8D8_7 65,12 12 PSR pe b
el tm) I T 360 @ +20160 w F |l tm),

(5.1)
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where (D? + D2)u(zj, tm) = f(x;,tm). Using (3.5) and (5.1), we obtain the truncation

error

"

[(2171 + 2p2 + 2p3 + pa) + (9p1 + 4pa + p3)d2 + (6p1 + p2 + 36077)5s
+(p1 + 601 )56} Siullt + 672 (66, + 09)u)’

—kiz(l + 0512) {pl(f;ri?) + fls) +p2(fiZo + fiha) + p3(fiZ1 + fi1) +p4fm}
s o 2k*D}  2kSDS  2kBDE
[01 (k Dit =+~ t & T
2k*DE  2kSDS  2kBDS
TR T T e
4 4 4 6 6 8 M8
h D (k2Dt 2k D! N 2k8 DY N 2k8 DS +)

+(02h>D2) (k2D§ +

+(202 —+ 2403) 4' ol 3l

4 6 N6 8 N8
(kQDt 2k Dt L 26D} | 2k°D; +)

+(202 + 12003 + 72004 +

6! 8!
Dg 2k4D4 2k5D¢ 2k D3
(k D} + T T e T +>
thD;O 2k*DY  2kSDS  2kBDE m
' (I&’D%’Jr v £+ i L+ q : +...>}uj
o (144h4D4 1440h6D6 4032 5 s N 111936h10D10+ 10266000h12D12

6! + 8! ” 10! i 12!

+(202 + 50403 + 1008004)

+(202 + 101603 + 10584004)

201
8!

201
6!

201

o ok'™Di° + ...

)u] - {olk +o10k*D? + Z20k5D} + ok DS + 2L

6!

h® D}
2(6561])1 =+ 256p2 +p3) 3! =+ ) X

20k5D}  20k8DS  20k1°D?
+ +
4 6! 8l

+

h*D: h8DS
(02h203 +2(81p1 + 16p2 + ps) = + 2(729p1 + 64p2 + p3)
+

kK +ok*D}? + + >] (D} + Dp)ul

which may be written as

"

1
{(36 —o1)r’h'D} + (12 — 02)r2h6D2—|—<g — ﬁ(81pl + 16po +p3))r2h8D2

583 27,10 110

2% (729p: + 64 KD

3150 360( 1+ p2+p3))r @
2565 1

— — (6561 256 *n'?D)?
199584 ~ 20160 0o01P1 + p2+p3)>r =+

+(i )01k4Dt+(i 70)0 h2k* D2 Dt+( ! 12) 02h*kS D2 DS

12 360

h4
— (02 + 1203) — 010k> — —(81p1 + 16p2 —|—p3)) k'DAD?

oht
ﬁ(o2 + 6003 + 36004) — 020k> — %(729;91 + 64pa + pg)) R*k*DS D}
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1
(02 + 1203) — —o10k? — i(81pl + 16p2 +p3)> k4Din

+ L
144 12 12

1 2 20
1k*D KD+ = — =2 Jo2h* kD2 D}
(20160 360) t+<360 12) o1 t+(8! 6!)02 et

ok?
— (202 + 50403 + 1008004) — 15 ——(81p1 + 16p2 + p3)

2 h4
(; (6561p1 + 256p> +p3)> h'k* D3 D7
ht 1 oht 6 ~4 146 m
12 — —(81 1 D,D | u
+(4320(02+ 03) — 360010k 144(8 p1 + 16p2 +p3)>k 2 Di + | uj
o,
(5.2)
where
01 = 2p1 + 2p2 + 2p3 + pa, 02 = 9p1 + 4p2 + p3,
0 0
03 = 6p1 + p2 + 36072, 04 = p1 + 607>, Dy = 9% D; = 5 (5.3)

For various values of parameters pi,p2,ps,ps and o, we obtain the following class of
methods:

Case 1: If 36 — 0; = 0, we obtain various schemes of O(k? + h?) for arbitrary values of
o.

Case 2: If 36 — 01 = 0 and 12 — 02 = 0, we obtain various schemes of O(k2 + h4) for
arbitrary values of o.

Case 3: If 36 —01 = 0, 12— 02 = 0, and 2 — 15(81p1 + 16p2 + ps) = 0, we obtain various

schemes of O(k* + h®) for o # & and O(k® + h®) for 0 = L.

Case 4: For (p1,p2,ps,pa,0) :(%, *2—‘;)2, %, 1—36, %), we obtain a scheme of O(k® +h'?).

6. Stability analysis

To investigate the stability analysis of the scheme (3.6), we use the Von Neumann
method. We have assumed that the solution of (3.6) at the grid point (z;,¢m) is of the
form

u;n _ £7neji97 (61)
where ¢ = /—1, 6 is real and £ in general is complex.
Substituting (6.1) in homogeneous part of (3.6), we obtain a characteristic equation

XE4+YeE+Z =0, (6.2)
where
X =7 =Pi1cos30 + P>cos20 + P3cos + 2Py,
Y = S1cos30 + S cos20 + S3cos@ + 254,

Under the transformation £ = H" , equation (6.2) becomes

(X—Y+Z)77 +2X-Z)n+(X+Y+2Z)=0. (6.3)
The necessary and sufficient condition for || < 1isthat X -Y +2Z >0, X —Z > 0 and
X+Y+Z>0.
The conditions X —Z > 0 and X +Y + Z > 0 are always satisfied for all real values of 6.
From the condition X —Y 4+ Z > 0, we get that the scheme (3.6) is unconditionally stable

if o > i and conditionally stable if o < i for all real values of p1,p2,ps3, ps and 6.
We summarized the above results in the following theorem:
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Theorem: The scheme (3.6) for solving (1.1) is unconditionally stable if o > % and

conditionally stable if o < %. By using the Lax theorem, we can conclude that the

present method is converge as long as stability criterion is satisfied.

7. Numerical results and discussions

We have applied the presented method on the fourth order parabolic partial differen-
tial equation and have considered one homogeneous and two nonhomogeneous examples.
The proposed method (3.6) is implicit three level method based on parametric septic
spline function.

Example 1: Consider a nonhomogeneous fourth order parabolic partial differential
equation [2,9,17,34]
0%u n 0*u
ot Ozt
subject to the initial conditions

u(z,0) =sinwz, uw(z,0)=0, 0<z<1

= (7r4 —1)sinmzcost, 0<xz<1,t>0,

and the boundary conditions
u(0,t) = u(l,t) = ug2(0,t) = uzz(1,t) =0, ¢t >0.
The analytical solution for this example is
u(z,t) = sinmx cost.

We have solved the above example with A = 0.05 and k£ = 0.005 giving » = 2 and by
choosing 0 = 1, &5 with O(k* + h®), O(k® + h®) and O(k® + h'?) for arbitrary choices of
parameters p1, p2, ps and ps. All computations have been done over ten time steps. The
absolute errors at particular points x = 0.1,0.2,0.3,0.4,0.5 and comparison with other

existing methods [2,8,15,26] are tabulated in table 1. We repeat the computations for 16
time steps with » = 0.5.
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Table 1. Absolute errors for example 1

Methods r |Time steps| t =0.1 |2 =02 | z=03|x=04|2z=0.5

(p1,p2,P3,P4,0)
O(kﬁ _|_ th)

(%, 52,8 58 Tg) 2 10 2.05(—6)|4.37(—7)[1.04(—7)|1.19(—8)|5.61(—8)
0.5 16 4.04(—7)|7.81(—9)|8.34(—9)|4.56(—8)|5.10(—8)

O(k® + h®)
(;5,3852,@ 0, 5) 2 10 2.63(—6)|2.86(—8)|4.34(—8)|7.02(—8)|6.31(—8)
0.5 16 6.80(—7)|3.52(=7)]9.65(—7)[1.39(—6)|1.53(—6)
(3030,;;‘39,42001,1&) 2 10 2.76(—6)|4.65(—8)|3.55(—8)[6.71(—8)|6.06(—8)
0.5 16 1.08(—6)[2.14(—7)|1.02(—6)|1.59(—6)|1.78(—6)

O(K™ + h%)
(B32208) (2] 10 |902-0)sa-n[z920-D|100(-9)0.53(-9
0.5 16 3.84(—6) (—6) (=7) (—6) (—6)
(14030,;;‘;)9,42001,1,4) 2 10 9.10(—6)|8.43(—"7)|3.96(—7)|1.67(—8)|9.57(—8)
(=6) (=6) (=7 (=6) (=6)

0.5 16 2.14(—6)|1.10(—6)|1.20(=7)|1.07(—6)|1.51(—6
[17]
O(k*+h*),o=1, |2 10 3.09(—6)[4.04(—6)|1.65(—6)|2.44(—6)|2.73(—7)
0.5 16 5.25(—=7)|2.87(=7)|1.54(=7)|1.64(—7)|1.76(=7)
O(k*+h*),0=4, |2 10 2.91(—6)[1.73(—6)|1.60(—6)|2.33(—6)|2.60(—7)
0.5 16 4.47(=7)|2.66(—7)|1.39(=7)|1.55(=7)|1.57(=7)
2] 2 10 1.87(—6)[2.13(—5)[1.49(—5)[8.60(—6)[5.96(—6)
0.5 16 9.07(—6)|7.79(—6)|2.75(—6)|1.01(—6)|2.59(—6)
[34] 2 10 1.80(—5)[2.00(—5)[1.40(—5)[8.30(—6)[5.70(—6)
0.5 16 9.20(—6)|7.90(—6)|2.80(—6)|9.80(—7)|2.50(—6)
9] 2 10 2.20(—4)[4.10(—4)[5.40(—4)|6.20(—4)[6.50(—4)
0.5 16 2.50(—5)|4.70(—5)|6.60(—5)|7.80(—5)|8.20(—5)

Example 2: Consider a homogeneous fourth order parabolic partial differential equation
[18,33,34]

Pu '

o420, 0<z<1,t>0,

o2 " Ot =r=hte
subject to the initial conditions

u(z,0) = (2:6 —2®—1), u(z,0)=0, 0<z<1

12
and the boundary conditions
w(0,t) = u(1,t) = uez(0,1) = uza(1,t) =0, t>0.

The analytical solution for this example is

u(z,t) = Z ds sin(2s + 1)mz cos(2s + 1)° 7%t
5=0

where
-8

(25 +1)>=°]

s =



We have solved this example with A = 0.1 for o = 1

11
112"
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The absolute errors at particular

points z = 0.1,0.2,0.3,0.4,0.5 with » = 2 and 50 time steps of O(k* + h®), O(k® + A®)
and O(k® + h') for arbitrary choices of parameters pi,p2,ps and ps and comparison
with other existing methods are tabulated in table 2. We repeat the computations for
100 time steps with r = \/%, 1/ % and r = é. We have also included results given by
unconditionally stable method.

Table 2. Absolute errors for example 2

L)

Methods r*|Time steps|  =0.1 | =02 | =03 | =04 | z=0.5

(p17p27p37p470)

O(kG +h10)

(%%%%%) 4 50 2.66(—12)|5.48(—12)[1.12(—12)|6.07(—13)|7.42(—13)
: 100 [1.29(—12)(3.24(—13)|1.79(—12)|3.63(—12)|5.06(—12)
| 100 |1.79(—12)|4.02(—12)|1.38(—11)|2.40(—11)(3.11(—11)
2| 100 [2.17(—13)|1.33(—13)|7.43(—13)|1.35(—12)|1.50(—12)

O(k® + h®)

2,82 001 |4 50 1.69(—12)[1.11(—12)|6.43(—13)(9.50(—13)|1.54(—12)
3 100 |2.44(—12)(3.47(—13)|3.06(—12)|3.98(—12)|3.71(—12)
a5| 100 [3.00(—12)|4.44(—12)|1.55(—11)|2.45(—11)(3.24(—11)
=| 100 |2.74(—13)(1.83(—13)[9.23(—13)|1.39(—12)|1.71(—12)

(%, = g, i) 4 50 1.54(—12)[1.00(—12)|6.33(—13)(9.57(—13)|1.52(—12)
2 100 |3.06(—12)|6.12(—13)|3.26(—12)|4.06(—12)|3.46(—12)
& 100 [3.73(—12)(4.14(—12)[1.57(—11)|2.46(—11)|3.21(—11)
=| 100  [3.39(—13)|1.56(—13)[9.46(—13)|1.40(—12)|1.68(—12)

O(k™ + h¥)

(%, =2 1o, i) 4 50 4.77(—13)|1.85(—12)|4.04(—12)|6.80(—12)[9.90(—12)
z 100 |4.64(—12)[1.43(—12)|3.58(—12)|4.21(—12)|4.01(—12)

(f—(ﬁ), 9 41, i) 4 50 5.59(—13)|3.20(—13)|5.36(—13)|1.24(—12)[2.71(—12)
: 100 [8.74(—12)(3.30(—12)|4.79(—12)|4.75(—12)|4.50(—12)

[18],0 = 1 4 50 3.19(—4) [ 6.19(—4) | 8.81(—4) | 1.87(=3) | 1.15(-3)
: 100 2.61(—4) | 4.43(—4) | 5.47(—4) | 6.08(—4) | 6.33(—4)
[34],0 = 1 4 50 3.21(—4) | 5.77(—4) | 7.24(—4) | 7.89(—4) | 8.10(—4)
: 100 3.81(—4) | 3.33(—4) | 7.74(—4) | 7.81(—4) | 7.66(—4)
33,0 = 15 4 50 4.32(—4) [ 8.34(—4) | 1.18(—4) | 1.42(-3) | 1.52(-3)
: 100 2.30(—4) | 4.08(—4) | 5.40(—4) | 6.56(—4) | 7.02(—4)
[34],0 = 15 4 50 1.00(—5) | 5.00(=5) | 1.73(—4) | 3.33(—4) | 4.10(—4)
z 100 3.52(—4) | 6.30(—4) | 7.77(—4) | 7.72(—4) | 7.38(—4)
= 100 1.38(—4) | 1.74(—4) | 9.05(=5) | 3.40(—4) | 9.60(—4)
| 100 3.53(=5) | 6.22(=5) | 7.11(=5) | 6.11(—5) | 5.53(—5)

Example 3: Consider a nonhomogeneous fourth order parabolic partial differential
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equation [32]
%+% =[24 —2°(1 —x)’]cost, 0<x <1, t>0,
subject to the initial conditions
u(z,0) = x2(1 — ), u(z,0) =0, 0<z<1

and the boundary conditions

u(0,t) = u(1,t) =0, Uz (0,t) = uez(1,t) = 2cost, t>0.
The analytical solution for this example is

u(z,t) = (1 — z)* cost.

‘We have solved this example with A = 0.05 for 0 = 4, 12 The absolute errors at particu-
lar points « = 0.1,0.2,0.3,0.4,0.5 with » = 2 and 10 time steps for O(k* +h®), O(kS +h®)

and O(k® + h'%) using arbitrary choices of parameters p1,p2,ps and p4 are tabulated in
table 3. We repeat the computations for 16 time steps with r = 0.5.

Table 3. Absolute errors for example 3

Methods r |Time steps| =0.1 | =02 | =03 | =04 | =0.5
(p1,p2,p3,p4,0)

O(k6+h10)
<%—2—§2%§%> 2 10 3.16(—4) | 2.74(—5) | 4.18(—6) [8.92(—7) | 1.17(-8)
0.5 16 1.35(—5) [6.11(—6) [ 2.99(—6) [ 1.15(—5) | 1.48(—5)

O(k® + h¥)
(;g, =2 1o, i) 2 10 3.97(—4) | 2.82(—5) | 4.92(—6) | 1.20(—6) | 1.77(—=7)
0.5 16 1.12(—4) | 2.17(—5) | 6.58(—5) | 9.42(—5) | 1.04(—4)
<14030,—1})§9742001,1 ) 2 10 3.98(—4)|2.90(—5) | 5.00(—6) | 1.16(—6) | 1.26(—7)
0.5 16 1.36(—4) [ 1.28(—5) | 7.08(—5) [ 1.10(—4) | 1.24(—4)

O(k™ + h¥)
12 =82 104, i) 2 10 1.05(—3) | 7.46(—5) | 5.42(—5) | 7.48(—6) | 4.98(—6)
0.5 16 1.50(—4) |9.27(—5) | 1.83(—5) | 1.20(—4) | 1.61(—4)
<14030, —1};*)9742001,174> 2 10 1.04(—3) | 7.43(-5) | 5.43(—5) | 7.46(—6) | 5.00(—6)
0.5 16 5.31(—5)|6.32(—5) | 6.29(—7) | 6.61(—5) | 9.31(—5)

Conclusion

The parametric septic spline function have been developed to obtain three level implicit
methods for solving fourth order parabolic partial differential equations. The developed
methods are tested on three examples. The performance of these methods have been
examined by comparing solution of homogeneous and nonhomogeneous fourth order par-
abolic partial differential equations with available results. In examples 1, 2 and 3, we
have computed absolute errors at the points x = 0.1,0.2,0.3,0.4, 0.5 for the sake of com-
parison with our references and results are tabulated in tables 1-3. Tables show that our
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results are more accurate than the results obtained by previous methods.

Acknowledgement: The authors would like to thank the editor and reviewers for their
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