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On the bivariate and multivariate weighted
generalized exponential distributions
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Abstract

This article proposes a particular member of the weighted bivariate dis-
tribution, namely, bivariate weighted generalized exponential distribu-
tion. This distribution is obtained via conditioning, starting from three
independent generalized exponential distributions with different shape
but equal scale parameters. Several structural properties of the pro-
posed bivariate weighted generalized exponential distribution including
total positivity of order two, marginal moments, reliability parameter
and estimation of the model parameters are studied. A multivariate
extension of the proposed model is discussed with some properties.
Small simulation experiments have been performed to see the behavior
of the maximum likelihood estimators, and one data analysis has been
presented for illustrative purposes.
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1. Introduction

In recent times, there have been numerous studies on the family of weighted
distributions that emerges as a center of attraction in the development of application (see
Arellano-Valle and Azzalini (2006) and the references therein). The weighted distribution
arises when the density g(x;61) of the potential observation x gets contaminated so that
it is multiplied by some non-negative weight function w(zx; 601, 62) involving an additional
parameter vector 2. Then, the observed data is a random realization from a weighted
distribution with density

(L1)  f(z;61,62) = wgﬁzz,)??éf(z;)@f)
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where the expectation in the denominator is just a normalizing constant. An extensive
class of weighted distributions are discussed in Rao (1965,1985), Bayarri and DeGroot
(1992), Arnold and Beaver (2002), Branco and Dey (2001), Azzalini (1985) and Kim
(2005). As elaborated in the articles by Arnold and Nagaraja (1991) as well as in the
book by Genton (2004), the application of the weighted distribution extends to the areas
of econometrics, astronomy, engineering, medicine as well as psychology. In particular
in scenarios where the observed random phenomena can be described by (1.1). Again,
if the potential observation x is obtained only from a selected portion of the population
of interest, then (1.1) is called a selection model. Weighted distributions, establishing
links with selection models obtained from various forms of selection mechanisms are well
addressed in the literature; see Genton (2004), Arellano-Valle et al. (2006) and the
references therein. The main objective of this study, described here, is to investigate
various properties of a class of weighted distributions arising via conditioning where the
underlying distributions are independent generalized exponential. Although the class
has some resemblance with the selection distributions developed by Arellano-Valle et al.
(2006), we are not aware of any detailed exposition of the distributional properties. This
lack of detailed exposition motivates the investigation described in this article. This
class apart from a theoretical interest, is worthy of investigation from an applied point of
view. In the applied view point, the class produce new models that provide us a means
to analyze non-normal data such as interval grouped data, screened data and skewed
data. We envision a real life scenario as a genesis of the proposed bivariate weighted
distribution in a classical stress-strength model context.

Assume a system has two independent components with strengths W; and Ws, and

suppose that to run the process each component strength has to overcome an out-
side stress Wy which is independent of both (Wi; and Ws). If we define (X,Y) <
(W1, Wa)|(min(W1, Ws)) > Wo) where the W/s have absolutely continuous distributions,
then the resulting joint distribution of (Wi, W>) is the type of bivariate weighted distri-

bution to be investigated in this paper.

2. The bivariate weighted generalized exponential distribution

Let W1, W2 and Wy be independent random variables with density functions fy, (ws),
1 =0,1,2. Define (X,Y) A (W1, W2)|Wy < min(Wi, Wa)), then the density function of
the corresponding bivariate weighted distribution is given by
fwn (@) fw, (y) P(Wo < min(Wi, Wo)|Wh = 2, W = y)

P(Wo < min(Wy, Wa))
(2.1) _ fw (@) fws (y) Fwg (min(a:,y)).
P(Wo < min(Wl, WQ))

Indeed the density in (2.1) is a bivariate weighted distribution of (X,Y) with the weight
P(Wy < min(W1, Ws)). This method was first proposed by Al-Mutairi at el. (2011).

Ixy(z,y)

If Wis for ¢ = 0,1,2, are identically distributed with common density function fw (w),
then P(Wo < min(Wy, W2)) = +. Hence, (2.1) reduces to

(2.2)  fxy(=z,y) = 3fw(=)fw(y)Fw, (min(z,y)).

Next, we consider a member of the weighted family in (2.1), the bivariate weighted
generalized exponential distribution. The exponentiated exponential distribution (Gupta
and Kundu, 2001), known in the literature as the generalized exponential distribution
(GED), is a two-parameter right skewed unimodal distribution where the behavior of the
density and the hazard functions are quite similar to the density and the hazard functions
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of the gamma and Weibull distributions. The generalized exponential distribution can
also be used effectively to analyze lifetime data.

Next, if W;’s are independent generalized exponential random variables with parameters
(a4, 0) for i =0,1,2. Then the normalizing constant is

P(Wo < min(Wi, Wa)) = / b / " s (@) fivs (v) Fwy (min(z, ) diedy

/ / 0 ale I/Q( 71/9)04171

y/9 (1 —y/ﬂ)a2 1(1 — e~ min(x,y)/f?)aodxdy

1 1
(2.3) = i + .
ap +az2+a \a1+a a2+ ao

From (2.1), the density function of the proposed bivariate generalized exponential distri-
bution can be written as

fxy(@y) = 0778(ao, a1, az)e” @OV (1 —em /)T - g v/ 0y

(2.4) X (1 — e~ ™n@En/0ye0 oy T2 50,y > 0),

where 6(ag, a1, az) = {almlﬁao (aliao n aziao)} ' ai>0fori=0,1,2and 8 > 0.
A bivariate random variable (X, Y") with the joint p.d.f f(z,y) in (2.4) is said to follow the
bivariate weighted generalized exponential distribution with parameters ag, a1, a2 and
0 and will be denoted by BWGED(«o, a1, a2, 6). When ap = a1 = a2 = 1, the BWGED
reduces to the bivariate weighted exponential distribution (BWED) with parameters
Ao = A1 = A2 = 1/6 [Al-Mutairi et al., 2011]. Also, when ag — 0 and a1 = a2 =
1, the BWGED reduces to the bivariate exponential distribution where X and Y are
independent and follow Exzp(0) distribution.

In Figure 1, various density and contour plots of BWGED density are provided. Figure
1 shows that the joint density function is very flexible in terms of shapes, it can assume
various shapes such as strictly decreasing and concave down. The shape of the distribu-
tion is strictly decreasing whenever a; < 1, i = 0,1,2. Also, it appears from the plots
that the BWGED density is a unimodal distribution.

The remainder of this paper is organized as follows: In section 3, some properties
of the bivariate generalized exponential distribution in (2.4) are discussed. In section
4, some discussion on the multivariate extension of the proposed family is provided.
Section 5 deals with the estimation of the bivariate generalized exponential distribution
parameters. For illustrative purposes, one data set is studied in section 6. In section 7,
some concluding remarks are made regarding the BWGED model.

3. Properties of the bivariate generalized exponential distribution

In this section we discuss various structural properties of the BWGED including mo-
ment generating functions, marginal distributions and distributions of the minimum and
maximum.

3.1. Moment generating function. The moment generating function of BWGED in
(2.4) is

(3.1) MX,Y(tl,tz) =F (6t1X+t2Y) =1+ Is, say
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Figure 1. The density and contour plots for various values of o, a1 and as.

where

I = / / 6t11+t2ye*<w/9+9/9)(1 _ 6*1/9)041*1(1 _ e*y/@)ocoJrOézf1dydm7
0 0
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and

I /oo /y etlmﬁzye,(x/ﬂy/e)(l _ efx/e)a0+a171(1 _ e—y/e)azfldxdy_
0

For I, [)e™’ **“«'/”(1 ’”/6)’\(“°+°‘2’1)dw = 0B, .o (@0 + a2, 1—0t2), |ta| <
07! and B,( fo to1( t)bildt, is the incomplete beta function. On using the
series representatlon
1-b)p x atk
Ba(a,b) = 3 Ut where (a)x = a(a — 1)+ (a— k + 1),
[http://mathworld.wolfram.com /IncompleteBetaFunction.html|, one can show

(6t2) _
(32) _02Zm3(ao+al+a2+k,170t1), |t1‘,|t2|<0 1.
Similarly,

(0t1) -1
(33) [2—9 ZmB(ao+a1+a2+k,l—9tg), |t1‘,|t2|<0 .

Substituting (3.2) and (3.3) in (3.1), we get an expression for the joint moment generating
function of (X,Y).

3.2. Marginal distributions. From (2.4), the marginal density of X is

/000 Ixv(z,y)dy

= 0715(a0,a1,a2)e

1 1 —z/0\a1+tas+apg—1 1 —z/0\o1+a 71)
- - 1 —e 1 2 0 + . 1 —e 1 0
((OéQ-l-Oéo 012)( ) az( )
(3.4) xI(z > 0).
Similarly, the marginal density of Y is

Ix(x)

—z/0

friy) = 07'5(c0, 01, az)e”¥/’
1 1 _ _ 1 _ _
L 1— y/0\a1+astag—1 S (1— y/0\as+oap—1
((0614-050 01)( ‘ ) +Ot1( ‘ )
(3.5) xI(y > 0).

Lemma 1. The marginal distributions of X and Y are weighted generalized exponential
distributions.

Proof. From (3.4), one can write fx(z) = .., aifx,(xi), where 37 a; = 1, X1 ~

GED(o1 + a2 + a0,0), Xo ~ GED(a1 + ao,0), ay = 2eoenea) (L~ 1) and
az = w Similarly, one can write (3.5) as fy (y) = >.._, bify, (y:), where by =
Sapren) (1 1Y) and by = S840 and i ~ GED(es + 0 + 0,6), Vi ~
GED(OCQ +Oéo,9). O

Now, consider the following lemma from Gupta and Kundu (2001).

Lemma 2. If T follows generalized exponential distribution (GED) with parameters
(a, ), then,
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(1) Mr(t) = aB(a,1—1t/X), |t <A

(i) E(T) = (Y(a+1) — (1)) /A, where 9(.) is the digamma function.
From Lemma 1, the moment generating function of X and Y, respectively, can be written
as

(3.6) Mx(t) =a1Mx, (t) + a2Mx,(t),

(3.7) My (t) = b1 My, (t) + b2 My, (t),

where a1, as, b1 and by are mentioned in the proof of Lemma 1. Here, X1,Y1 ~ GED(aa1+
ag + ap, 0), X ~ GED(a1 + o, 9) and Y ~ GED(Oé2 + o, 9)
Hence, using (3.6), (3.7) and Lemma 2, we get

Mx(t) = (ao+a1+a2)alB(ao+a1+a2,1—t/9)
—l—(()éo + 0[1)(123(050 +ai,1— t/0), |t| <40,

My(t) = (0404—0(1+Oéz)b13(0(o+0[1+0¢2,1—t/0)
—l—(Ozo —+ ag)bgB(Oéo + ag,1 — t/@), |t| < 9,

E(X)=0a10 "Y(ao+ar+az+1)+a20 " (o +ao+1) — (a1 +az) 0 (1),

and

E(Y) =b ot w(ao + a1 + a2 + 1) + bo ot w(az + ao + 1) — (b1 + bg) o=t w(l)

3.3. Distributions of max(X,Y) and min(X,Y). To find the distribution of Z =
min(X,Y’), we consider the following: For any z € (0, c0)

P(Z > z)

//fmydxder/ /fxydydm

_ donon,e) ( B i iy
(a1 + o) o + o1+ o2 o2 az(ao + a1 + az2)
(3.8) n §(a, o1, a2) ( 1 1 1 — e~#/0)aztao | a2 + o (1- efz/g)aoJralJraQ) '
(@2 +a0) \aot+ar+az o ai(ao + a1 + az)

On differentiation (3.8), we get

fz) = 9_1(5(o¢0, a1, ch)e_z/e

% (i(l 7 672/9)0424»04071 + i(l 7 672/9)0414»04071

aq (6%
(39) _ (ail + O%) (1 _ 6—2/9)a0+a1+a2—1) % I(Z S 0)

Lemma 3. The distribution of min(X,Y) is a weighted generalized exponential distri-
bution.
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Proof. From (3.9), fz(z) = Z?:l ¢ifz,;(zi), where Z?:l ci =1, Z1 ~ GED(as + ao,0),
Lo ~ GED(OQ “+ o, 9), L3 ~ GED(O(()—FOQ “+ao, 9) and c; = 6(&0,041,&2)7 Cy = S(ag,a1,02)

ai(az+ap) (aptar)as

and oy = S (14 1Y 0

agstaitag \ a1 a2

For the distribution of W = max(X,Y), note that for any w € (0, 00),
Fw(w) P(W > w)
= PX>w or Y >uw)
= PX>w)+PY >w)—PX>w and Y >w)
= PX>w)+PY >w)—P(Z>w)
(3.10) = Fx(w)+Fy(w) - Fz(w).
Differentiating (3.10) with respect to w and using (3.4), (3.5) and (3.9) we get:
fww) = fx(w)+ fy(w) - fz(w)
(3.11) = 0 Mo+ o1 +ag)e W01 — e W/P)otentaz—l o 1y > ().

From (3.11), W = max(X,Y), follows the generalized exponential distribution with
parameters ap + a1 + o2 and 6. Using equations (3.9), (3.11) and Lemma 2, the moment
generating functions and the means of Z and W are:

(1) Mz(t) = Cl(CMQ + Oto)B(OéQ + ap,1 — t/6’) + 02(041 + CM())B(Oél + ap,1 — t/9) +
03(040 + a1 + Oéz)B(ao + a1 +az,1 — t/9)7 |t‘ < 6.
E(Z) =10 "p(as+ a0+ 1)+ a0 (an + oo+ 1) + 30 (o + a1 + o +
1) — (Cl + co + 03)971’([)(1).

(11) Mw(t) = (az + a1 + ao)B(ag + a1 + ap, 1 — t/G), |t| < 0.
E(W)=0"" (a2 + o1 +ao+1) —9(1)).

3.4. Renyi Entropy. Shannon’s (1948), pioneering work, entropy has been used as a
major tool in information theory and in almost every branch of science and engineering.
One of the main extensions of Shannon entropy was defined by Renyi (1961). This
generalized entropy measure is given by

1
(3.12) In()\) = Ogl(%(;)), A>0,A#1L
Where G(X) = [ fdu, and p is a o-finite measure on X. One can get an expression for
the Shannon entropy from (3.12) by taking limit for A — 1.

3.1. Theorem. The Renyi entropy for the bivariate generalized exponential distribution
in (2.4) is Ir(\) = (1 = \)"tlog (G())), where

(3.13)
G(\) = 0226 (a0, a1,02) 3 (le(;’;al T T(jéﬁaz) B\, Maz+ar+ao—2)+k+2),
k=0
ANk o 1-2)g
and T3 = [A((z—1)ik+1]'
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Proof. From (2.4), we can write
(3.14)  G(\) = 076N, on, a2) x (I1 + I2),

where I, = fooo foy efk(m/9+y/0)(1 _ 671/9)/\(a0+a171)(1 _ 67y/0)>\<a271>d1'dy and

I = fooo foz e*A(I/9+y/9)(1 _ e*I/G))\(mfl)(l _ e*y/f)))\(aoJraz*l)dydx.

The result in (3.13) follows from (3.14) by using similar approach as in equations (3.2)
and (3.3). O

3.5. Stochastic properties. Let t11, t12, t21 and t22 be real numbers with 0 < t11 < 12
and 0 < t21 < t22. Then (X,Y) has the total positivity of order two (TP2) property iff

(3.15)  fx,v(ti1,t21)fx,v(ti2,t22) — fx,v (t12,t21) fx,v (t11,¢22) > 0.

3.2. Theorem. The bivariate generalized exponential distribution in (2.4) has the TPs
property.

Proof. Let us consider different cases separately. If 0 < t11 < t21 < t12 < t22, then for the
density function in (2.4), one can easily show that the condition in (3.15) is equivalent
to e *21/9 — ¢=%12/% > (. This inequality holds because ¢2; < t12. The other cases can be
shown similarly. O

The reliability parameter R is defined as R = P(X > Y'), where X and Y are indepen-
dent random variables. Numerous applications of the reliability parameter have appeared
in the literature such as the area of classical stress-strength model and the break down
of a system having two components. Other applications of the reliability parameter can
be found in Hall (1984) and Weerahandi and Johnson (1992).

3.3. Theorem. The reliability parameter of the bivariate weighted generalized exponen-
tial distribution is

Qi ar+az2  aptaz  ap+ a1+ a2

R — 6(ao,a1,a2){ aq @0 Qo2 }

Proof. Note that (X,Y) < [((W1, W)Wy < min(Wi, Wa)] where the W;’s are indepen-
dent and W; ~ GED(«, 0) for i = 0,1,2. Thus,

P(X>Y) = P(Wy>WaWo < min(Wi, Wa))
P(WO < Ws < W1)

(3.16) = P(Wo < min(W1, Wa))

By using straightforward integration one can easily show that

(3.17) P(Wo < Wa <Wi) = @ % (e TYe %} .
artaz aptaz ot t o

Substituting (2.3) and (3.17) in (3.16), the result follows immediately. O
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4. Multivariate weighted generalized exponential distribution

One can obtain a multivariate version of (2.1) by assuming W; ~ fw,(w;) for
i =20,1,--- ,k are independent random variables. The resulting multivariate weighted
density function is given by

|:i1i[1 f‘/v1 (Iz):| Fw, (min(l’l, X2, -Tk))
P(Wy < min(Wi, Wa, ..., Wy))

From (4.1), a multivariate extension of the bivariate weighted generalized exponential
model in (2.4) is given by

(4.1)  fxy,Xorxg (T1, T2, T8) =

(4.2)

k k
. : z; T4 . Ty, a;—1
flx1,22,...,28) <H Og) HCOIAMEY (H(l _ eg)oql) (1 _ eflTk) xI(z > 0),

i=1 1=1

where 1. = min{(z1, z2, ..., zx }.

As a motivation, one can consider the following scenario: suppose that a system consists
of k components whose random strengths are denoted by Wy, Ws,...W), and the random
stress is given by Wy. Next, if the system has a series structure then one would be
interested to know the distribution of Wi, Wa, ...Wy|Wo < min(W1, Wa, ..., Wy). In fact
the system reliability in that case would be given by R = P(Wy < min(W1, Wa, ..., Wy)).
Next, consider the model in which Y1,Y53,...,Y; are i.i.d. random variables with distri-
bution and density functions Gy and go; X1, X2, ..., X are i.i.d. random variables with
distribution and density functions Fy and fo and Z1, Zs, ..., Z; are i.i.d. random variables
with distribution and density functions Ho and ho. In this case we have

k
(4.3)  f(x1, 22, w5) {HfO(l’i) [Go(z1:6)][1 — Ho(zx:)]",

where k., = max{(z1,z2, ..., Tk }.
In some specific scenarios it will be possible to evaluate the normalizing constant in (4.3).
For example, when the three distributions are generalized exponential, (4.3) reduces to

k
flz1, 20, .. mp) [a§67971(11+12+"'+1k)] H (1 - eﬂ”/g) '

i=1
ap1l Jja
(a4)  x[1= (1= ) ] (1 ey
To identify the required normalizing constant we must evaluate
o0 oo o0 k o
/ / / oz]fefg_l(zlJrzer“-Jrzk) H (1 — 67“/9) '
o Jo 0 i=1

X [1 — (1 — e_z’“’“/e)aor ((1 — e_z’“’“/9>a2)j dxidxs..dxy,

£ oo oo
_ 2: Z Z ¢ aok1 \ [ az2j k1tkotk k1 X1 /0—ko Xy /0
) < >( >< )( DF TR E (e 2RI
k1=0ko=0 k3=0 kl k2 kg ( )

where the X;’s have the generalized exponential (a1, 0) distribution. So we need the joint
moment generating function of (X1.x, X.x). Next, the joint distribution of (X1.5, Xk:x)
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is
f(xlzk; xk:k)

3 2 _ —
= 4]‘: (k—1)ay e F1k/0=Tki /0 (1 _ e—zk:k/e)kal ! (1 _ e_zlzk/g)al !
92

(1 _ (1 _ efl'l:k/‘g)al)k_l ((1 _ e*“«'k:lc/e)al _ (1 _ e*wl:k/0>al)k_2
X I(0 < Z1:x < T, < 00)

Now,
E (6*X1;k/9ka;k/9)

[ee] Ti. 3 2 aq— aq—
:/ / M k(R —1)ag e 2%1:k/0—2Tk:1 /0 (1 _ e*Ik:k/9>k 1t (1 _ 6*931:1@/9) -t
02
0 0
k—1 k—2
(4.6) % (1 _ (1 _ e—zl;k/Q)al) ((1 B 6*Ik;k/9)al _ (1 _ elezk/g)al) dx1.pdxk.k,

which can be written as 352 (—1)? % ( (2k+1)a1 <2k+1)"‘1 ’1)) after some algebraic

simplification. Hence, using (4 6) in (4.5), the normahzmg constant corresponds to the
distribution in (4.4) is

L 2= 1)ktkatkati g\ (ook i
-0 0r1 2]

<<(2k +.1)a1> N <(2k + Do — 1>> |
J J

Corollary 1. If (X3, X, ..., Xi) has a multivariate weighted generalized exponential dis-
tribution in (4.1) with parameters («;,0),i =0, 1,2, - - - k, then the normalizing constant,

-1
Cr = P(X1 < min(Xa, -, Xy)) = Si=0 (Z'—“ 1 ) ,

l‘[k 1 i=1 a;+ag

Proof. The result follows immediately by using the same logic as in (2.3). O

Corollary 2. If (Xi,X2,...,X%) has a multivariate weighted generalized exponen-
tial distribution with parameters («;,0),i = 0,1,2,---k, then the distribution of Z =
min(X1, X2, -+, Xj) has the density

k

f(Z) = 6‘*10;1@*2/9 (Z ai(l — e*Z/G)amLaofl _ ﬁ(l . 672/9)2220 O‘i1>
i=1 " i=1 Qi

xI(z > 0),

where C is the constant in Corollary 1.

5. Estimation

In this section, we consider the maximum likelihood method to estimate the model
parameters of the bivariate generalized exponential distribution in (2.4).
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5.1. Maximum likelihood estimation. Assume that a random sample of size n obser-
vations are taken from the bivariate density in (2.4), then the corresponding log-likelihood
function can be written as

lap,a1,a2,0) = —2nlogh+ nlog(ao + a1 + az) + nlog(ao + a1) + nlog(ao + az)

—nlog(20 + a1 + az) —nf ™" (T +7) + (a1 —1) ) _log (1 - e‘“/e)

i=1
n n
(5.1) +(a2 —1) Zlog (1 — eiy"'/e) + ap Zlog (1 —e” min(z“yi)/e) .
i=1 i=1

Differentiating (5.1) with respect to ao, a1, az, and 6 we get

1o} n 2n n n
5.2 —l(ap, a1, 02,0) = — +
(5:2) Oap (a0, a1, a2, ) apo+ar+a2  200+or+o2 ator ootz

+ Z log (1 —e min(zi’y”/g) .
i—1

0 n n n
5.3 —@a,a’a7€ = _
(5:3) 3011(0 1,02,9) ap + a1 + az 200 + 1 + a2 ap+ o1

+Zlog (1 - eﬂ“"'/e) .

i=1

n n n

5.4 —/ 0) = -
(5:4) Oaa (a0, a1, 02,6) ap + a1 + a2 2a0+a1+a2+ao+a2

+ilog (1 — e_yi/g) .

i=1

0
%Z(ao, a1, 2, 9)

n -1
=20+ 0z +7) — (n —1)07> Zwl (ex"/e - 1)
i=1

1 n X —1
—aof? Z min(z;, y;) (emm(zhyi/m B 1) '
i—1

(5.5) — (g —1)072 iyi (eyi/g - 1)

Setting (5.2), (5.3), (5.4) and (5.5) to 0 and solving simultaneously, we get the maximum
likelihood estimates for ag, a1, as and 6.

If the scale parameter 6 is assumed to be known, then setting equations (5.2), (5.3)
and (5.4) equal to zero, we get,

1 2 1 1
(5.6) = — =
a oaot+a ot+or oot oe
1 1 1
(5.7) - — =
a ata  at+ o
1 1 1
(5.8) - = =
a ot a  at a2

C=-3"log (1 - 67mi“<xi’y")/0> and a = oo + a1 + as.
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Adding (5.7) and (5.8) and then subtracting from (5.6), we get

1

(5:9) a=ZTE =

On using (5.7) and (5.8) and then simplifying, we get

1 —1
(5.10) agza—<A—B—|— ) .
a — 1

Therefore, using equations (5.9), (5.10) and the fact that ag = o — a1 — a2, one can easily
solve equation (5.6) for 1. This will increase the calculation efficiency in order to obtain
the numerical solution faster. The Fisher information matrix when 6 is known, I(J) =
-FE (#{26]‘ log (f(X|§))) = {Urs;T, 8 = o, a1, @2}, can be obtained from equations (30)-
(32) as follows:

Uagao =n (@72 — 4(a0 +a) > + (a0 + a1) 7> + (a0 + a2) %) .

Uaga, =71 (% —2(a0 + @)% + (a0 + 041)72) .

Uagas =1 (a —2(a0 + a)_2 + (oo + a2)_2) .

Usyo, =1 (> — (a0 +a) 2 + (a0 + 1) 7).

Usjas =N (a — (a0 + a)72) ,

Ussay =N (on — (a0 + 04)72 + (oo + a2)72) .

The Fisher information matrix can be used to obtain interval estimation of the model
parameters. Under standard regularity conditions, the multivariate normal N3 (0, I@)*l)
distribution can be used to construct approximate confidence intervals for the model
parameters. The matrix, @) is the Fisher information matrix evaluated at 5 Therefore,
the 100(1 —a)% confidence intervals for ag, a1 and a2 are given by dio £ z4/2 X y/var(do),

a1 % 242 X y/var(di), and dz & z,/2 X \/var(dz), respectively, where

10ag+22a3 (a1 +a2)+(a1+az)* +ad(20a3+34a1 a2 +20a3) +4ap (205 +503 as+501 ad+2a3)
2n(ap+ay)(ap+asz) ’

Var(ao) =

V (/\ ) _ 5ag+8a(2)a1+11a(2)a2+6a0a%+12a0a1a2+7o¢0a§+2a?+4a%o¢2+4a1a§+ag
arton) = 2n(ag+ai) ’

V (/\ ) _ 5ag+11a8a1+80¢(2)a2+7aoo¢%+12aga1a2+6a0a%+a?+4a%a2+4a1a%+2ag
ar\az) = 2n(ag+az) ’
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5.2. Simulation study. To illustrate the application of the bivariate generalized ex-
ponential distribution in (2.4), a small simulation study is conducted. However, in this
paper we report only the results for estimation of the model parameters using the max-
imum likelihood estimation procedure. Bivariate random samples of size 50, 100 and
200 were generated from the density in (2.4) with the following parameter values; Set I:
ap =1, a1 =5,a2=5and d =1and Set Il: oo =1, &1 =4, a2 = 3 and 0 = 3.
Since both the conditional distributions of the bivariate density in (2.4), X|Y and Y| X,
are completely known in closed forms, a Gibbs sampling technique is used to generate
bivariate random samples. The simulation is repeated 200 times. The estimated value
and the standard deviation of the parameters using the maximum likelihood method are
presented in Tables 1 and 2.

Table 1. Parameter estimates and standard deviations for BWGED under set 1.

Sample size ap a1 o) 0
50 1.2372 (0.3220) | 5.0955 (0.8543) | 5.0902 (0.7065) | 0.9903 (0.0379)
100 1.1616 (0.1662) | 4.9123 (0.5579) | 5.1261 (0.6607) | 0.9767 (0.0217)
200 1.1510 (0.1190) | 5.0190 (0.4097) | 4.9918 (0.2449) | 0.9956 (0.0207)

Table 2. Parameter estimates and standard devia

tions for the BWGED under set II.

Sample size

dio

i

iz

0

50

1.1526 (0.4653)

41931 (0.5748)

3.5209 (0.7732)

2.8400 (0.2598)

100

1.2204 (0.2971)

3.9411 (0.4501)

200

1.1374 (0.1573)

4.1051 (0.2225)

(
3.5043 (0.6746)
3.2157 (0.4294)

(
2.9127 (0.2081)
2.9677 (0.1140)

From Tables 1 and 2, it appears that the maximum likelihood estimation performs quite
effectively to estimate the model parameters.

6. Application

In this section, the BWGED is applied to a data set from Al-Mutairi at el. (2011).
The data set represents the scores from twenty five first year graduate students in proba-
bility and inference classes of a premier Institute in India. For both the courses, Analysis-I
is a prerequisite. It is assumed that the knowledge of Analysis-I affects the scores in both
the courses. The data set is

X :53,55,85,87, 22,23, 25,93, 51, 62, 53, 32, 43, 47, 30, 88, 59, 49, 42, 71, 41,82, 75, 93, 37.

Y : 89,90, 59,50, 25, 29, 54, 62, 39, 25, 89, 32, 33, 63, 38, 77, 55, 41, 31, 66, 57, 32, 43, 88, 34.

We fit the data set to the BWGED and compared the result with the bivariate weighted
exponential distribution (Al- Murairi et al., 2011). The maximum likelihood estimates
for both models are reported in Table 3. The Kolmogorov-Smirnov test statistic (K-S)
for the distribution functions of the marginal X and Y is used to compare the goodness
of fit of the BWGED and the bivariate weighted exponential distribution (BWED). The
K-S statistics and the p-value for the K-S statistics for the fitted marginal distributions
are reported in Tables 3. From Table 3, the p-values indicate that the marginals of the
BWGED gives an adequate fit to the data. Figure (2) displays the empirical and the
fitted cumulative distribution functions. This figure supports the results in Table 3.
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Table 3. Parameter estimates for the scores data
Distribution BWED BWGED

Parameter Estimates | A1 = 0.0263 6 = 20.9321
X2 = 0.0293 | o = 10.7633
X3 =0.0005 | oy = 0.9752
dy=1x10"°

K-S for X 0.3290 0.0790
K-S p-value for X 0.2080 0.9977
K-S for Y 0.2250 0.1300
K-S p-value for Y 0.2860 0.7924

CDF
0.6

0.4

0.2

0.0

Figure 2. Marginal CDFs for fitted distributions of the scores data

7. Concluding remarks

In this paper, we consider a method for generating bivariate and multivariate general-
ized exponential distributions. Some structural properties of the bivariate exponentiated-
exponential distribution in (2.4) are studied such as marginal distributions, moments, to-
tal positivity and parameter estimation. A small simulation study is conducted and the
outcome of the simulation study is quite encouraging. Furthermore, one can study general
properties for the multivariate generalized exponential distribution in (4.4). Although,
in this paper, we focus on the bivariate and multivariate generalized exponential distri-
butions, one can use the techniques in (2.1) and (4.3) to generate different bivariate and
multivariate distributions. The analytical tractability of such resulting models is to be
investigated before one can explore other properties of the derived model(s).
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