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On quasi-contractions in metric spaces with a
graph
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Abstract

In the present work, we introduce G-quasi-contractions using directed
graphs in metric spaces with a graph and we show that this contrac-
tion generalizes a large number of contractions. We then investigate
the existence of fixed points for G-quasi-contractions under two dif-
ferent conditions and discuss the main theorem. Finally, we list some
consequences of our theorem where either the contractive condition is
replaced with a stronger one or the underlying space is changed to a
complete metric space or a complete cone metric space.
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1. Introduction and Preliminaries

In 1974, Lj. B. Ciri¢ [9] introduced (single-valued) quasi-contractions in metric spaces
and gave an example to show that this new contraction is a real generalization of some
well-known linear contractions. He investigated the existence and uniqueness of fixed
points for quasi-contractions in T-orbitally complete metric spaces via a different ap-
proach rather than using merely the iterates of a point. He also introduced multi-valued
quasi-contractions and showed that a similar result is valid for these contractions in
F-orbitally complete metric spaces.

In [21], B. E. Rhoades compared various definitions of contractive mappings in metric
spaces and showed that Ciri¢’s contractive condition is one of the most general contractive
definitions in metric spaces and includes a large number of different types of contractions.
Thus, many authors became interested in studying quasi-contractions. The existence and
uniqueness of fixed points for these contractions as well as some interesting properties
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of them have been investigated not only in metric spaces but in different spaces such as
modular spaces (see, e.g., [L7]) and cone metric spaces (see, e.g., [13, 15, 16, 20]) so far.
Quasi-contractions have also been studied in Banach spaces (see, e.g., [10]).

The most important graph theory approach to metric fixed point theory introduced
so far is attributed to J. Jachymski [14]. In this approach, the underlying metric space
is equipped with a directed graph and the Banach contraction is formulated in a graph
language. Using this simple but very interesting idea, J. Jachymski generalized several
well-known versions of Banach contraction principle in metric spaces simultaneously and
from various aspects. As an application, he proved the Kelisky-Rivlin theorem on the
iterates of the Bernstein operators defined on the Banach space of continuous functions
on [0,1]. In the recent years, many authors followed J. Jachymski’s idea to formulate
different types of contractions via directed graphs in metric spaces and generalized the
concerned fixed point theorems (see, e.g. [1, 2, 3, 6]).

The main goal of this paper is to formulate single-valued quasi-contractions in metric
spaces with a graph and find sufficient conditions which guarantee the existence of a fixed
point. A large number of different types of contractive mappings formulated using di-
rected graphs satisfy the presented contractive condition and our main result is a natural
generalization of [9, Theorem 1] from metric spaces to metric spaces with a graph.

We start by reviewing a few basic notions in graph and fixed point theory that are
frequently used in the paper. For more details on graphs, the reader is refered to [4].

In an arbitrary (not necessarily simple) graph G, a link is an edge of G with distinct
ends and a loop is an edge of G with identical ends. Two or more links of G with the
same pairs of ends are called parallel edges of G.

Suppose that (X, d) is a metric space and G is a directed graph whose vertex set V(G)
coincides with X and edge set E(G) contains all loops (note that in general, G can have
uncountably many vertices). Suppose further that G has no parallel edges. In this case,
(X,d) is called a metric space with the graph G.

By G7!, it is meant the conversion of G as usual, i.e. a directed graph obtained
from G by reversing the directions of the edges of G, and by é, it is always meant the
undirected graph obtained from G by ignoring the directions of the edges G. Thus, it is
clear that V(G~') = V(G) = V(G) = X and we have

EG) ={(z,y) € X x X : (y,2) € E(G)} and E(G)=E(G)UE(G").

If (X, x) is a partially ordered set, then by comparable elements of (X, <), it is meant
two elements z,y € X satisfying either x < y or y < z, and following A. C. M. Ran and
M. C.B. Reurings [19, Theorem 2.1], a mapping 7' : X — X is called order-preserving
whenever z < y implies Tz < Ty for all z,y € X. Furthermore, following the idea of A.
Petrugel and I. A. Rus in L-spaces [18, Definitions 3.1 and 3.6] (see also [23]), one can
naturally formulate Picard and weakly Picard operators in metric spaces as follows:
1.1. Definition ([14, 18, 23]). Let (X,d) be a metric space and T : X — X be a
mapping.

a) T is called a Picard operator if 7" has a unique fixed point z* € X and T"z — z*
for all z € X.

b) T is called a weakly Picard operator if {T"z} is a convergent sequence and its
limit (which depends on z) is a fixed point of T for all z € X.

Finally, we need a weaker type of continuity defined in metric spaces with a graph
which was first introduced by J. Jachymski (see [14, Definition 2.4]). The idea of this
definition comes from the definition of orbital continuity defined by Lj. B. Ciri¢ [8].

1.2. Definition ([14]). Let (X, d) be a metric space with a graph G. A mapping T :
X — X is called orbitally G-continuous on X if 7%z — y implies T(T*"z) — Ty for
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all 2,y € X and all sequences {b,} of positive integers such that (7°"z, T°"'2) € E(G)
for all n € N.

2. Main Results

Let (X,d) be a metric space with a graph G and let T : X — X be a mapping. In
this section, by Cr, we mean the set of all points € X such that (T™x,T"z) is an edge
of G for all m,n € NU {0}, i.e.

Cr={zeX:(T"z,T"z) € E(G) m,n=0,1,...}.

Note that C'r may be an empty set. For instance, consider the set R of all real numbers
with the usual Euclidean metric and a graph G given by V(G) =R and E(G) = {(z,z) :
z € R}, If T: R — R is defined by the rule Tz = x + 1 for all z € R, then it is easily
seen that Cr = 0.
Given z € X and n € NU {0}, the n-th orbit of x under T is denoted by O(z;n), i.e.
O(z;n) =A{z,Tx,...,T"x}.
Finally, if A is a subset of X, then by diam(A), it is meant the diameter of A in X,
ie.
diam(A) = sup {d(:ay) NS A}.
Following the idea of S. M. A. Aleomraninejad et al. [1], we say that G is a (C)-graph
whenever the triple (X, d, G) has the following property:
If z € X and {x,} is a sequence in (X, d, G) such that z, — = and (zn, Tn4+1) €
E(G) for all n € N, then there exists a subsequence {z,,} of {z,} such that
(Tn,,x) € E(G) for all k € N.
Now, we are ready to give the definition of G-quasi-contractions in metric spaces with
a graph which is motivated by [9, Definition 1] and [14, Definition 2.1].

2.1. Definition. Let (X,d) be a metric space with a graph G and T : X — X be a
mapping. We say that 7" a G-quasi-contraction if
Q1) T preserves the edges of G, i.e. (z,y) € E(G) implies (Tz,Ty) € E(G) for all
z,y € X;
Q2) there exists a A € [0,1) such that
d(Tz, Ty) < X\-max {d(ac, y),d(z, Tx),d(y, Ty),d(z, Ty), d(y, Tm)}
for all z,y € X with (z,y) € E(G).
We also call the number X in (Q2) a quasi-contractive constant of T

We now give some examples of G-quasi-contractions.

2.2. Example. Suppose that (X, d) is a metric space with a graph G and zo € X. It
is easy to verify that the constant mapping x — zo is a G-quasi-contraction. So the
cardinality of the set of all G-quasi-contractions defined on a metric space (X, d) with a
graph G is no less than the cardinality of X.

2.3. Example. Suppose that (X,d) is a metric space and T : X — X is a quasi-
contraction in the sense of Lj. B. Ciri¢ [9, Definition 1], i.e. there exists a A € [0,1) such
that

(2.1) d(Tz, Ty) < X\ - max {d(ac, y),d(z, Tx),d(y, Ty),d(z, Ty), d(y, Ta:)}

for all z,y € X. Define a graph Go by V(Go) = X and E(Go) = X x X, i.e. Gp is
the complete graph whose vertex set coincides with X. Clearly, T preserves the edges of
Go and (2.1) guarantees that T satisfies (Q2) for the complete graph Go. Thus, T is a
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Go-quasi-contraction. Hence Go-quasi-contractions on metric spaces with the graph Go
are precisely the quasi-contractions on metric spaces, and so G-quasi-contractions are a
generalization of quasi-contractions from metric spaces to metric spaces with a graph.

2.4. Example. Suppose that (X, <) is a partially ordered set and d is a metric on X.
Define a graph G1 by V(G1) = X and E(G1) = {(z,y) € X X X : < y}. A mapping
T : X — X preserves the edges of GGy if and only if T is order-preserving, and 7" satisfies
(Q2) for the graph G, if and only if there exists a A € [0,1) such that

d(Tz, Ty) < X\ -max {d(x,y),d(z,Tz),d(y, Ty),d(z, Ty),d(y, Tx)}
for all comparable elements x,y € X.

2.5. Example. Suppose that (X, <) is a partially ordered set and d is a metric on X.
Define a graph G2 by V(G2) = X and E(G2) = {(z,y) e X x Xtz <y V y < z}.
A mapping T : X — X preserves the edges of G2 if and only if 7" maps comparable
elements of (X, <) onto comparable elements, and T satisfies (Q2) for the graph G if
and only if there exists a A € [0, 1) such that

(2.2) d(Tz, Ty) < X\ -max {d(sg7 y),d(z, Tx),d(y, Ty),d(z, Ty), d(y, T:c)}

for all comparable elements z,y € X. In particular, if 7" is a G1-quasi-contraction, then
T is a G2-quasi-contraction. Hence G-quasi-contractions are a generalization of ordered
quasi-contractions from metric spaces equipped with a partial order to metric spaces with
a graph.

2.6. Example. Suppose that (X,d) is a metric space and € > 0 is a fixed real number.
Recall that two elements z,y € X are said to be e-close if d(z,y) < e. Define a graph
Gs3 by V(G3) = X and E(G3) = {(z,y) € X x X :d(z,y) < e}. A mappingT: X — X
preserves the edges of G if and only if 7" maps e-close elements of (X, d) onto e-close
elements, and T satisfies (Q2) for the graph G3 if and only if there exists a A € [0,1)
such that

(23)  d(Tz,Ty) < X-max {d(z,y),d(z,Tx),d(y, Ty),d(z,Ty),d(y, Tx)}
for all e-close elements =,y € X.

Hereafter, we assume that the graphs Go, G1, G2 and G35 are as defined in Examples
2.3, 2.4, 2.5 and 2.6, respectively.

2.7. Remark. In the definitions of (C)-graph and the set Cr, let’s set G the special
graphs Go, G1, G2 and G3. Then we obtain the following special cases:

e The set C'r related to the complete graph Gy coincides with X and Gy is a
(C)-graph.

e If < is a partial order on X, then the set Cr related to the graph G1 (and also
G-2) consists of all points x € X whose every two iterates under T" are comparable
elements of (X, <). In addition, G; (and also G2) is a (C)-graph whenever the
triple (X, d, <) has the following property:

(%) If {xn} is a sequence in (X, d) converging to an z € X whose successive
terms are pairwise comparable elements of (X, <), then there exists a sub-
sequence of {z,} whose terms and x are comparable elements of (X, ).

e If ¢ > 0, then the set Cr relative to the graph G3 consists of all points x € X
whose every two iterates under T are e-close elements of (X, d). In addition, G3
is a (C)-graph. Indeed, if {z,} is a sequence in (X, d) converging to an z € X,
then for sufficiently large indices n, say n > N, we have d(z,,z) < . Therefore,
{zn+n} is a subsequence of {z,} whose terms and z are e-close elements of

(X, d).
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2.8. Example. Suppose that (X, d) is a metric space with a graph G and T : X — X is
a Banach G-contraction in the sense of J. Jachymski [14, Definition 2.1], i.e. T preserves
the edges of G and there exists an o € (0, 1) such that

d(Tz,Ty) < ad(z,y)
for all z,y € X with (z,y) € E(G). If (z,y) € E(G), then
d(Tz,Ty) < ad(z,y) < o - max {d(m,y), d(z,Tx),d(y, Ty),d(z, Ty), d(y, Ta;)}
Therefore, T satisfies (Q2) and so T is a G-quasi-contraction. Hence every G-contraction

is a G-quasi-contraction.

2.9. Example. Suppose that (X,d) is a metric space with a graph G and T : X — X
is a G-Kannan mapping in the sense of F. Bojor [2, Definition 4], i.e. T preserves the
edges of G and there exists an a € [0, 3) such that

d(Tz, Ty) < a(d(z, Tz) + d(y, Ty))
for all z,y € X with (z,y) € E(G). If (z,y) € E(G), then
d(Tz,Ty) < afd(x, Tz) + d(y, Ty))
< 2a-max {d(z,Tz),d(y, Ty)}
< 2« - max {d(:p7 y),d(z, Tx),d(y, Ty), d(z, Ty), d(y, T:r)}
Therefore, T satisfies (Q2) and so T is a G-quasi-contraction. Hence every G-Kannan

mapping is a G-quasi-contraction.

2.10. Example. Suppose that (X, d) is a metric space with a graph G and T: X — X
is a G-Chatterjea mapping in the sense that T preserves the edges of G and there exists
an a € [0, 3) such that

d(Tz,Ty) < od(z, Ty) + d(y, Tx))

for all z,y € X with (z,y) € E(G) (see [5, 21| for the definition in metric spaces). If
(z,y) € E(G), then an argument similar to that appeared in Example 2.9 establishes
that

d(Tz, Ty) < 2« - max {d(;r:7 y),d(z, Tx),d(y, Ty),d(z, Ty), d(y, TIL‘)}
Therefore, T satisfies (Q2) and so 7' is a G-quasi-contraction. Hence every G-Chatterjea
mapping is a (G-quasi-contraction.

2.11. Example. Suppose that (X, d) is a metric space with a graph G and T': X — X
is a G-Ciri¢-Reich-Rus operator in the sense of F. Bojor [3, Definition 7], i.e. T preserves
the edges of G and there exist a,b,c > 0 with a + b+ ¢ < 1 such that

d(Tz, Ty) < ad(z,y) + bd(z, Tx) + cd(y, Ty)
for all z,y € X with (z,y) € E(G). If (z,y) € E(G), then an argument similar to that
appeared in Example 2.9 establishes that
d(Tz,Ty) < (a+b+ c) max {d(z,y),d(z,Tx),d(y, Ty),d(z, Ty), d(y, Tx)}.
Therefore, T satisfies (Q2) and so T is a G-quasi-contraction. Hence every G-Ciri¢-Reich-
Rus operator is a G-quasi-contraction.
Now, suppose that T : X — X is a Ciri¢-Reich-Rus G-contraction in the sense of C.

Chifu and G. Petrusel [6, Definition 2.2], i.e. T preserves the edges of G and there exist
a,B,v > 0 with a + 6+ v < 1 such that

d(Tz,Ty) < ad(z,y) + Bd(z, Tx) + vd(y, Ty)
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for all z,y € X with (z,y) € E(G). Then by a similar argument, one can easily see that
T is a G-quasi-contraction. Hence every Ciri¢-Reich-Rus G-contraction is a G-quasi-
contraction.

2.12. Example. Suppose that (X, d) is a metric space and T : X — X is a A-generalized
contraction in the sense of Lj. B. Ciri¢ |7, Definition 2.1|, i.e. for all z,y € X, there exist
four functions ¢,7,s,t: X x X — [0, 00) with
sup {q(z,y) +7(z,y) +s(z,y) + 2t(z,y) rz,y € X x X} =A< 1
such that
d(Tz,Ty) < q(z,y)d(z,y) + r(z,y)d(z, Tz) + s(x,y)d(y, Ty)
+ t(z,y) (d(z, Ty) + d(y, Tx))

for all z,y € X. In 1979, B. E. Rhoades [22] studied a more general form of A-generalized
contractions (where the terms d(z,Ty) and d(y,Tx) have different coefficients) in se-
quentially complete uniform spaces via entourages and the Minkowski’s pseudometrics

corresponding to them. One can combine Ciri¢’s and Rhoades’ ideas with Jachymski’s
idea and formulate G-A-generalized contractions in metric spaces with a graph as follows:

Let (X,d) be a metric space with a graph G. A mapping T : X — X is called
a G-\-generalized contraction if T preserves the edges of G and there exist five
functions a1, asz,as,as,as : X x X — [0,00) with

(2.4)  sup{ai(z,y) + az(z,y) + as(z,y) + as(z,y) + as(z,y) 1z, y € X x X} =A< 1
such that
d(Tz, Ty) < ar(x, y)d(z, y) + az(z,y)d(z, Tx) + as(x, y)d(y, Ty)
+ aa(z,y)d(z, Ty) + as(x, y)d(y, Tx)
for all z,y € X with (z,y) € E(G).

Now, suppose that (X, d) is a metric space with a graph G and T': X — X is a G-)-
generalized contraction. If (z,y) € E(G), then an argument similar to that appeared in
Example 2.9 establishes that

d(Tz, Ty) < (Zai(:my)) ~max{d(m,y%d(w,Tx),d(y,Ty),

d(z, Ty),d(y, Tz)}
< X-max {d(z,y),d(z, Tx),d(y, Ty), d(z,Ty),d(y, Tx)},
where a1, a2, a3,a4,a5 : X x X — [0,00) satisfy (2.4). Therefore, T satisfies (Q2) and

so T is a G-quasi-contraction. Hence every G-A-generalized contraction (in particular,
every A-generalized contraction) is a G-quasi-contraction.

2.13. Example. Suppose that E is a nontrivial real Banach space and P is a closed
cone in E such that PN (—P) = {0}. It is well-known that P induces a partial order <p
on E given by
a=pb & b—acP (a,b € E).

Assume that d : X x X — F is a cone metric on X and (X,d) is a cone metric space
(see [12, Definition 1]). In 2010, W.-S. Du [11] showed that if the underlying cone P has
nonempty interior and & : F — R is the nonlinear scalarization function defined by

(e(a)=inf{t eR:a € te— P} (a € B),
where e is an interior point of P, then the function p. : X x X — R given by

(2.5)  pe(w,y) =& (d(z,y)  (z,y€X)
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defines a metric on X, and the natural (cone) topology on X induced by the cone metric
d and the metric topology on X induced by the metric p. coincide (see [11, Theorems
2.1 and 2.2]).

Now, suppose that T : (X,d) — (X,d) is a quasi-contraction in the sense of D. Ili¢
and V. Rakocevi¢ [13, Definition 1.2], i.e. there exists a A € (0,1) such that

d(T2,Ty) <p Aty
for all z,y € X and some

Ugz,y € {d(:c, y),d(z, Tx),d(y, Ty),d(z, Ty), d(y, Tav)}

Suppose further that the underlying cone P has nonempty interior and pick an interior
point e of P. If z,y € X, since . is positively homogeneous (i.e. a € F and ¢ > 0 imply
&e(ta) = té(a)) and nondecreasing (i.e. a,b € F and a <p b imply &.(a) < &.(b)) on E
(see [11, Lemma 1.1(v) and (vi)]), it follows that

pe(Tx,Ty) = & (d(Tz, Ty))
<Ee(N - ugy)
=X Ee(Ua,y)

< A max {& (d(@, ) & (d(w, T2)) & (d(y, Ty),

& (d(w, Ty), € (dly, T)) }
= X-max {pe(2,9), pe(x, Tx), pe(y, TY), pe(x, Ty), pe(y, Tx) }.

Therefore, T : (X, pe) — (X, pe) is also a quasi-contraction and in particular, a Go-
quasi-contraction. Hence every quasi-contraction on a cone metric space is a Go-quasi-
contraction whose domain is a suitable metric space with the complete graph Gy provided
that the underlying cone has nonempty interior.

The following proposition is an immediate consequence of the definition of G-quasi-
contractions and gives a simple procedure to construct new G-quasi-contractions from
older ones.

2.14. Proposition. Let (X,d) be a metric space with a graph G and T : X — X be a
mapping.
a) If T preserves the edges of G, then T preserves the edges of G™* and G.
b) IfT satisfies (Q2) for the graph G, then T satisfies (Q2) for both the graphs G~*
and G.
c) IfT is a G-quasi-contraction with a quasi-contractive constant A € [0,1), then T

is both a G~ -quasi-contraction and a G-quasi-contraction with a quasi-contractive
constant .

To prove the existence of a fixed point for a G-quasi-contraction in a complete metric
space with a graph, we need some lemmas. The first one is the graph version of [9,
Lemma 1] proved by Lj. B. Ciri¢ and the proof appears here is very similar to Cirié¢’s
proof. Nevertheless, for convenience of the reader, we repeat the detailed proof here.

2.15. Lemma. Let (X,d) be a metric space with a graph G and T : X — X be a
G-quasi-contraction with a quasi-contractive constant A\. Then

d(Tix,zj) < A -diam (O(x,n)) L,j=1,...,n

for all z € Cr and alln € N.
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Proof. Let x € Cr and n € N be given. If ¢ and j are arbitrary positive integers no
more than n, then (7" 'z, 77" 'z) € E(G). By Proposition 2.14(c), T is also a G-quasi-
contraction with a quasi-contractive constant . In particular, 7" satisfies (Q2) for the

graph G. Therefore,
ATz, T72) = d(TT" 'z, TT' 'z)
<X -max {d(T" 'z, T '), d(T" 2, T"2), d(T7 ' 2, T z),
AT e, T x),d(T7 2, T'2) }
< A -diam (O(z;n)). O

The next example shows that both the integers ¢ and j must be positive in Lemma
2.15. In other words, neither ¢ nor j is allowed to be zero.

2.16. Example. Consider the set R of real numbers with the usual (Euclidean) metric
and the complete graph Go, and define a mapping T : R — R by the rule Tz = 5 for
all x € R. Then T is a Go-quasi-contraction with a quasi-contractive constant \ = % In
addition, T"z = &% and diam(O(z;n)) = |z|(1 — 5%) for all z € R and all n € NU {0}.
Now, let x¢ be a positive real number and put n = 2, 4+ = 0 and j = 1 in Lemma 2.15.
Then we have

1
D> (1= 53) = A- diam (O(w0;2)).
2.17. Lemma. Let (X,d) be a metric space with a graph G and T : X — X be a G-
quasi-contraction. Then for each x € Cr and each n € N, there exists a positive integer

k no more than n such that

|1’0 — Tl’o‘ =

diam (O(w;n)) = d(z, T"z).

Proof. Let x € Cr and n € N be given. If diam(O(z;n)) = 0, then O(z;n) is singleton.
In particular, z is a fixed point for T and d(T 'z, T?z) = 0 for all i,j = 0,...,n. Thus,
the statement holds trivially for any positive integer k no more than n.

Otherwise, since O(x;n) is a finite set, it follows that there exist distinct nonnegative
integers 4 and j no more that n such that diam(O(z;n)) = d(T 'z, T’z). If both the
integers ¢ and j are assumed to be positive, then from Lemma 2.15, we have

diam (O(x;n)) = d(T'z, T?z) < X - diam (O(z;n)),

where A € [0, 1) is a quasi-contractive constant of 7', a contradiction. Hence either ¢ or j
must be zero and the proof is finished. |

2.18. Remark. Combining Lemmas 2.15 and 2.17, one can easily obtain that if (X, d)
is a metric space with a graph G and T': X — X is a G-quasi-contraction with a quasi-
contractive constant A, then for each x € Cr and each n € N, there exists a positive
integer k£ no more than n such that
d(Tix,Tj:c) < A -diam (O(m; n)) =X d(x,Tk:v) ,j=1,...,n.
2.19. Lemma. Let (X,d) be a metric space with a graph G and T : X — X be a
G-quasi-contraction with a quasi-contractive constant A\. Then
diam (O(z;n)) < ﬁ ~d(z,Tx)
for all x € Cr and all n € NU {0}.
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Proof. Let x € Cr and n € NU {0} be given. If n = 0, since diam(O(z;0)) = 0, there
remains nothing to prove. Otherwise, from Lemma 2.17, there exists a positive integer k
no more than n such that diam(O(z;n)) = d(z, T*z). Putting i = 1 and j = k in Lemma
2.15, we get
diam (O(x;n)) = d(z, T*x)

< d(z,Tz) + d(Tz, T"z)
< d(z,Tz) + A - diam (O(z; n)).
Now the inequality

1

diam (O(z;n)) < T d(z,Tx)

follows immediately. O

2.20. Lemma. Let (X,d) be a metric space with a graph G and T : X — X be a
G-quasi-contraction. Then {T"z} is Cauchy for all x € Cr.

Proof. Let € Cr be given. If m,n € N and m > n > 2, since T" 'z € Cr, it follows
that putting i =m —n+ 1 and j =1 in Lemma 2.15, we get
(26) ATz, T"z) = d(T™ " T'T" 2, TT" '2) < X diam (O(T" 'z;m — n + 1)),

where A € [0,1) is a quasi-contractive constant of 7. Moreover, by Lemma 2.17, there
exists a positive integer k£ no more than m — n + 1 such that

(27)  diam (O(T" wym —n+ 1)) = d(T" "2, T ).

Because n > 2, it follows that 7" 2z € Cr and so putting i = 1 and j = k41 in Lemma
2.15 yields

AT e, T ) = d(TT" 22, TP T 20)
(2.8) < A-diam (O(T" %z;m — n + 2)).
Finally, combining (2.6), (2.7) and (2.8), and using induction and Lemma 2.19, we obtain
d(T™z,T"z) < A - diam (O(T"flx; m—n+1))
=A-d(T" ra, TFT T )
< A diam (O(T"*z;m —n + 2))

< A" - diam (O(z;m))

< A

—1-A
Letting m,n — oo, we find d(T™z,T"x) — 0. Hence {T"x} is Cauchy. O

~d(z,Tx).

Now we are ready to prove our main theorem on the existence of fixed points for
G-quasi-contractions in complete metric spaces with a graph.

2.21. Theorem. Let (X,d) be a complete metric space with a graph G and T : X — X
be G-quasi-contraction. Then the restriction of T to Cr is a weakly Picard operator if
either T' is orbitally G-continuous on X or G is a (6)—gmph.

In particular, whenever T is orbitally G-continuous on X or G is a ((Nj)—gmph, T has
a fized point in X if and only if Cr # 0.
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Proof. If Cr = (), then there remains nothing to prove. So assume that Cr is nonempty.
If £ € Cp, since (T2, T"z) € E(G) for all m,n € NU {0}, it follows that Tz € Cr.
Thus, Cr is T-invariant, i.e. T(Cr) C Cr.

Now, let z € Cr be given. By Lemma 2.20, {T"z} is a Cauchy sequence in X and
since (X, d) is complete, there exists an z* € X (depending on z) such that 7"z — x*.
We show that x* is a fixed point for 7.

To this end, note first that from z € Cr, we have (T"z,T"*'z) € E(G) for all
n € NU {0}. If T is orbitally G-continuous on X, then T"z — z* implies 7"z =
T(T"z) — Txz* and by uniqueness of the limit of convergent sequences in metric spaces,
we obtain Tx* = x*. _

Otherwise, if G is a (C)-graph, since T"x — z*, there exists a strictly increasing
sequence {ny} of positive integers such that (T"*z,z*) € E(G) for all k € N. On the
other hand, if A € [0, 1) is a quasi-contractive constant of T, then by Proposition 2.14(c),
Tis a é-quasi-contraction with a quasi-contractive constant A\. In particular, T satisfies

(Q2) for the graph G. Therefore,
d(T™ e, Te*) = d(TT™ x, Tz*)
< X\ -max {d(T™ z,2"),d(T" 2, T 2), d(z*, Ta*),
(2.9) ATz, Ta*), d(z*, T z)}
for all £ € N. For a fixed positive integer k, one of the five terms appeared in the right
side of (2.9) is the maximum. So we consider the following five possible cases:
Case 1: If the first term is the maximum, then
d(T™ e, Ta*) < X-d(T™ x, x*);
Case 2: If the second term is the maximum, then
d(T™ e, Te*) < X-d(T™z, T z);
Case 3: If the third term is the maximum, then
d(T™ Mz, Ta*) < X-d(z*, Tz*)
<A (d(@*, T ) + d(T™ e, Ta")).
Therefore,
d(T™ e, Ta*) < % cd(x, T ) = 2 AT 1),
Case 4: If the forth term is the maximum, then
d(T™ Mz, Te*) < X-d(T™ z, Tz*)
<A (d(T™z, T ) + d(T™ e, Tx")).
Therefore,
d(T™ g, Te*) < % Sd(T™ gz, T ),
Case 5: Finally, if the fifth term is the maximum, then
d(T™ e, Te*) < X-d(e*, T™ M z) = X d(T™ 'z, 2*).

Clearly, at least one of the above five cases happens for infinitely many indices k.
Hence {T"*"'z} has a subsequence converging to Tz*, and again by the uniqueness of
the limit of convergent sequences in metric spaces, we obtain Tz* = z*.

Finally, since Cr contains all fixed points of T, it follows that z* € Cr. Consequently,
T |¢p: Cr — Cr is a weakly Picard operator. O
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Before listing some important consequences of Theorem 2.21, it is worth having a
discussion on the hypotheses of Theorem 2.21.

2.22. Remark. In [9, Theorem 1], Lj. B. Ciri¢ has used a weaker type of completeness
of metric spaces which had been defined by himself in [8] as follows:

Let (X, d) be a metric space and T': X — X be a mapping. The metric space
(X, d) is called T-orbitally complete if each Cauchy sequence of the iterates of a
point of X under T is convergent.

It is clear that every complete metric space (X,d) is T-orbitally complete for all
mappings T : X — X, but the converse is not true in general. For instance, the set Q
consisting of all rational numbers with the usual (Euclidean) metric is not a complete
metric space whereas Q is T-orbitally complete, where T : Q — Q is defined by the rule
Tz = 5 for all z € Q.

The notion of T-orbital completeness of a metric space can be generalized to metric
spaces with a graph in several different ways. However, by a subtle look at the proof
of Theorem 2.21, it is easily realized that we have only used the following weaker type
of T-orbital completeness (called, e.g., weak G-T-orbital completeness) in metric spaces
with a graph as follows:

Let (X,d) be a metric space with a graph G and T : X — X be a mapping.
The metric space (X, d) is called “weak é-T—orbitally complete" if for each x €
Cr, the sequence {T"z} is convergent whenever {T"z} is Cauchy and satisfies
(T"z, T"*'z) € E(G) for all n € N.

Obviously, by replacing this new notion with the standard notion of completeness, a
new version of Theorem 2.21 is obtained.

2.23. Remark. By a subtle look at the proof of Theorem 2.21 in the case that the
mapping 7 is orbitally G-continuous on X , it is easily realized that not the whole but a
weaker type of the hypothesis of orbital é—continuity of T is used. Indeed, the sequence
{bn} of positive integers in Definition 1.2 is replaced with the sequence {n}, i.e. the
sequence of all positive integers. Using this, a weaker type of orbital é—continuity (called,
e.g., weak orbital C:’-continuity) can be defined as follows:

Let (X, d) be a metric space with a graph G. A mapping T : X — X is called
“weakly orbitally G-continuous" on X if T"z — y implies T" "'z — Ty for all
z,y € X such that (T"z, T""*z) € E(G) for all n € N.

Obviously, by replacing this new notion with the notion of orbital é-continuity, The-
orem 2.21 is strengthened.

Now we present three important consequences of Theorem 2.21 where the graph G is
replaced with the special graphs. Firstly, we put G = Go in Theorem 2.21 and we get
Ciri¢’s fixed point theorem [9, Theorem 1] on single-valued quasi-contractions in complete
metric spaces instead of T-orbitally complete metric spaces as follows:

2.24. Corollary. Every quasi-contraction defined on a complete metric space is a Picard
operator.

Proof. Let (X,d) be a complete metric space and 7' : X — X be a quasi-contraction.
The set C'r is nonempty because Cr = X. Therefore, by Theorem 2.21, the mapping
T =T |c, is a weakly Picard operator. In particular, T has a fixed point in X. To see
that 7" is a Picard operator, it sufficies to show that 7" has a unique fixed point in X. To
this end, suppose that z* and z** are two fixed points for T in X. Then from (2.1) we
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have
d(z*,2™) = d(Tx*, Tx*™)
< X -max {d(z*,z*),d(z*, Tz"), d(z**, Tx*"),
—_———— —— ——
=0 =0
d(z*, Tz™),d(z™, Tz*) }
=d(z*,z**) =d(z**,z*)
= X\-d(z",z"),
where A € [0,1) is a constant. Hence d(z*,2**) = 0 or equivalently, z* = 2**. O

2.25. Remark. By a subtle look at the proof of Corollary 2.24, and use an argument
similar to that appeared there, we see that both the ends of any link of G cannot be fixed
points for a G-quasi-contraction, i.e. if ¢ # y, Tz = x and Ty = y, then (z,y) ¢ E(G).
Roughly speaking, no G-quasi-contraction can keep both the ends of a link of G fixed. In
particular, the following results on the number of the fixed points of (G-quasi-contractions
are obtained:

e No quasi-contraction can have two distinct fixed points.

e If < is a partial order on X, then neither a G1-quasi-contraction nor a Ga-quasi-
contraction can have two distinct fixed points which are comparable elements of
(X, <).

e If ¢ > 0, then no (G3-quasi-contraction can have two distinct fixed points which
are e-close elements of (X, d).

Secondly, we consider a partial order on the metric space (X,d) and put G = G;
or G = G2 in Theorem 2.21. Having done this, the following partially ordered version
of Ciri¢’s fixed point theorem on ordered quasi-contractions in complete metric spaces
equipped with a partial order is obtained:

2.26. Corollary. Let (X, <) be a partially ordered set and d be a metric on X such that
(X,d) is a complete metric space. Let T : X — X be a mapping which maps comparable
elements of (X, <) onto comparable elements and satisfies (2.2). Then the restriction of
T to the set of all points x € X whose every two iterates under T are comparable elements
of (X, <) is a weakly Picard operator if either T is orbitally Ga-continuous on X or the
triple (X, d, }) satisfies (x).

In particular, whenever T is orbitally Ga-continuous on X or the triple (X,d, <)
satisfies (%), T has a fized point in X if and only if there exists an © € X such than T"z
and T"x are comparable elements of (X, <) for all m,n € NU {0}.

Finally, we put G = G3 in Theorem 2.21 and we get the following version of Ciri¢’s
fixed point theorem on quasi-contractions in complete metric spaces:

2.27. Corollary. Let (X,d) be a complete metric space and € > 0 be a fized real number.
Let T : X — X be a mapping which maps e-close elements of (X, d) onto e-close elements
and satisfies (2.3). Then the restriction of T to the set of all points x € X whose every
two iterates under T' are e-close elements of (X, d) is a weakly Picard operator.

In particular, T has a fized point in X if and only if there exists an x € X such that
T™z and T"x are e-close elements of (X,d) for all m,n € NU{0}.

Since Banach G-contractions, G-Kannan mappings, G-Chatterjea mappings, G-Ciri¢-
Reich-Rus operators, Cirié-Reich-Rus G-contractions and G-\-generalized contractions
are all a G-quasi-contraction, we have also the following fixed point theorem for these
contractions as a consequence of Theorem 2.21:
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2.28. Corollary. Let (X,d) be a complete metric space with a graph G and T : X — X
be a Banach G-contraction (a G-Kannan mapping, o G-Chatterjea mapping, o G-Cirié-
Reich-Rus operator, a Cirié-Reich-Rus G-contraction, or a G-\-generalized contraction,).
Then the restriction of T to Cr is a weakly Picard operator if either T is orbitally G-

continuous on X or G is a (C)-graph.

In particular, whenever T is orbitally G-continuous on X or G is a (C)-graph, T has
a fized point in X if and only if Cr # 0.

By comparing Corollary 2.28 as a version of Theorem 2.21 for several types of con-
tractions with some recent results in graph metric fixed point theory, one can get the
followings:

e If we employ Corollary 2.28 for Banach G-contractions, then we obtain a simple
and weaker version of [14, Theorems 3.2(4°) and 3.3(2°)] and [3, Corollary 2];

e If we employ Corollary 2.28 for G-Kannan mappings, then we obtain another
version of [2, Theorem 3] and [3, Corollary 3] without imposing the assumption
of weak T-connectedness on the graph (see [3, Definition 8]);

e If we employ Corollary 2.28 for G-Chatterjea mappings, then we obtain a new
version of Chatterjea’s fixed point theorem [5] in complete metric spaces with a
graph;

e If we employ Corollary 2.28 for either G-Ciri¢-Reich-Rus operators or Ciri¢-
Reich-Rus G-contractions, then we obtain another version of [3, Theorem 6]
without imposing the assumption of weak 7T-connectedness on the graph and
another version of [6, Theorem 2.2 and Lemma 2.7];

e Finally, if we employ Corollary 2.28 for G-A-generalized contractions, then we
obtain a new version of [7, Theorem 2.5] and a weaker version of [22, Theorem
1] in complete metric spaces with a graph.

Because convergence of sequences in a cone metric space has already been defined
in [12, Definition 2|, Picard operators can be generalized naturally from metric to cone
metric spaces in the following way:

Let E be a nontrivial real Banach space, P be a closed cone in F such that
PN (—P)={0}, and (X,d) be a cone metric space. A mapping T : X — X is
called a Picard operator if T has unique fixed point z* € X and T"z — z* for
all x € X.

Similar to the Cauchy property of sequences in metric spaces and using the idea of
formulating convergent sequences in cone metric spaces, the Cauchy property of sequences
is defined in cone metric spaces (see [12, Definition 3]). So it is natural to say that a
cone metric space is complete if every Cauchy sequence is convergent (see [12, Definition
4]). Hence we have also the following consequence of Corollary 2.24 in complete cone
metric spaces where the underlying cone has nonempty interior. This result is another
version of [20, Theorem 2.1] and generalizes [12, Theorem 1], [13, Theorem 2.1] and [16,
Theorems 2.2 and 2.3].

2.29. Corollary. Every quasi-contraction defined on a complete cone metric space is a
Picard operator provided that the underlying cone has nonempty interior.

Proof. Let E be a nontrivial real Banach space, P be a closed cone in F with nonempty
interior such that PN (—P) = {0}, and (X, d) be a complete cone metric space. Pick any
interior point e of P and consider the metric p. given by (2.5). Since the cone metric
space (X,d) is complete, it follows from [11, Theorem 2.2(iii)] that the metric space
(X, pe) is also complete.

Now, let T : (X,d) — (X,d) be a quasi-contraction. As it was shown in Example
213, T : (X,pe) — (X, pe) is also a quasi-contraction. Therefore, by Corollary 2.24,
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T : (X, pe) = (X, pe) is a Picard operator, i.e. T has a unique fixed point z* € X and
Tz — x* in (X, pe) for all z € X.

On the other hand, it follows from [11, Theorem 2.2(i)] that a sequence {z,, } consisting
of points of X converges to an z € X in the cone metric space (X, d) if and only if {z,}
converges to the same point x in the metric space (X, p.). Hence T"x — z* in (X, d) for
all z € X. Consequently, T': (X,d) — (X,d) is a Picard operator. O
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