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α-separation axioms based on  Lukasiewicz logic

O. R. SAYED a ∗

Abstract

In the present paper, we introduce topological notions defined by means
of α-open sets when these are planted into the framework of Ying’s
fuzzifying topological spaces (by  Lukasiewicz logic in [0, 1]). We in-
troduce Tα

0 −, Tα
1 −, Tα

2 (α- Hausdorff)-, Tα
3 (α-regular)- and Tα

4 (α-
normal)-separation axioms. Furthermore, the Rα

0− and Rα
1− separa-

tion axioms are studied and their relations with the Tα
1 − and Tα

2 −
separation axioms are introduced. Moreover, we clarify the relations
of these axioms with each other as well as the relations with other
fuzzifying separation axioms.
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1. Introduction and Preliminaries

In the last few years fuzzy topology, as an important research field in fuzzy
set theory, has been developed into a quite mature discipline [7-9, 14-15, 27]. In
contrast to classical topology, fuzzy topology is endowed with richer structure,
to a certain extent, which is manifested with different ways to generalize certain
classical concepts. So far, according to Ref. [8], the kind of topologies defined by
Chang [4] and Goguen [5] is called the topologies of fuzzy subsets, and further is
naturally called L-topological spaces if a lattice L of membership values has been
chosen. Loosely speaking, a topology of fuzzy subsets (resp. an L-topological
space) is a family τ of fuzzy subsets (resp. L-fuzzy subsets) of nonempty set X,
and τ satisfies the basic conditions of classical topologies [11]. On the other hand,
Höhle in [6] proposed the terminology L-fuzzy topology to be an L-valued mapping
on the traditional powerset P (X) of X. The authors in [10, 23] defined an L-fuzzy
topology to be an L-valued mapping on the L-powerset LX of X.

In 1952, Rosser and Turquette [25] proposed emphatically the following prob-
lem: If there are many-valued theories beyond the level of predicates calculus,
then what are the detail of such theories ? As an attempt to give a partial answer
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to this problem in the case of point set topology, Ying in 1991-1993 [28-30] used a
semantical method of continuous-valued logic to develop systematically fuzzifying
topology. Briefly speaking, a fuzzifying topology on a set X assigns each crisp
subset of X to a certain degree of being open, other than being definitely open
or not. In fact, fuzzifying topologies are a special case of the L-fuzzy topologies
in [10, 23] since all the t-norms on I = [0, 1] are included as a special class of
tensor products in these paper. Ying uses one particular tensor product, namely
 Lukasiewicz conjunction. Thus his fuzzifying topologies are a special class of all
the I - fuzzy topologies considered in the categorical frameworks [10, 23]. Roughly
speaking, the semantical analysis approach transforms formal statements of in-
terest, which are usually expressed as implication formulas in logical language,
into some inequalities in the truth value set by truth valuation rules, and then
these inequalities are demonstrated in an algebraic way and the semantic validity
of conclusions is thus established. So far, there has been significant research on
fuzzifying topologies [12-13, 20-21, 26]. For example, Shen [26] introduced and
studied T0−, T1−, T2 (Hausdorff)-, T3(regular)- and T4(normal)- separation ax-
ioms in fuzzifying topology. In [13], the concepts of the R0− and R1− separation
axioms in fuzzifying topology were added and their relations with the T1− and T2−
separation axioms, were studied. Also, in [12] the concepts of fuzzifying α-open
set and fuzzifying α-continuity were introduced and studied. In classical topology,
α-separation axioms have been studied in [2-3, 16-17, 19, 22]. As well as, they
have been studied in fuzzy topology in [1,18, 24]. In the present paper, we explore
the problem proposed by Rosser and Turquette [25] in fuzzy α-separation axioms.

A basic structure of the present paper is as follows. First, we offer some def-
initions and results which will be needed in this paper. Afterwards, in Section
2, in the framework of fuzzifying topology, the concept of α-separation axioms
Tα0 −, Tα1 −, Tα2 (α-Hausdorff)-, Tα3 (α-regular)- and Tα4 (α-normal) are discussed.
In Section 3, on the bases of fuzzifying topology the Rα0− and Rα1− separation ax-
ioms are introduced and their relations with the Tα1 and Tα2−− separation axioms
are studied. Furthermore , we give the relations of these axioms with each other as
well as the relations with other fuzzifying separation axioms. Finally, in a conclu-
sion, we summarize the main results obtained and raise some related problems for
further study. Thus we fill a gap in the existing literature on fuzzifying topology.
We will use the terminologies and notations in [12-13, 26, 28, 29] without any
explanation. We will use the symbol ⊗ instead of the second ”AND” operation ∧

·
as dot is hardly visible. This mean that [α] ≤ [ϕ→ ψ]⇔ [α]⊗ [ϕ] ≤ [ψ].
A fuzzifying topology on a set X [6, 28] is a mapping τ ∈ =(P (X)) such that:

(1) τ(X) = 1, τ(φ) = 1;
(2) for any A,B, τ(A ∩B) ≥ τ(A) ∧ τ(B);

(3) for any {Aλ : λ ∈ Λ}, τ
( ⋃
λ∈Λ

Aλ

)
≥ ∧
λ∈Λ

τ (Aλ) .

The family of all fuzzifying α-open sets [12], denoted by τα ∈ =(P (X)), is defined
as
A ∈ τα := ∀x(x ∈ A→ x ∈ Int(Cl(Int(A)))), i. e., τα(A) =

∧
x∈A

Int(Cl(Int(A)))(x)

The family of all fuzzifying α-closed sets [12], denoted by Fα ∈ =(P (X)), is defined
as A ∈ Fα := X−A ∈ τα. The fuzzifying α-neighborhood system of a point x ∈ X
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[12] is denoted by Nα
x ∈ =(P (X)) and defined as Nα

x (A) =
∨

x∈B⊆A
τα(B).The

fuzzifying α-closure of a set A ⊆ X [12], denoted by Clα ∈ =(X), is defined as
Clα(A)(x) = 1−Nα

x (X −A).
Let (X, τ) be a fuzzifying topological space. The binary fuzzy predicatesK,H,M ∈
=(X×X), V ∈ =(X×P (X)) and W ∈ =(P (X)×P (X)) [13] are defined as follows:

(1) K(x, y) := ∃A((A ∈ Nx ∧ y /∈ A) ∨ (A ∈ Ny ∧ x /∈ A));
(2) H(x, y) := ∃B∃C((B ∈ Nx ∧ y /∈ B) ∧ (C ∈ Ny ∧ x /∈ C));
(3) M(x, y) := ∃B∃C(B ∈ Nx ∧ C ∈ Ny ∧B ∩ C ≡ ∅);
(4) V (x,D) := ∃A∃B(A ∈ Nx ∧B ∈ τ ∧D ⊆ B ∧A ∩B ≡ ∅);
(5) W (A,B) := ∃G∃H(G ∈ τ ∧H ∈ τ ∧A ⊆ G ∧B ⊆ H ∧G ∩H ≡ ∅).

Let Ω be the class of all fuzzifying topological spaces. The unary fuzzy predicates
Ti ∈ =(Ω), i = 0, 1, 2, 3, 4 [26] (see the rewritten form in [13]) and Ri ∈ =(Ω), i =
0, 1 [13] are defined as follows:

(1) (X, τ) ∈ T0 := ∀x∀y(x ∈ X ∧ y ∈ X ∧ x 6= y) −→ K(x, y);
(2) (X, τ) ∈ T1 := ∀x∀y(x ∈ X ∧ y ∈ X ∧ x 6= y) −→ H(x, y);
(3) (X, τ) ∈ T2 := ∀x∀y(x ∈ X ∧ y ∈ X ∧ x 6= y) −→M(x, y);
(4) (X, τ) ∈ T3 := ∀x∀D(x ∈ X ∧D ∈ F ∧ x /∈ D) −→ V (x,D);
(5) (X, τ) ∈ T4 := ∀A∀B(A ∈ F ∧B ∈ F ∧A ∩B = ∅) −→W (A,B);
(6) (X, τ) ∈ R0 := ∀x∀y(x ∈ X ∧ y ∈ X ∧ x 6= y) −→ (K(x, y) −→ H(x, y));
(7) (X, τ) ∈ R1 := ∀x∀y(x ∈ X ∧ y ∈ X ∧ x 6= y) −→ (K(x, y) −→M(x, y)).

2. Fuzzifying α- separation axioms and their equivalents

For simplicity we give the following definition.

2.1. Definition. Let (X, τ) be a fuzzifying topological space. The binary fuzzy
predicates Kα, Hα,Mα ∈ =(X × X), V α ∈ =(X × P (X)) and Wα ∈ =(P (X) ×
P (X)) are defined as follows:

(1) Kα(x, y) := ∃A((A ∈ Nα
x ∧ y /∈ A) ∨ (A ∈ Nα

y ∧ x /∈ A));
(2) Hα(x, y) := ∃B∃C((B ∈ Nα

x ∧ y /∈ B) ∧ (C ∈ Nα
y ∧ x /∈ C));

(3) Mα(x, y) := ∃B∃C(B ∈ Nα
x ∧ C ∈ Nα

y ∧B ∩ C ≡ ∅);
(4) V α(x,D) := ∃A∃B(A ∈ Nα

x ∧B ∈ τα ∧D ⊆ B ∧A ∩B ≡ ∅);
(5) Wα(A,B) := ∃G∃H(G ∈ τα ∧H ∈ τα ∧A ⊆ G ∧B ⊆ H ∧G ∩H ≡ ∅).

2.2. Definition. Let Ω be the class of all fuzzifying topological spaces. The unary
fuzzy predicates Tαi ∈ =(Ω), i = 0, 1, 2, 3, 4 and Rαi ∈ =(Ω), i = 0, 1 are defined as
follows:

(1) (X, τ) ∈ Tα0 := ∀x∀y(x ∈ X ∧ y ∈ X ∧ x 6= y) −→ Kα(x, y);
(2) (X, τ) ∈ Tα1 := ∀x∀y(x ∈ X ∧ y ∈ X ∧ x 6= y) −→ Hα(x, y);
(3) (X, τ) ∈ Tα2 := ∀x∀y(x ∈ X ∧ y ∈ X ∧ x 6= y) −→Mα(x, y);
(4) (X, τ) ∈ Tα3 := ∀x∀D(x ∈ X ∧D ∈ F ∧ x /∈ D) −→ V α(x,D);
(5) (X, τ) ∈ Tα4 := ∀A∀B(A ∈ F ∧B ∈ F ∧A ∩B = ∅) −→Wα(A,B);

(6) (X, τ) ∈ Tα′3 := ∀x∀D(x ∈ X ∧D ∈ Fα ∧ x /∈ D) −→ V (x,D);

(7) (X, τ) ∈ Tα′4 := ∀A∀B(A ∈ Fα ∧B ∈ Fα ∧A ∩B = ∅) −→W (A,B);
(8) (X, τ) ∈ Rα0 := ∀x∀y(x ∈ X ∧ y ∈ X ∧ x 6= y) −→ (Kα(x, y) −→ Hα(x, y));
(9) (X, τ) ∈ Rα1 := ∀x∀y(x ∈ X ∧ y ∈ X ∧ x 6= y) −→ (Kα(x, y) −→Mα(x, y)).

2.3. Theorem. Let (X, τ) be a fuzzifying topological space. Then we have
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|= (X, τ) ∈ Tα0 ←→ ∀x∀y(x ∈ X ∧ y ∈ X ∧x 6= y −→ (¬(x ∈ Clα({y}))∨¬(y ∈
Clα({x})))).

Proof. Since for any x,A,B, |= A ⊆ B → (A ∈ Nα
x → B ∈ Nα

x ) (see [12, Theorem
4.2 (2)]), we have

[(X, τ) ∈ Tα0 ] =
∧

x 6=y
max(

∨

y/∈A
Nα
x (A),

∨

x/∈A
Nα
y (A))

=
∧

x 6=y
max(Nα

x (X − {y}), Nα
y (X − {x}))

=
∧

x 6=y
max(1− Clα({y})(x), 1− Clα({x})(y))

=
∧

x 6=y
(¬(Clα({y})(x)) ∨ ¬(Clα({x})(y)))

= [∀x∀y(x ∈ X ∧ y ∈ X ∧ x 6= y −→ (¬(x ∈ Clα({y})) ∨ ¬(y ∈ Clα({x}))))].

�

2.4. Theorem. For any fuzzifying topological space (X, τ) we have
|= ∀x({x} ∈ Fα)↔ (X, τ) ∈ Tα1 .

Proof. Since τα(A) =
∧
x∈A

Nα
x (A) (Corollary 4.1 in [12]), for any x1, x2 with x1 6=

x2, we have

[∀x({x} ∈ Fα)] =
∧

x∈X
Fα({x}) =

∧

x∈X
τα(X − {x}) ≤

∧

x∈X

∧

y∈X−{x}
Nα
y (X − {x})

≤
∧

y∈X−{x2}
Nα
y (X − {x2}) ≤ Nα

x1
(X − {x2}) =

∨

x2 /∈A
Nα
x1

(A).

Similarly, we have, [∀x({x} ∈ Fα)] ≤ ∨
x1 /∈B

Nα
x2

(B). Then

[∀x({x} ∈ Fα)] ≤
∧

x1 6=x2

min(
∨

x2 /∈A
Nα
x1

(A),
∨

x1 /∈B
Nα
x2

(B))

=
∧

x1 6=x2

∨

x1 /∈B, x2 /∈A
min(Nα

x1
(A), Nα

x2
(B))

= [(X, τ) ∈ Tα1 ].
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On the other hand

[(X, τ) ∈ Tα1 ] =
∧

x1 6=x2

min(
∨

x2 /∈A
Nα
x1

(A),
∨

x1 /∈B
Nα
x2

(B))

=
∧

x1 6=x2

min(Nα
x1

(X − {x2}), Nα
x2

(X − {x1}))

≤
∧

x1 6=x2

Nα
x1

(X − {x2}) =
∧

x2∈X

∧

x1∈X−{x2}
Nα
x1

(X − {x2})

=
∧

x2∈X
τα(X − {x2}) =

∧

x∈X
τα(X − {x})

= [∀x({x} ∈ Fα)].

Therefore [∀x({x} ∈ Fα)] = [(X, τ) ∈ Tα1 ]. �

2.5. Definition. Let (X, τ) be a fuzzifying topological space. The fuzzifying α-
derived set Dα(A) of A is defined as follows: x ∈ Dα(A) := ∀B(B ∈ Nα

x →
B ∩ (A− {x}) 6= φ).

2.6. Lemma. Dα(A)(x) = 1−Nα
x ((X −A) ∪ {x}).

Proof. From Theorem 4.2 (2) [12] we have

Dα(A)(x) = 1−
∨

B∩(A−{x})=φ
Nα
x (B) = 1−Nα

x ((X −A) ∪ {x}).

�

2.7. Theorem. For any finite set A ⊆ X, |= Tα1 (X, τ)→ Dα(A) ≡ φ.

Proof. From Theorem 4.2 (2) [12] we have

∧

y∈X−A
Nα
y ((X −A) ∪ {y}) ≥

∧

y∈X−A
Nα
y (X −A) =

∧

y∈X−A
Nα
y (
⋂

x∈A
(X − {x})

≥
∧

y∈X−A

∧

x∈A
Nα
y (X − {x}) ≥

∧

x 6=y
Nα
y (X − {x}).

Also

∧

y∈A
Nα
y ((X −A) ∪ {y}) =

∧

y∈A
Nα
y (X − (A− {y})) =

∧

y∈A
Nα
y (

⋂

x∈A−{y}
(X − {x})

≥
∧

y∈A

∧

x∈A−{y}
Nα
y (X − {x}) ≥

∧

x6=y
Nα
y (X − {x}).
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Therefore

[Dα(A) ≡ φ] =
∧

x∈X
Nα
x ((X −A) ∪ {x})

= min(
∧

y∈X−A
Nα
y ((X −A) ∪ {y}),

∧

y∈A
Nα
y ((X −A) ∪ {y}))

≥
∧

x6=y
Nα
y (X − {x}) =

∧

x∈X

∧

x∈X−{y}
Nα
y (X − {x})

=
∧

x∈X
τα(X − {x}) =

∧

x∈X
Fα({x}) = Tα1 (X, τ).

�

2.8. Definition. The fuzzifying α-local basis βαx of x is a function from P (X)
into I = [0, 1] satisfying the following conditions:

(1) |= βαx ⊆ Nα
x , and (2) |= A ∈ Nα

x −→ ∃B(B ∈ βαx ∧ x ∈ B ⊆ A).

2.9. Lemma. |= A ∈ Nα
x ←→ ∃B(B ∈ βαx ∧ x ∈ B ⊆ A).

Proof. From condition (1) in Definition 2.8 and Theorem 4.2 (2) in [12] we have
Nα
x (A) ≥ Nα

x (B) ≥ βαx (B) for each B ∈ P (X) such that x ∈ B ⊆ A. So Nα
x (A) ≥∨

x∈B⊆A
βαx (B). From condition (2) in Definition 2.8 we have Nα

x (A) ≤ ∨
x∈B⊆A

βαx (B).

Hence Nα
x (A) =

∨
x∈B⊆A

βαx (B). �

2.10. Theorem. If βαx is a fuzzifying α-local basis of x, then
|= (X, τ) ∈ Tα1 ←→ ∀x∀y(x ∈ X ∧ y ∈ X ∧ x 6= y −→ ∃A(A ∈ βαx ∧ y /∈ A)).

Proof. For any x, y with x 6= y,
∨
y/∈A

βαx (A) ≤ ∨
y/∈A

Nα
x (A),

∨
x/∈B

βαy (B) ≤ ∨
x/∈B

Nα
y (B).

So min(
∨
y/∈A

βαx (A),
∨
x/∈B

βαy (B)) ≤ min(
∨
y/∈A

Nα
x (A),

∨
x/∈B

Nα
y (B)) =

∨
y/∈A,x/∈B

min(Nα
x (A), Nα

y (B)),

i.e.,
∧
x 6=y

∨
y/∈A

βαx (A) ≤ ∧
x 6=y

∨
y/∈A,x/∈B

min(Nα
x (A), Nα

y (B)) = [(X, τ) ∈ Tα1 ]. On the

other hand, for any B with x ∈ B ⊆ X − {y} we have y /∈ B. So
∨
y/∈A

βαx (A) ≥

βαx (B). According to Definition 2.8 we have
∨
y/∈A

βαx (A) ≥ ∨
x∈B⊆X−{y}

βαx (B) =

Nα
x (X − {y}). Furthermore, from Corollary 4.1 [12] we have

∧
x6=y

∨
y/∈A

βαx (A) ≥
∧
x6=y

Nx(X−{y}) =
∧
y∈X

∧
x∈X−{y}

Nx(X−{y}) =
∧
y∈X

τα(X−{y}) =
∧
y∈X

Fα({y}) =

[(X, τ) ∈ Tα1 ]. �

2.11. Theorem. If βαx is a fuzzifying α-local basis of x, then
|= (X, τ) ∈ Tα2 ←→ ∀x∀y(x ∈ X ∧ y ∈ X ∧ x 6= y −→ ∃B(B ∈ βαx ∧ y ∈

¬(Clα(B)))).
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Proof.

[∀x∀y(x ∈ X ∧ y ∈ X ∧ x 6= y −→ ∃B(B ∈ βαx ∧ y ∈ ¬(Clα(B))))]

=
∧

x 6=y

∨

B∈P (X)

min(βαx (B),¬(1−Nα
y (X −B)))

=
∧

x 6=y

∨

B∈P (X)

min(βαx (B), Nα
y (X −B))

=
∧

x 6=y

∨

B∈P (X)

∨

y∈C⊆X−B
min(βαx (B), βαy (C))

=
∧

x 6=y

∨

B∩C=∅

∨

x∈D⊆B, y∈E⊆C
min(βαx (D), βαy (E))

=
∧

x 6=y

∨

B∩C=∅
min(

∨

x∈D⊆B
βαx (D),

∨

y∈E⊆C
βαy (E))

=
∧

x 6=y

∨

B∩C=∅
min(Nα

x (B), Nα
y (C)) = [(X, τ) ∈ Tα2 ].

�

2.12. Definition. The binary fuzzy predicate �α ∈ =(N(X)×X), is defined as
S�α x := ∀A(A ∈ Nα

x −→ S ⊂∼ A), where N(X) is the set of all nets of X, [S�α x]
stands for the degree to which S α-converges to x and ” ⊂∼ ” is the binary crisp
predicates ”almost in ”.

2.13. Theorem. Let (X, τ) be a fuzzifying topological space and S ∈ N(X).
|= (X, τ) ∈ Tα2 ←→ ∀S∀x∀y((S ⊆ X)∧(x ∈ X)∧(y ∈ X)∧(S�αx)∧(S�α y) −→
x = y).

Proof. [(X, τ) ∈ Tα2 ] =
∧
x 6=y

∨
A∩B=∅

(Nα
x (A) ∧Nα

y (B)),

[∀S∀x∀y((S ⊆ X) ∧ (x ∈ X) ∧ (y ∈ X) ∧ (S �α x) ∧ (S �α y) −→ x = y)]
=
∧
x6=y

∧
S⊆X

(
∨

S 6⊂∼ A
Nα
x (A) ∨ ∨

S 6⊂∼ B
Nα
y (B))

=
∧
x6=y

∧
S⊆X

∨
S 6⊂∼ A

∨
S 6⊂∼ B

(Nα
x (A) ∨Nα

y (B)).

(1) If A∩B = ∅, then for any S ∈ N(X), we have S 6 ⊂∼ A or S 6 ⊂∼ B. Therefore,
we obtain Nα

x (A) ∧Nα
y (B) ≤ ∨

S 6⊂∼ A
Nα
x (A) or Nα

x (A) ∧Nα
y (B) ≤ ∨

S 6⊂∼ B
Nα
x (B).

Consequently,
∨

A∩B=∅
(Nα

x (A) ∧Nα
y (B)) ≤ ∧

S⊆X
(
∨

S 6⊂∼ A
Nα
x (A) ∨ ∨

S 6⊂∼ B
Nα
y (B)),

and
[(X, τ) ∈ Tα2 ] ≤ [∀S∀x∀y((S ⊆ X) ∧ (x ∈ X) ∧ (y ∈ X) ∧ (S �α x) ∧ (S �α y) →
x = y)].

(2) First, for any x, y with x 6= y, if
∨

A∩B=∅
(Nα

x (A)∧Nα
y (B)) < t, then Nα

x (A) <

t or Nα
y (B) < t provided A∩B = ∅, i.e., A∩B 6= ∅ when A ∈ (Nα

x )t and B ∈ (Nα
y )t.

Now, set a net S∗ : (Nα
x )t × (Nα

y )t −→ X, (A,B) 7−→ x(A,B) ∈ A ∩ B. Then for
any A ∈ (Nα

x )t, B ∈ (Nα
y )t, we have S∗⊂∼ A and S∗⊂∼ B. Therefore, if S∗ 6 ⊂∼ A and
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S∗ 6 ⊂∼ B, then A /∈ (Nα
x )t, B /∈ (Nα

y )t, i.e., Nα
x (A) ∨ Nα

y (B)) < t. Consequently∨
S∗ 6⊂∼ A

∨
S∗ 6⊂∼ B

(Nα
x (A)∨Nα

y (B)) ≤ t. Moreover
∧
S⊆X

∨
S 6⊂∼ A

∨
S 6⊂∼ B

(Nα
x (A)∨Nα

y (B)) ≤ t.

Second, for any positive integer i, there exists xi, yi with xi 6= yi, and
∨

A∩B=∅
(Nα

xi(A) ∧Nα
yi(B)) < [(X, τ) ∈ Tα2 ] + 1/i,

and hence
∧

S⊆X

∨

S 6⊂∼ A

∨

S 6⊂∼ B
(Nα

xi(A) ∨Nα
yi(B)) < [(X, τ) ∈ Tα2 ] + 1/i.

So we have

[∀S∀x∀y((S ⊆ X) ∧ (x ∈ X) ∧ (y ∈ X) ∧ (S �α x) ∧ (S �α y) −→ x = y)]

=
∧

x 6=y

∧

S⊆X

∨

S 6⊂∼ A

∨

S 6⊂∼ B
(Nα

x (A) ∨Nα
y (B)) ≤ [(X, τ) ∈ Tα2 ].

�

2.14. Lemma. Let (X, τ) be a fuzzifying topological space.
(1) If D ⊆ B, then

∨
A∩B=∅

Nα
x (A) =

∨
A∩B=∅, D⊆B

Nα
x (A),

(2)
∨

A∩B=∅

∧
y∈D

Nα
y (X −A) =

∨
A∩B=∅, D⊆B

τα(B).

Proof. (1) Since D ⊆ B then
∨

A∩B=∅
Nα
x (A) =

∨

A∩B=∅
Nα
x (A)∧[D ⊆ B] =

∨

A∩B=∅, D⊆B
Nα
x (A).

(2) Let y ∈ D and A ∩B = ∅. Then
∨

A∩B=∅, D⊆B
τα(B) =

∨

A∩B=∅, D⊆B
τα(B) ∧ [y ∈ D]

=
∨

y∈D⊆B⊆X−A
τα(B) =

∨

y∈B⊆X−A
τα(B)

= Nα
y (X −A) =

∧

y∈D
Nα
y (X −A)

=
∨

A∩B=∅

∧

y∈D
Nα
y (X −A).

�

2.15. Definition. Let (X, τ) be a fuzzifying topological space.

αT
(1)
3 (X, τ) := ∀x∀D(x ∈ X∧D ∈ F∧x /∈ D −→ ∃A(A ∈ Nα

x ∧(D ⊆ X−Clα(A)))).

2.16. Theorem. |= (X, τ) ∈ Tα3 ←→ (X, τ) ∈ αT (1)
3 .
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Proof.

αT
(1)
3 (X, τ) =

∧

x/∈D
min(1, 1− τ(X −D) +

∨

A∈P (X)

min(Nα
x (A),

∧

y∈D
(1− Clα(A)(y))))

=
∧

x/∈D
min(1, 1− τ(X −D) +

∨

A∈P (X)

min(Nα
x (A),

∧

y∈D
Nα
y (X −A)))

and Tα3 (X, τ) =
∧

x/∈D
min(1, 1− τ(X −D) +

∨

A∩B=∅, D⊆B
min(Nα

x (A), τα(B))).

So, the result holds if we prove that
∨

A∈P (X)

min(Nα
x (A),

∧

y∈D
Nα
y (X −A)) =

∨

A∩B=∅, D⊆B
min(Nα

x (A), τα(B)) (∗)

It is clear that, on the left-hand side of (∗) in the case of A∩D 6= ∅ there exists
y ∈ X such that y ∈ D and y /∈ X − A. So,

∧
y∈D

Nα
y (X − A) = 0 and thus (∗)

becomes

∨

A∈P (X), A∩B=∅
min(Nα

x (A),
∧

y∈D
Nα
y (X −A)) =

∨

A∩B=∅, D⊆B
min(Nα

x (A), τα(B)),

which is obtained from Lemma 2.14. �

2.17. Definition. Let (X, τ) be a fuzzifying topological space.

αT
(2)
3 (X, τ) := ∀x∀B(x ∈ B ∧B ∈ τ −→ ∃A(A ∈ Nα

x ∧ Clα(A) ⊆ B)).

2.18. Theorem. |= (X, τ) ∈ Tα3 ←→ (X, τ) ∈ αT (2)
3 .

Proof. From Theorem 2.16 we have

Tα3 (X, τ) =
∧

x/∈D
min(1, 1−τ(X−D)+

∨

A∈P (X)

min(Nα
x (A),

∧

y∈D
Nα
y (X−A))).

Now,

αT
(2)
3 (X, τ) =

∧

x∈B
min(1, 1− τ(B) +

∨

A∈P (X)

min(Nα
x (A),

∧

y∈X−B
(1− Clα(A)(y))))

=
∧

x∈B
min(1, 1− τ(B) +

∨

A∈P (X)

min(Nα
x (A),

∧

y∈X−B
(1− (1−Nα

y (X −A)))))

=
∧

x∈B
min(1, 1− τ(B) +

∨

A∈P (X)

min(Nα
x (A),

∧

y∈X−B
Nα
y (X −A))).

Put B = X −D we have

αT
(2)
3 (X, τ) =

∧

x/∈D
min(1, 1− τ(X −D) +

∨

A∈P (X)

min(Nα
x (A),

∧

y∈D
Nα
y (X −A)))

= Tα3 (X, τ).

�

267



O. R. SAYED

2.19. Definition. Let (X, τ) be a fuzzifying topological space and ϕ be a subbase
of τ then

αT
(3)
3 (X, τ) := ∀x∀D(x ∈ D ∧D ∈ ϕ −→ ∃B(B ∈ Nα

x ∧ Clα(B) ⊆ D)).

2.20. Theorem. |= (X, τ) ∈ Tα3 ←→ (X, τ) ∈ αT (3)
3 .

Proof. Since [ϕ ⊆ τ ] = 1, from Theorems 2.16 we have

αT
(3)
3 (X, τ) ≥ αT (2)

3 (X, τ) = Tα3 (X, τ).

So, it suffices to prove that αT
(3)
3 (X, τ) ≤ αT

(2)
3 (X, τ) and this is obtained if we

prove for any x ∈ A,

min(1, 1− τ(A)+
∨

B∈P (X)

min(Nα
x (B),

∧

y∈X−A
Nα
y (X−B))) ≥ αT (3)

3 (X, τ).

Set αT
(3)
3 (X, τ) = δ. Then for any x ∈ X and any Dλi ∈ P (X), x ∈ Dλi , λi ∈ Iλ

(Iλ denotes a finite index set), λ ∈ Λ,
⋃
λ∈Λ

⋂
λi∈Iλ

Dλi = A we have

1− ϕ(Dλi) +
∨

B∈P (X)

min(Nα
x (B),

∧

y∈X−Dλi

Nα
y (X −B)) ≥ δ > δ − ε,

where ε is any positive number. Thus

∨

B∈P (X)

min(Nα
x (B),

∧

y∈X−Dλi

Nα
y (X −B)) > ϕ(Dλi)− 1 + δ − ε.

Set γλi = {B : B ⊆ Dλi}. From the completely distributive law we have

∧

λi∈Iλ

∨

B∈P (X)

min(Nα
x (B),

∧

y∈X−Dλi

Nα
y (X −B))

=
∨

f∈Π{γλi :λi∈Iλ}

∧

λi∈Iλ
min(Nα

x (f(λi)),
∧

y∈X−Dλi

Nα
y (X − f(λi)))

=
∨

f∈Π{γλi :λi∈Iλ}
min(

∧

λi∈Iλ
Nα
x (f(λi)),

∧

λi∈Iλ

∧

y∈X−Dλi

Nα
y (X − f(λi)))

=
∨

f∈Π{γλi :λi∈Iλ}
min(

∧

λi∈Iλ
Nα
x (f(λi)),

∧

y∈ ∪
λi∈Iλ

X−Dλi

Nα
y (X − f(λi)))

=
∨

B∈P (X)

min(
∧

λi∈Iλ
Nα
x (B),

∧

y∈ ∪
λi∈Iλ

X−Dλi

Nα
y (X −B))

=
∨

B∈P (X)

min(Nα
x (B),

∧

y∈ ∪
λi∈Iλ

X−Dλi

Nα
y (X −B)),
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where B = f(λi).
Similarly, we can prove

∧

λ∈Λ

∨

B∈P (X)

min(Nα
x (B),

∧

y∈ ∪
λi∈Iλ

X−Dλi

Nα
y (X −B))

=
∨

B∈P (X)

min(Nα
x (B),

∧

y∈ ∪
λ∈Λ

∪
λi∈Iλ

X−Dλi

Nα
y (X −B))

≤
∨

B∈P (X)

min(Nα
x (B),

∧

y∈ ∩
λ∈Λ

∪
λi∈Iλ

X−Dλi

Nα
y (X −B))

≤
∨

B∈P (X)

min(Nα
x (B),

∧

y∈X−A
Nα
y (X −B)),

so we have
∨

B∈P (X)

min(Nα
x (B),

∧

y∈X−A
Nα
y (X −B))

≥
∧

λ∈Λ

∧

λi∈Iλ

∨

B∈P (X)

min(Nα
x (B),

∧

y∈X−Dλi

Nα
y (X −B))

≥
∧

λ∈Λ

∧

λi∈Iλ
ϕ(Dλi)− 1 + δ − ε.

For any Iλ and Λ that satisfy
⋃
λ∈Λ

⋂
λi∈Iλ

Dλi = A the above inequality is true. So,

∨

B∈P (X)

min(Nα
x (B),

∧

y∈X−A
Nα
y (X −B))

≥
∨

∪λ∈ΛDλ=A

∧

λ∈Λ

∨

∩λi∈IλDλi=Dλ

∧

λi∈Iλ
ϕ(Dλi)− 1 + δ − ε

= τ(A)− 1 + δ − ε.

i.e., min(1, 1−τ(A)+
∨

B∈P (X)

min(Nα
x (B),

∧

y∈X−A
Nα
y (X−B))) ≥ δ−ε.

Because ε is any arbitrary positive number, when ε −→ 0 we have

αT
(2)
3 (X, τ) ≥ δ = αT

(3)
3 (X, τ). So, |= (X, τ) ∈ Tα3 ←→ (X, τ) ∈ αT (3)

3 . �

2.21. Definition. Let (X, τ) be any fuzzifying topological space.

(1) α′T (1)
3 (X, τ) := ∀x∀D(x ∈ X ∧ D ∈ Fα ∧ x /∈ D −→ ∃A(A ∈ Nx ∧ (D ⊆

X − Cl(A))));

(2) α′T (2)
3 (X, τ) := ∀x∀B(x ∈ B ∧B ∈ τα −→ ∃A(A ∈ Nx ∧ Cl(A) ⊆ B));

(3) αT
(1)
4 (X, τ) := ∀A∀B(A ∈ τ ∧ B ∈ F ∧ A ∩ B ≡ ∅ → ∃G(G ∈ τ ∧ A ⊆

G ∧ Clα(G) ∩B ≡ φ));

(4) αT
(2)
4 (X, τ) := ∀A∀B(A ∈ F∧B ∈ τ∧A ⊆ B → ∃G(G ∈ τ∧A ⊆ G∧Clα(G) ⊆

B));

(5) α′T (1)
4 (X, τ) := ∀A∀B(A ∈ τ ∧ B ∈ Fα ∧ A ∩ B ≡ ∅ → ∃G(G ∈ τ ∧ A ⊆

G ∧ Cl(G) ∩B ≡ φ));
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(6) α′T (2)
4 (X, τ) := ∀A∀B(A ∈ F∧B ∈ τα∧A ⊆ B → ∃G(G ∈ τ∧A ⊆ G∧Cl(G) ⊆

B)).

By a similar proof of Theorem 2.16 and 2.18 we have the following theorem.

2.22. Theorem. Let (X, τ) be a fuzzifying topological space.

(1) |= (X, τ) ∈ Tα′3 ←→ (X, τ) ∈ α′T (i)
3 ;

(2) |= (X, τ) ∈ Tα4 ←→ (X, τ) ∈ αT (i)
4 ;

(3) |= (X, τ) ∈ Tα′4 ←→ (X, τ) ∈ α′T (i)
4 , where i = 1, 2.

3. Relation among fuzzifying separation axioms

3.1. Lemma. (1) |= K(x, y)→ Kα(x, y),
(2) |= H(x, y)→ Hα(x, y),
(3) |= M(x, y)→Mα(x, y),
(4) |= V (x,D)→ V α(x,D),
(5) |= W (A,B)→Wα(A,B).

Proof. Since |= τ ⊆ τα, Nx(A) ≤ Nα
x (A) for any A ∈ P (X). Then the proof is

immediate. �
3.2. Theorem. |= (X, τ) ∈ Ti −→ (X, τ) ∈ Tαi , where i = 0, 1, 2, 3, 4.

Proof. It is obtained from Lemma 3.1. �
3.3. Theorem. If T0(X, τ) = 1, then

(1) |= (X, τ) ∈ R0 −→ (X, τ) ∈ Rα0 ,
(2) |= (X, τ) ∈ R1 −→ (X, τ) ∈ Rα1 ,

Proof. Since T0(X, τ) = 1, for each x, y ∈ X and x 6= y, we have [K(x, y)] = 1 and
so [Kα(x, y)] = 1.

(1) Using Lemma 3.1 (1) and (2) we obtain

[(X, τ) ∈ R0] =
∧

x 6=y
[K(x, y)→ H(x, y)] ≤

∧

x6=y
[K(x, y)→ Hα(x, y)]

≤
∧

x 6=y
[Kα(x, y)→ Hα(x, y)] = Rα0 (X, τ).

(2) Using Lemma 3.1 (1) and (3) the proof is similar to (1). �
3.4. Lemma. (1) |= Mα(x, y) −→ Hα(x, y);

(2) |= Hα(x, y) −→ Kα(x, y);
(3) |= Mα(x, y) −→ Kα(x, y).

Proof. (1) Since {B,C ∈ P (X) : B∩C ≡ ∅} ⊆ {B,C ∈ P (X) : y /∈ B and x /∈ C},
then
[Mα(x, y)] =

∨
B∩C=∅

min(Nα
x (B), Nα

y (C))≤ ∨
y/∈B, x/∈C

min(Nα
x (B), Nα

y (C)) = [Hα(x, y)].

(2) [Kα(x, y)] = max(
∨
y/∈A

Nα
x (A),

∨
x/∈A

Nα
y (A))≥ ∨

y/∈A
Nα
x (A)≥ ∨

y/∈A, x/∈B
(Nα

x (A)∧

Nα
y (B))

= [Hα(x, y)].
(3) From (1) and (2) it is obvious. �
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3.5. Theorem. Let (X, τ) be a fuzzifying topological space. Then we have
(1) |= (X, τ) ∈ Tα1 −→ (X, τ) ∈ Tα0 ;
(2) |= (X, τ) ∈ Tα2 −→ (X, τ) ∈ Tα1 ;
(3) |= (X, τ) ∈ Tα2 −→ (X, τ) ∈ Tα0 .

Proof. The proof of (1) and (2) are obtained from Lemma 3.4 (2) and (1), respec-
tively.

(3) From (1) and (2) above the result is obtained. �

3.6. Theorem. |= (X, τ) ∈ Rα1 −→ (X, τ) ∈ Rα0 .

Proof. From Lemma 3.4 (2), the proof is immediate. �

3.7. Theorem. For any fuzzifying topological space (X, τ) we have
(1) |= (X, τ) ∈ Tα1 −→ (X, τ) ∈ Rα0 ;
(2) |= (X, τ) ∈ Tα1 −→ (X, τ) ∈ Rα0 ∧ (X, τ) ∈ Tα0 ;
(3) If Tα0 (X, τ) = 1, then |= (X, τ) ∈ Tα1 ←→ (X, τ) ∈ Rα0 ∧ (X, τ) ∈ Tα0 .

Proof. (1) Tα1 (X, τ) =
∧
x6=y[Hα(x, y)] ≤ ∧x 6=y[Kα(x, y) −→ Hα(x, y)] = Rα0 (X, τ).

(2) It is obtained from (1) and from Theorem 3.5 (1).
(3) Since Tα0 (X, τ) = 1, for every x, y ∈ X such that x 6= y, then we have

[Kα(x, y)] = 1. Therefore

[(X, τ) ∈ Rα0 ∧ (X, τ) ∈ Tα0 ] = [(X, τ) ∈ Rα0 ]

=
∧

x 6=y
min(1, 1− [Kα(x, y)] + [Hα(x, y)])

=
∧

x 6=y
[Hα(x, y)] = Tα1 (X, τ).

�

3.8. Theorem. Let (X, τ) be a fuzzifying topological space.
(1) |= (X, τ) ∈ Rα0 ⊗ (X, τ) ∈ Tα0 −→ (X, τ) ∈ Tα1 , and
(2) If Tα0 (X, τ) = 1, then |= (X, τ) ∈ Rα0 ⊗ (X, τ) ∈ Tα0 ←→ (X, τ) ∈ Tα1 .

Proof. (1)

[(X, τ) ∈ Rα0 ⊗ (X, τ) ∈ Tα0 ]

= max(0, Rα0 (X, τ) + Tα0 (X, τ)− 1)

= max(0,
∧

x 6=y
min(1, 1− [Kα(x, y)] + [Hα(x, y)]) +

∧

x 6=y
[Kα(x, y)]− 1)

≤ max(0,
∧

x 6=y
{min(1, 1− [Kα(x, y)] + [Hα(x, y)]) + [Kα(x, y)]} − 1)

=
∧

x 6=y
[Hα(x, y)] = Tα1 (X, τ).
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(2)

[(X, τ) ∈ Rα0 ⊗ (X, τ) ∈ Tα0 ] = [(X, τ) ∈ Rα0 ]

=
∧

x 6=y
min(1, 1− [Kα(x, y)] + [Hα(x, y)])

=
∧

x 6=y
[Hα(x, y)] = Tα1 (X, τ),

because Tα0 (X, τ) = 1, implies that for each x, y such that x 6= y we have
[Kα(x, y)] = 1.

�

3.9. Theorem. Let (X, τ) be a fuzzifying topological space.
(1) |= (X, τ) ∈ Tα0 −→ ((X, τ) ∈ Rα0 −→ (X, τ) ∈ Tα1 ), and
(2) |= (X, τ) ∈ Rα0 −→ ((X, τ) ∈ Tα0 −→ (X, τ) ∈ Tα1 ).

Proof. It obtained From Theorems 3.7 (1) and 3.8 (1) and the fact that [α] ≤
[ϕ→ ψ]⇔ [α]⊗ [ϕ] ≤ [ψ]. �

3.10. Theorem. Let (X, τ) be a fuzzifying topological space.
(1) |= (X, τ) ∈ Tα2 −→ (X, τ) ∈ Rα1 ;
(2) |= (X, τ) ∈ Tα2 −→ (X, τ) ∈ Rαi ∧ (X, τ) ∈ Tαi , where i = 0, 1;
(3) If Tα0 (X, τ) = 1, then
(i) |= (X, τ) ∈ Tα2 ←→ (X, τ) ∈ Rα1 ∧ (X, τ) ∈ Tα0 .
(ii) |= (X, τ) ∈ Tα2 ←→ (X, τ) ∈ Rα1 ∧ (X, τ) ∈ Tα1 .

Proof. It is similar to the proof of Theorem 3.7. �

3.11. Theorem. Let (X, τ) be a fuzzifying topological space.
(1) |= (X, τ) ∈ Rα1 ⊗ (X, τ) ∈ Tα0 −→ (X, τ) ∈ Tα2 , and
(2) If Tα0 (X, τ) = 1, then |= (X, τ) ∈ Rα1 ⊗ (X, τ) ∈ Tα0 ←→ (X, τ) ∈ Tα2 .

Proof. It is similar to the proof of Theorem 3.8. �

3.12. Theorem. Let (X, τ) be a fuzzifying topological space.
(1) |= (X, τ) ∈ Tα0 −→ ((X, τ) ∈ Rα1 −→ (X, τ) ∈ Tα2 ), and
(2) |= (X, τ) ∈ Rα1 −→ ((X, τ) ∈ Tα0 −→ (X, τ) ∈ Tα2 ).

Proof. It is similar to the proof of Theorem 3.9. �

3.13. Theorem. If Tα0 (X, τ) = 1, then
(1) |= ((X, τ) ∈ Tα0 −→ ((X, τ) ∈ Rα0 −→ (X, τ) ∈ Tα1 )) ∧ ((X, τ) ∈ Tα1 −→

¬((X, τ) ∈ Tα0 −→ ¬((X, τ) ∈ αα0 )));
(2) |= ((X, τ) ∈ Rα0 −→ ((X, τ) ∈ Tα0 −→ (X, τ) ∈ Tα1 )) ∧ ((X, τ) ∈ Tα1 −→

¬((X, τ) ∈ Tα0 −→ ¬((X, τ) ∈ αα0 )));
(3) |= ((X, τ) ∈ Tα0 −→ ((X, τ) ∈ Rα0 −→ (X, τ) ∈ Tα1 )) ∧ ((X, τ) ∈ Tα1 −→

¬((X, τ) ∈ Rα0 −→ ¬((X, τ) ∈ Tα0 )));
(4) |= ((X, τ) ∈ Rα0 −→ ((X, τ) ∈ Tα0 −→ (X, τ) ∈ Tα1 )) ∧ ((X, τ) ∈ Tα1 −→

¬((X, τ) ∈ Rα0 −→ ¬((X, τ) ∈ Tα0 ))).
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