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Comparing of some estimation methods for
parameters of the Marshall-Olkin generalized

exponential distribution under progressive Type-I
interval censoring
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Abstract

In this paper, we estimate the parameters of the Marshall-Olkin gener-
alized exponential distribution under progressive Type-I interval cen-
soring based on maximum likelihood, moment method and probability
plot. A simulation study is conducted to compare these estimates in
terms of mean squared errors and biases. Finally, these estimate meth-
ods are applied to a real data set based on patients with breast cancer
in order to demonstrate the applicabilities.
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1. Introduction

Aggarwala [2001] introduced Type-I interval and progressive censoring and developed
the statistical inference for the exponential distribution based on progressively Type-I
interval censored data. Ng and Wang [2009] introduced the concept of progressive Type-
I interval censoring to the Weibull distribution and compared many di�erent estimation
methods for two parameters in the Weibull distribution via simulation.
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The generalized exponential (GE) distribution has the following probability density
function (pdf)

f(t;α, λ) = αλ(1− e−λt)α−1e−λt,

where t > 0, α > 0 and λ > 0. The cumulative distribution and the hazard rate function
of the GE distribution are as follows:

F (t;α, λ) = (1− e−λt)α,
and

h(t;α, λ) =
αλ(1− e−λt)α−1e−λt

1− (1− e−λt)α ,

where t > 0; The GE distribution was introduced by Gupta and Kunda [2001]. Recently,
Chen and Lio [2010] introduced the concept of progressive Type-I interval censoring
for the generalized exponential distribution and compared many di�erent estimation
methods for the parameters of the distribution via a simulation study.

The Marshall-Olkin generalized exponential (MOGE) distribution was �rst proposed
by Marshall and Olkin [1997] and extensively discussed by Alice and Jose [1999]. The
PDF of the MOGE distribution with the parameters λ and α is

(1.1) f(t;α, λ) =
αλe−λt

(1− (1− α)e−λt)2
, t > 0, 0 < α ≤ 1, λ > 0.

Also, the distribution function and the hazard rate function of the MOGE distribution
are as follows:

(1.2) F (t;α, λ) =
1− e−λt

1− (1− α)e−λt
,

and

h(t;α, λ) =
λ

1− (1− α)e−λt
,

where t > 0. Note that if α = 1, the MOGE distribution reduces to the conventional
exponential distribution. Plots of the density functions, distribution functions and hazard
rate functions for di�erent values of α and λ are given in �gures 1, 2 and 3, respectively.

The �rst two moments and variance of the MOGE distribution are given by

E[T ] =
α log (α)

(α− 1)λ
,(1.3)

E[T 2] =
2αPolyLog[2, 1− α]

(1− α)λ2
,(1.4)

V ar[T ] =
−α
(
α log (α)2 + 2(α− 1)PolyLog[2, 1− α]

)
(α− 1)2λ2

,

where

PolyLog[2, 1− α] =

∞∑
k=1

(1− α)k

k2
.

In this paper, we study the maximum likelihood estimates, estimates via moment
methods and estimates via probability plot for two parameters of the MOGE distribu-
tion under the progressive Type-I interval censoring. Section 2 introduces the progressive
Type-I interval censoring for the MOGE distribution. In Section 3, some methods for
parameters estimation are given. In Section 4, a simulation study is conducted to com-
pare the performances of these estimation methods based on the mean squared error
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Figure 1. Plots of density functions for di�erent values of α and λ

(MSE) and bias. Finally, a numerical example for a real data set is considered and some
discussions and conclusions are given.

2. Progressively Type-I interval censored data

Suppose that n items are placed on a life testing problem simultaneously at time
t0 = 0 under inspection at m pre-speci�ed times t1 < t2 < . . . < tm where tm is the
scheduled time to terminate the experiment. At the ith inspection time, ti, the number,
Xi, of failures within (ti−1, ti] is recorded and Ri surviving items are randomly removed
from the life testing, for i = 1, . . . ,m. It is obvious that the number of surviving items at
the time ti is Yi = n−

∑i
j=1Xj −

∑i−1
j=1Rj . Since Yi is a random variable and the exact
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Figure 2. Plots of distributions functions for di�erent values of α and λ

number of items withdrawn should not be greater than Yi at time schedule ti, Ri could be
determined by the pre-speci�ed percentage of the remaining surviving units at ti for given
i = 1, 2, . . . ,m. Also, given pre-speci�ed percentage values, p1, . . . , pm−1 and pm = 1, for
withdrawing at t1 < t2 < . . . < tm, respectively, Ri = bpiyic at each inspection time ti
where i = 1, 2, . . . ,m. Therefore, a progressively Type-I interval censored sample can be

denoted as (Xi, Ri, ti), i = 1, 2, . . .m, where sample size is n =
m∑
i=1

(Xi + Ri). Note that

if Ri = 0, i = 1, 2, . . . ,m− 1, then the progressively Type-I interval censored sample is a
Type-I interval censored sample, X1, X2, . . . , Xm, Xm+1 = Rm.

Let a progressively Type-I interval censored sample be collected as described above,
beginning with a random sample of n units with a continuous life time distribution
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Figure 3. Plots of hazard functions for di�erent values of α and λ

function F (.;θ). Then, based on the observed data, the likelihood function will be as
follows:

L(θ) ∝
m∏
i=1

[F (ti;θ)− F (ti−1;θ)]Xi [1− F (ti;θ)]Ri .

3. Some parameter estimation methods

In this section, we give some estimation methods for the parameters of the MOGE
distribution.
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3.1. Maximum likelihood estimation. Suppose a progressive Type-I interval cen-
sored sample is collected for the MOGE distribution. Using (1.2), the likelihood function
is

L(α, λ) ∝
m∏
i=1

[
1− e−λti

1− (1− α)e−λti
− 1− e−λti−1

1− (1− α)e−λti−1

]Xi
[

αe−λti

1− (1− α)e−λti

]Ri

,

and the log-likelihood function is

`(α, λ) ∝
m∑
i=1

Xi log

[
1− e−λti

1− (1− α)e−λti
− 1− e−λti−1

1− (1− α)e−λti−1

]

+

m∑
i=1

Ri log

[
αe−λti

1− (1− α)e−λti

]
.

Hence, we have the following log-likelihood equations:

(3.1)


∂`(α, λ)

∂α
= 0,

∂`(α, λ)

∂λ
= 0.

The MLEs of α and λ cannot be obtained in a closed form by solving equations (3.1)
and they must be calculated using a numerical method. Since there is no closed form for
MLEs, a mid-point approximation and the EM algorithm are introduced as follows for
�nding the MLEs of α and λ.

3.1.1. Mid-point approximation method. The midpoint estimators based on progres-
sively Type-I interval censoring can be obtained by assuming that Xi failures occurred

at the center of the interval, mi =
ti−1+ti

2
, and the Ri censored items withdrawn at

the censoring time ti. Then log-likelihood function from the MOGE distribution can be
speci�ed as follows:

log(L◦) ∝
m∑
i=1

[Xi log(f(mi;α, λ)) +Ri log(1− F (ti;α, λ))]

= n logα+ log λ

m∑
i=1

Xi − λ
m∑
i=1

(Ximi +Riti)

−2

m∑
i=1

Xi log(1− (1− α)e−λmi)−
m∑
i=1

Ri log(1− (1− α)e−λti).

Therefore, the maximum likelihood estimate of α, α̂, and the maximum likelihood esti-

mate of λ, λ̂, are the solution of the sequel equations:

(3.2)
n

α̂
= 2

m∑
i=1

Xi
e−λ̂mi

1− (1− α̂)e−λ̂mi
+

m∑
i=1

Ri
e−λ̂ti

1− (1− α̂)e−λ̂ti
,

and
m∑
i=1

Xi

λ̂
=

m∑
i=1

(Ximi +Riti) + 2(1− α̂)
m∑
i=1

Ximi
e−λ̂mi

1− (1− α̂)e−λ̂mi

+(1− α̂)

m∑
i=1

Riti
e−λ̂ti

1− (1− α̂)e−λ̂ti
.(3.3)
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There is no closed form for the solutions of (3.2) and (3.3), thus an iterative numerical

method is needed to obtain the parameter estimates, i.e., α̂ and λ̂.

3.1.2. EM algorithm. The EM algorithm is applicable to obtain the maximum likelihood
estimator of the parameters and useful in a variety of incomplete-data problems where
algorithms such as the Newton-Raphson method may sometimes be complicated. On
each iteration of the EM algorithm, there are two steps called E-step and the M-step:
Let yij , j = 1, 2, . . . , Xi, be the survival times within subinterval (ti−1, ti] and zij , j =
1, 2, . . . , Ri, be the survival times for those withdrawn items at ti for i = 1, 2, 3, . . . ,m,
then the log-likelihood, log(L∗), for the complete lifetimes of n items from the MOGE
distribution is given as follows:

log(L∗) ∝
m∑
i=1

[
Xi∑
j=1

log(f(yij , θ)) +

Ri∑
j=1

log(f(zij , θ))

]

= n(logα+ log λ)− λ
m∑
i=1

[
Xi∑
j=1

yij +

Ri∑
j=1

zij

]

−2

m∑
i=1

[
Xi∑
j=1

log(1− (1− α)e−λyij ) +

Ri∑
j=1

log(1− (1− α)e−λzij )

]
.

(3.4)

Taking the derivative with respective to α and λ, respectively, on (3.4), likelihood
equations are obtained by

n

α
= 2

m∑
i=1

[
Xi∑
j=1

e−λyij

(1− (1− α)e−λyij )
+

Ri∑
j=1

e−λzij

(1− (1− α)e−λzij )

]
,

and

n

λ
= 2

m∑
i=1

[
Xi∑
j=1

(1− α)yije
−λyij

(1− (1− α)e−λyij )
+

Ri∑
j=1

(1− α)zije
−λzij

(1− (1− α)e−λzij )

]

+

m∑
i=1

[
Xi∑
j=1

yij +

Ri∑
j=1

zij

]
.

The EM-algorithm has the following steps:
Step 1. Given initial estimates of α and λ , say α(0) and λ(0);
Step 2. In the kth iteration, the E-step requires to compute

E1i = Eα̂(k), λ̂(k)

[
Y
∣∣∣Y ∈ [ti−1, ti)

]
,

E2i = Eα̂(k), λ̂(k)

[
Y
∣∣∣Y ∈ [ti,∞)

]
,

E3i = Eα̂(k), λ̂(k)

[
e−λ̂

(k)Y

1− (1− α̂(k))e−λ̂(k)Y

∣∣∣∣∣Y ∈ [ti−1, ti)

]
,

E4i = Eα̂(k), λ̂(k)

[
e−λ̂

(k)Y

1− (1− α̂(k))e−λ̂(k)Y

∣∣∣∣∣Y ∈ [ti−1,∞)

]
,

E5i = Eα̂(k), λ̂(k)

[
Y e−λ̂

(k)Y

1− (1− α̂(k))e−λ̂(k)Y

∣∣∣∣∣Y ∈ [ti−1, ti)

]
,
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and

E6i = Eα̂(k), λ̂(k)

[
Y e−λ̂

(k)Y

1− (1− α̂(k))e−λ̂(k)Y

∣∣∣∣∣Y ∈ [ti−1,∞)

]
,

where Y is a random variable which has the MOGE distribution density function (1.1).
Step 3. The M-step maximize the likelihood function. Based on the likelihood equations
for complete data, we can obtain the estimates

α̂(k+1) =
n

2
m∑
i=1

[
Xi∑
j=1

E3i +
Ri∑
j=1

E4i

] ,
and

λ̂(k+1) =
n

m∑
i=1

[
Xi∑
j=1

E1i + 2(1− α̂(k+1))E5i +
Ri∑
j=1

E2i + 2(1− α̂(k+1))E6i

]
;

Step 4. Setting k = k+1, the MLEs of α and λ can be obtained by repeating the E-step
and M-step until convergence occurs.

Note that numerical integration methods are required to compute the above condi-
tional expectations in Step 2.

3.2. Method of moments. Let Y be a random variable which has the MOGE dis-
tribution density function (1.1). The kth moment of a doubly truncated generalized
exponential distribution in the interval (a, b) where 0 < a < b is given by

Eα, λ

[
Y k
∣∣∣Y ∈ [a, b)

]
=

b∫
a

ykf(y;α, λ)dy

F (b;α, λ)− F (a;α, λ)

Equating the sample moment to the corresponding population moment up to the second
order, the following equations can be used to �nd the estimates of moment method:

E[Y ] =
1

n

[ m∑
i=1

XiEα,λ[Y |Y ∈ [ti−1, ti)] +RiEα,λ[Y |Y ∈ [ti−1,∞)]

]
,

and

E[Y 2] =
1

n

[ m∑
i=1

XiEα,λ[Y 2
∣∣Y ∈ [ti−1, ti)]

]

+

[ m∑
i=1

RiEα,λ[Y 2
∣∣Y ∈ [ti−1,∞)]

]
.

An iterative procedure can be employed to solve the above equations for α and λ as
follows:
Step 1. Consider the initial values of α and λ, say α̂(0) and λ̂(0) with k = 0;
Step 2. In the k + 1th iteration,
• we compute Eα̂(k), λ̂(k) [Y |Y ∈ [ti−1, ti)] and Eα̂(k), λ̂(k)

[
Y 2
∣∣Y ∈ [ti−1, ti)

]
and solve

the following equation for α, say α̂(k+1):

P (α) =

[
m∑
i=1

XiEα,λ[Y |Y ∈ [ti−1, ti)] +RiEα,λ[Y |Y ∈ [ti−1,∞)]

]2
n
m∑
i=1

[
XiEα,λ[Y 2|Y ∈ [ti−1, ti)] +RiEα,λ[Y 2|Y ∈ [ti−1,∞)]

] ,
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where using (1.3) and (1.4),

P (α) = E2[Y ]/E[Y 2] =
α log2 α

2(1− α)PolyLog[2, 1− α])
.

• The solution for α, say α̂(k+1), is obtained through the following equation:

α̂(k+1) log (α̂(k+1))

(α̂(k+1) − 1)λ(k+1)
=

1

n

[ m∑
i=1

XiEα̂(k),λ̂(k) [Y |Y ε [ti−1, ti)]

+

m∑
i=1

RiEα̂(k),λ̂(k) [Y |Y ∈ [ti−1,∞)]

]
;

Step 3. Checking convergence, if the convergence occurs then the current α̂(k+1) and

λ̂(k+1) are the estimates of α and λ by the method of moments; otherwise set k = k + 1
and go to Step 2.

3.3. Estimation based on probability plot. For progressively Type-I interval cen-
sored data, (Xi, Ri, ti), i = 1, 2, . . . ,m, of size n, the distribution function at time ti can
be estimated as

F̂ (ti) = 1−
i∏

j=1

(1− p̂j), i = 1, 2, . . . ,m,

where

p̂j =
Xj

n−
j−1∑
k=0

Xk −
j−1∑
k=0

Rk

, j = 1, 2, . . . ,m.

From (1.2), we have

t = − 1

λ
log

1− F (t)

1− (1− α)F (t)
.

If F̂ (ti) is the estimate of F (ti), then the estimates of α and λ in the MOGE distribution

based on probability plot can be obtained by minimizing
m∑
i=1

[
ti + 1

λ
log 1−F̂ (ti)

1−(1−α)F̂ (ti)

]2
with respect to α and λ.

3.4. Simulation algorithm. In this section, we give A short algorithm for simulating
X1, X2, . . . , Xm from a random sample of size n put on life test at time 0 is therefore
given below. Let X0 = R0 = 0; We use the fact that for i = 1, ...,m,

Xi|Xi−1, . . . , X0, Ri−1, . . . , R0 ∼ Binom
(
n−

i−1∑
j=1

(Xj +Rj),

F (ti)− F (ti−1)

1− F (ti−1)

)
,

and

Ri =

⌊
pi
(
n−

i−1∑
j=1

(Xi +Ri)−Xi
)⌋
.

Hence we can give an algorithm as follows:
Step 1. Set i = 0 and let xsum = rsum = 0;
Step 2. Next i;
Step 3. If i = m+ 1, exit the algorithm;
Step 4. Generate Xi as a binomial random variable with parameters (n−xsum−rsum)
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and
F (ti)−F (ti−1)

1−F (ti−1)
;

Step 5. Calculate Robsi =

⌊
pi(n−

i−1∑
j=1

(Xi +Ri)−Xi)

⌋
or Robsi = min(n − xsum −

rsum−Xi, Ri), depending upon how the censoring scheme is chosen;
Step 6. Set xsum = xsum+Xi, rsum = rsum+Robsi ;
Step 7. Go to step 2.

3.5. Simulation schemes. Continuing with our exploration of progressive Type-I in-
terval censoring under the MOGE distribution lifetime models, let us consider a numer-
ical example, and discuss some of the issues which arise. We use the values t1 = 5.5,
t2 = 10.5, t3 = 15.5, t4 = 20.5, t5 = 25.5, t6 = 30.5, t7 = 40.5, t8 = 50.5 and t9 = 60.5.
The lifetime distribution is the MOGE Type with parameters (α, λ) = (0.5, .06), where
are the simulation input parameters. To compare the performances of the estimation
procedures developed in this paper, we consider the following four progressive interval
censoring schemes which are similar to the patterns of simulation schemes used in Ag-
garwala (2001) and also used in Ng and Wang (2009) and Chen and Lio (2010):

p(1) = (.25, .25, .25, .25, .5, .5, .5, .5, 1),

p(2) = (.5, .5, .5, .5, .25, .25, .25, .25, 1),

p(3) = (0, 0, 0, 0, 0, 0, 0, 0, 1),

p(4) = (.25, 0, 0, 0, 0, 0, 0, 0, 1),

where censoring in p(1) is lighter for the �rst four intervals and heavier for the next four
intervals. The censoring pattern is reversed in p(2). p(3) is the conventional interval
censoring where no removals prior to the experiment termination and the censoring in
p(4) only occurs at the left-most and the right-most. The initial values of α and λ for
iterative progresses of MLE, mid-point approximation, EM algorithm, moment method
and probability plot are given the same values, which for each simulation run, is randomly
generated.

3.6. Simulation results. The result for the 1000 simulation runs by R software is
shown in Table 1 and Table 2 and is graphically illustrated in Figures 4 and 5. As the
performances among the four censoring schemes, the third scheme p(3) provides the most

precise results as seen from �Bias�, �SD� (i.e. the standard deviation) and �MSE� (i.e. the
mean squared errors) shown in Table 1 and Table 2 from the dispersions of the boxplots
shown in the Figures 1 and 2, then followed by the schemes p(4), p(1) and p(2).

4. Real data analysis

A data set which consists of 118 patients with breast cancer treated at the Sadouqi
Hospital of Yazd is used for modelling the MOGE distribution; This data set is explored
from [4] and summarized in Table 3. In this table, the �rst column shows 7 pre-assigned
time intervals in years which were determined before the experiment, i.e., [ti−1, ti), i =
1, ..., 7. The second column shows the number of patients who are died in the time
intervals, i.e., X1, ..., X7 and �nally, the last column is the number of patients who were
dropped out from the study at the right end of each time interval; These dropped patients
are known to be survived at the right end of each time interval but no follow up. Hence,
the last column in Table 3 provides the values of Ri, i = 1, . . . ,m = 7.
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Scheme EM Midpoint MLE MME probpt

1 Median 0.4813 0.9553 0.5468 0.3978 0.4272
2 Median 0.4307 1.0000 0.5624 0.3858 0.4614
3 Median 0.5036 0.7766 0.5640 0.4640 0.5983
4 Median 0.4985 0.5783 0.3517 0.4316 0.5639

1 Mean 0.5080 0.8411 0.5740 0.3982 0.5193
2 Mean 0.4809 0.9020 0.5883 0.3860 0.5328
3 Mean 0.5237 0.7696 0.6223 0.4706 0.6100
4 Mean 0.5265 0.6433 0.3708 0.4318 0.5912

1 Bias 0.0080 0.3411 0.0740 -0.1018 0.0193
2 Bias -0.0191 0.4020 0.0883 -0.1140 0.0328
3 Bias 0.0237 0.2696 0.1223 -0.0294 0.1100
4 Bias 0.0265 0.1433 -0.1292 -0.0682 0.0912

1 SD 0.2136 0.2024 0.2777 0.0071 0.3376
2 SD 0.2124 0.1829 0.3110 0.0034 0.3382
3 SD 0.1775 0.2217 0.2683 0.0403 0.2746
4 SD 0.1858 0.2966 0.0979 0.0166 0.2829

1 MSE 0.0457 0.1573 0.0826 0.0104 0.1144
2 MSE 0.0455 0.1950 0.1045 0.0130 0.1155
3 MSE 0.0321 0.1219 0.0869 0.0025 0.0875
4 MSE 0.0352 0.1085 0.0263 0.0049 0.0884

Table 1. Estimates of α from 1000 simulations for the �ve estimation
methods and four simulation schemes.

4.1. Model selection. To select a suitable model for the given data set in Table 3,
we start with the MOGE distribution. We will �t the MOGE distribution and statisti-
cally test whether the MOGE distribution model can be reduced to the exponential (E)
distribution model for the given data set in the Table 3.

Fitting the MOGE to the given data, MLE of (α, λ) is

(α̂, λ̂) = (0.05785, 0.52959),

−2 logL(MOGE) = 137.4273 and AIC(MOGE) = 141.4273. Then we �t the exponen-

tial distribution model to the given data set, MLE of λ is λ̂ = 2.99422, −2 logL(E) =
152.0508 and AIC(E) = 154.0508. Note that AIC(MOGE) < AIC(E) and also, the
log-likelihood ratio statistic is

−2 log(Λ) = (−2 logL(E))− (−2 logL(MOGE)) = 14.6235,

which is greater than χ2
0.05(1) = 3.8415, hence the MOGE distribution provides a better

�t for the data at size 0.05; indeed, the p-value of the test is 0.00013!

Additional model �tting to the GE distribution yields the estimated parameters (α̂, λ̂) =
(0.19251, 1.03246) and −2 logL(GE) = 138.1842, so AIC(GE) = 142.1842.

4.2. Conclusion. In this paper, three methods to estimate the parameters of the MOGE
distribution under progressive Type-I interval censoring have been developed; These
methods were maximum likelihood estimation, estimation of method moments and the
estimation based on the probability plot. The simulation study in the case of moderate



1616

Method

E
s
ti
m

a
te

s
 f
o
r 

a
lp

h
a

0.5

1.0

EM MidPoint MLE MME ProbPlot

1

EM MidPoint MLE MME ProbPlot

2

3

0.5

1.0

4

Figure 4. Boxplots for α from 1000 simulations for the �ve estimation
methods and four simulation schemes

large size data set indicated that all these estimators give relatively accurate parameter
estimation and the maximum likelihood estimator gives the most precise estimation as
summarized in the Table 1 and 2 and Figures 4 and 5. We therefore recommend the
"MLE� to be used to estimate the parameters in the MOGE distribution under progres-
sive Type-I interval censoring. In the end of the paper, a real data set based on patients
with breast cancer in order to demonstrate the applicabilities was used. Table 4 showed
high �exibility of the MOGE distribution to model the data.
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Scheme EM Midpoint MLE MME probpt

1 Median 0.06267 0.08473 0.06333 0.02206 0.05194
2 Median 0.05943 0.09222 0.06375 0.01634 0.05005
3 Median 0.06125 0.06425 0.05359 0.02987 0.06601
4 Median 0.06142 0.04903 0.04344 0.0267 0.06359

1 Mean 0.06625 0.0821 0.06254 0.02236 0.05634
2 Mean 0.07151 0.089 0.08204 0.01659 0.05631
3 Mean 0.06317 0.06403 0.05481 0.03016 0.06446
4 Mean 0.06438 0.05095 0.04309 0.02691 0.06391

1 Bias 0.00625 0.0221 0.00254 -0.03764 -0.00366
2 Bias 0.01151 0.029 0.02204 -0.04341 -0.00369
3 Bias 0.00317 0.00403 -0.00519 -0.02984 0.00446
4 Bias 0.00438 -0.00905 -0.01691 -0.03309 0.00391

1 SD 0.02626 0.01911 0.02387 0.00406 0.0296
2 SD 0.03347 0.03598 0.01973 0.27499 0.0043
3 SD 0.01657 0.01194 0.0136 0.00345 0.01817
4 SD 0.02836 0.01926 0.01341 0.014 0.00374

1 MSE 0.00089 0.00073 0.00085 0.00058 0.00143
2 MSE 0.00113 0.00143 0.00123 0.0761 0.0019
3 MSE 0.00035 0.00028 0.00016 0.00021 9e-04
4 MSE 0.00082 0.00039 0.00026 0.00048 0.00111

Table 2. Estimates of λ from 1000 simulations for the �ve estimation
methods and four simulation schemes.

Intervals Number of failures Number of Withdraws

[0, 0.5) 99 4
[0.5, 1.0) 8 2
[1.0, 1.5) 3 0
[1.5, 2.0) 1 0
[2.0, 2.5) 0 0
[2.5, 3.0) 0 0
[3.0, 3.5) 0 1

Table 3. Breast cancer survival times.

Distribution α̂ λ̂ −2 log L̂ AIC BIC CAIC

E - 2.99422 152.0508 154.0508 156.8215 154.0853

GE 0.19251 1.03246 138.1842 142.1842 147.7256 142.2885

MOGE 0.05785 0.52959 137.4273 141.4273 146.9687 141.5316

Table 4. Comparison of the E, GE and MOGE distributions



1618

Method

E
s
ti
m

a
te

s
 f
o
r 

L
a
m

b
d
a

0.05

0.10

0.15

EM MidPoint MLE MME ProbPlot

1

EM MidPoint MLE MME ProbPlot

2

3

0.05

0.10

0.15

4

Figure 5. Boxplot for λ from 1000 simulations for the �ve estimation
methods and four simulation schemes
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