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Fuzzy integro-differential equations with
compactness type conditions
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Abstract

In the paper fuzzy integro-differential equations with almost continuous
right hand sides are studied. The existence of solution is proved under
compactness type conditions.
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1. Introduction

Many problems in modeling as well as in medicines are described by fuzzy
integro-differential equations, which are helpful in studying the observability of
dynamical control systems. This is the main reason to study these equations
extensively. We mention the papers [1] and [2], where nonlinear integro-differential
equations are studied in Banach spaces and in fuzzy space respectively. In [3],
existence result for nonlinear fuzzy Volterra-Fredholm integral equation is proved.
In [14], fuzzy Volterra integral equations are studied using fixed point theorem,
while in [10], the method of successive approximation is used, when the right hand
side satisfies Lipschitz condition. In [15] Kuratowski measure of noncompactness
as well as imbedding map from fuzzy to Banach space is used to prove existence
of solutions. In [11] existence and uniqueness result for fuzzy Volterra integral
equation with Lipschitz right hand side and with infinite delay is proved using
successive approximations method. We also refer to [4] where existence of solution
of functional integral equation under compactness condition is proved.

In the paper we study the following fuzzy integro-differential equation:

(1.1) ẋ(t) = F (t, x(t), (V x)(t)), x(0) = x0, t ∈ I = [0, T ],
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where (V x)(t) =
∫ t

0
K(t, s)x(s)ds is an integral operator of Volterra type.

2. Preliminaries

In this section we give our main assumptions and preliminary results needed in
the paper.

The fuzzy set space is denoted by En = {x : Rn → [0, 1]; x satisfies 1) – 4)}.
1) x is normal i.e. there exists y0 ∈ Rn such that x(y0) = 1,

2) x is fuzzy convex i.e. x(λy+ (1−λ)z) ≥ min{x(y), x(z)} whenever y, z ∈ Rn
and λ ∈ [0, 1],

3) x is upper semicontinuous i.e. for any y0 ∈ Rn and ε > 0 there exists
δ(y0, ε) > 0 such that x(y) < x(y0) + ε whenever |y − y0| < δ and y ∈ Rn,

4) The closure of the set {y ∈ Rn; x(y) > 0} is compact.

The set [x]α = {y ∈ Rn; x(y) ≥ α} is called α-level set of x.

It follows from 1) – 4) that the α-level sets [x]α are convex compact subsets of
Rn for all α ∈ (0, 1]. The fuzzy zero is

0̂(y) =

{
0 if y 6= 0,
1 if y = 0.

Evidently En is a complete metric space equipped with metric

D(x, y) = sup
α∈(0,1]

DH([x]α, [y]α),

where DH(A,B) = max{maxa∈A minb∈B |a − b|,maxb∈B mina∈A |a − b|} is the
Hausdorff distance between the convex compact subsets of Rn. From Theorem 2.1
of [7], we know that En can be embedded as a closed convex cone in a Banach
space X. The embedding map j : En → X is isometric and isomorphism.

The function g : I → En is said to be simple function if there exists a finite

number of pairwise disjoint measurable subsets I1, . . . , In of I with I =
n⋃

k=1

Ik such

that g(·) is constant on every Ik.

The map f : I → En is said to be strongly measurable if there exists a sequence
{fm}∞m=1 of simple functions fm : I → En such that lim

m→∞
D(fm(t), f(t)) = 0 for

a.a t ∈ I.

In the fuzzy set literature starting from [12] the integral of fuzzy functions is

defined levelwise, i.e. there exists g(t) ∈ En such that [g]α(t) =
∫ t

0
[f ]α(s)ds.

Now if g(·) : I → En is strongly measurable and integrable then j(g)(·) is
strongly measurable and Bochner integrable and

(2.1) j

(∫ t

0

g(s)ds

)
=

∫ t

0

j (g) (s)ds for all t ∈ I.

We recall some properties of integrable fuzzy set valued mapping from [7].
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2.1. Theorem. Let G,K : I → En be integrable and λ ∈ R then

(i)
∫
I

(G(t) +K(t))dt =
∫
I
G(t)dt+

∫
I
K(t)dt,

(ii)
∫
I
λG(t)dt = λ

∫
I
G(t)dt,

(iii) D(G,K) is integrable,
(iv) D(

∫
I
G(t)dt,

∫
I
K(t)dt) ≤

∫
I
D(G(t),K(t))dt.

A mapping F : I → En is said to be differentiable at t ∈ I if there exists

Ḟ (t) ∈ En such that the limits lim
h→0+

F (t+h)−F (t)
h and lim

h→0+

F (t)−F (t−h)
h exist, and

are equal to Ḟ (t). At the end point of I we consider only the one sided derivative.
Notice that En is not locally compact (cf. [13]). Consequently we need com-

pactness type assumptions to prove existence of solution, we refer the interested
reader to [5] and the references therein.

Let Y be complete metric space with metric %Y (·, ·). The Hausdorff measure of
noncompactness β : Y → R for the bounded subset A of Y is defined by

β(A) := inf{d > 0 : A can be covered by finite many balls with radius ≤ d}
and ”Kuratowski measure” of noncompactness ρ : Y → R for the bounded subset
A of Y is defined by

ρ(A) := inf{d > 0 : A can be covered by finite many sets with diameter ≤ d},
where for any bounded set A ⊂ Y , we denote diam(A) = sup

a,b∈A
%Y (a, b). It is well

known that ρ(A) ≤ β(A) ≤ 2ρ(A) (cf. [8] p.116).
Let γ(·) represent the both ρ(·) and β(·), then some properties of γ(·) are listed

below:

(i) γ(A) = 0 if and only if A is precompact, i.e. its closure Ā is compact,
(ii) γ(A+B) = γ(A) + γ(B) and γ(coA) = γ(A),
(iii) If A ⊂ B then γ(A) ≤ γ(B),
(iv) γ(A

⋃
B) = max(γ(A), γ(B)),

(v) γ(·) is continuous with respect to the Hausdorff distance.

The following theorem of Kisielewicz can be found e.g. in [8].

2.2. Theorem. Let X be separable Banach space and let {gn(·)}∞n=1 be an inte-
grally bounded sequence of measurable functions from I into X, then t→ β{gn(t), n ≥
1} is measurable and

(2.2) β

(∫ t+h

t

{ ∞⋃

i=1

gi(s)

}
ds

)
≤
∫ t+h

t

β

{ ∞⋃

i=1

gi(s)

}
ds,

where t, t+ h ∈ I.

The map t → {⋃∞i=1 gi(t)} is a set valued (multifunction). The integral is
defined in Auman sense, i.e. union of the values of the integrals of all (strongly)
measurable selections.

2.3. Remark. Since the imbedding map j : En → X is isometry and isomorphism,
one has that it preserve diameter of any closed subset i.e. ρ(A) = ρ(j(A)), for any
closed and bounded set A ∈ En.
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2.4. Theorem. Let {fn(·)}∞n=1 be a (integrally bounded) sequence of strongly mea-
surable fuzzy functions defined from I into En. Then t → ρ({fm(t),m ≥ 1}) is
measurable and

(2.3) ρ

(∫ b

a

∞⋃

m=1

fm(s)ds

)
≤ 2

∫ b

a

ρ

( ∞⋃

m=1

fm(s)

)
ds.

Proof. Since fm are strongly measurable, one has that j(fm)(·) are also strongly
measurable and hence almost everywhere separably valued.

Thus there exists a separable Banach space Y ⊂ X such that j(fm)(I \N) ⊂ Y,
where N ⊂ I is a null set.

Furthermore without loss of generality from Theorem 2.2 and Remark 2.3, we
have

ρ

(∫ b

a

( ∞⋃

m=1

fm(s)

)
ds

)
= ρ

(∫ b

a

( ∞⋃

m=1

j(fm(s))

)
ds

)

≤ β
(∫ b

a

( ∞⋃

m=1

j (fm(s))

)
ds

)
=

∫ b

a

β

( ∞⋃

m=1

j(fm(s))

)
ds

≤ 2

∫ b

a

ρ

( ∞⋃

m=1

j(fm(s))

)
ds = 2

∫ b

a

ρ

( ∞⋃

m=1

fm(s)

)
ds.

Consequently, we get (2.3). �

2.5. Remark. Evidently one can replace ρ(·) by β(·) in (2.3). It would be inter-
esting to see is it possible to replace 2 in the right hand side by smaller constant,
using the special structure of the fuzzy set space, i.e. is it true that

β

(∫ b

a

∞⋃

m=1

fm(s)ds

)
≤ C

∫ b

a

β

( ∞⋃

m=1

fm(s)

)
ds,

for some 1 ≤ C < 2?

3. Main Results

In this section we prove the existence of solution of (1.1). The following hy-
potheses will be used;

(H1) F : I × En × En → En is such that
(i) t→ F (t, x, y) is strongly measurable for all x, y ∈ En,
(ii) (x, y)→ F (t, x, y) is continuous for almost all t ∈ I.
Suppose there exist a(·), b(·) ∈ L1 (I,R+) such that:

(H2) ρ(F (t, A,B)) ≤ λ(t)(ρ(A)+ρ(B)), for all non empty bounded subsets A,B ∈
En and λ(·) ∈ L1(I,R+),

(H3) D
(
F (t, x, y), 0̂

)
≤ a(t) + b(t)

[
D(x, 0̂) +D(y, 0̂)

]
,

(H4) K : 4 = {(t, s); 0 ≤ s ≤ t ≤ a} → R+ is a continuous function.

3.1. Theorem. If (H1)– (H4) hold, then problem (1.1) has at least one solution
on [0, T ].
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Proof. First, we will show that a solution of (1.1) is bounded. Indeed, we have

D(x(t), 0̂) = D(x0, 0̂) +D

(∫ t

0

F (s, x(s), (V x)(s))ds, 0̂

)

≤ D(x0, 0̂) +

∫ t

0

D
(
F (s, x(s), (V x)(s)), 0̂

)
ds

≤ D(x0, 0̂) +

∫ t

0

(
a(s) + b(s)

[
D(x(s), 0̂) +D(

∫ s

0

K(s, τ)x(τ)dτ, 0̂)

])
ds

≤ D(x0, 0̂) +

∫ t

0

(
a(s) + b(s)D(x(s), 0̂) +K∆b(s)

∫ s

0

D(x(τ)dτ, 0̂)

)
ds,

where K∆ = max
(t,s)∈∆

|K(t, s)| .

Therefore, if we denote m(t) = D(x(t), 0̂), then we obtain

m(t) = m(0) +

∫ t

0

(
a(s) + b(s)m(s) +K∆b(s)

∫ s

0

m(τ)dτ

)
ds.

By Pachpatte’s inequality (see Theorem 1 in [9]), we get that there exists M0 > 0

such that m(t) = D(x(t), 0̂) ≤M0 for all t ∈ [0, T ].

Moreover, we obtain that

D((V x)(t), 0̂) = D(

∫ t

0

K(t, s)x(s)ds, 0̂)

≤
∫ t

0

D(K(t, s)x(s), 0̂)ds

≤ K∆

∫ t

0

D(x(s), 0̂)ds ≤ K∆M0T
.
= M1.

It follows that

D
(
F (t, x(t), (V x)(t)), 0̂

)
≤ a(t) +Mb(t)

.
= µ(t),

where M = M0 +M1. Since a(·), b(·) ∈ L1 (I,R+), one has that µ(·) ∈ L1 (I,R+)

Let c =
∫ T

0
µ(s)ds+ 1. We define

Ω =

{
x(·) ∈ C([0, T ],En) : sup

t∈[0,T ]

D(x(t), x0) ≤ c
}
.

Clearly, Ω closed, bounded and convex set. We also define the operator P :
C[[0, T ],En]→ C[[0, T ],En] by

(Px)(t) = x0 +

∫ t

0

F (s, x(s), (V x)(s))ds, t ∈ [0, T ].

Therefore

D((Px)(t), x0) = D
(∫ t

0
F (s, x(s), (V x)(s))ds, 0̂

)

≤
∫ t

0
D
(
F (s, x(s), (V x)(s)), 0̂

)
ds

≤
∫ T

0
µ(s)ds < c

for x ∈ Ω and t ∈ [0, T ]. Thus P (Ω) ⊂ Ω and P (Ω) is uniformly bounded on [0, T ].
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Next we have to show that P is a continuous operator on Ω. For this, let xn(·) ∈ Ω
such that xn(·)→ x(·). Then

D((Pxn)(t), (Px)(t)) = D

(∫ t

0

F (s, xn(s), (V xn)(s))ds,

∫ t

0

F (s, x(s), (V x)(s))ds

)

≤
∫ t

0

D (F (s, xn(s), (V xn)(s)), F (s, x(s), (V x)(s))) ds.

Also, V : Ω→ En defined by (V x)(t) =
∫ t

0
K(t, s)x(s)ds is a continuous operator,

because

D((V xn)(t), (V x)(t)) = D

(∫ t

0

K(t, s)xn(s)ds,

∫ t

0

K(t, s)x(s)ds

)

≤
∫ t

0

D (K(t, s)xn(s),K(t, s)x(s)) ds

≤ K∆

∫ t

0

D(xn(s), x(s))ds→ 0 as n→∞.

Thus by (H1), it follows that D((Pxn)(t), (Px)(t)) → 0 as n → ∞ uniformly on
[0, T ], so P is a continuous operator on [0, T ].

The function t →
t∫

0

µ(·)ds is uniformly continuous on the closed set [0, T ], i.e.

there exist η > 0 such that
∣∣∣
∫ t
s
µ(τ)dτ

∣∣∣ ≤ ε
2 for all t, s ∈ [0, T ] with |t− s| < η.

Further, for each m ≥ 1, we divide [0, T ] into m subintervals [ti, ti+1] with
ti = iT

m .

xm(t) =

{
x0 if t ∈ [0, t1],
(Pxm)(t− ti) if t ∈ [ti, ti+1].

Then xm(·) ∈ Ω for every m ≥ 1. Moreover, for t ∈ [0, t1], we have

D ((Pxm)(t), xm(t)) = D

(∫ t

0

F (s, xm(s), (V xm)(s)), 0̂

)
ds

≤
∫ t1

0

D
(
F (s, xm(s), (V xm)(s)), 0̂

)
ds ≤

∫ t1

0

µ(s)ds,

and for t ∈ [ti, ti+1], we have t− ti ≤ T
m and hence

D ((Pxm)(t), xm(t)) = D ((Pxm)(t), (Pxm)(t− ti))

= D

(∫ t

0

F (s, xm(s), (V xm)(s))ds,

∫ ti

0

F (s, xm(s), (V xm)(s))ds

)

= D




t∫

t−ti

F (s, xm(s), (V xm)(s))ds, 0̂




≤
t∫

t−T/m

D
(
F (s, xm(s), (V xm)(s))ds, 0̂

)
ds
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≤
t∫

t−T/m

µ(s)ds.

Therefore lim
m→∞

D((Pxm)(t), xm(t)) = 0 on [0,T]. Let A = {xm(·);m ≥ 1}. We

claim that A is equicontinuous on [0, T ]. If t, s ∈ [0, T/m], then D(xm(t), xm(s)) =
0. If 0 ≤ s ≤ T/m ≤ t ≤ T , then

D (xm(t), xm(s)) = D

(
x0 +

∫ t−T/m

0

F (σ, xm(σ), (V xm)(σ))dσ, x0

)

≤
∫ t−T/m

0

D
(
F (σ, xm(σ), (V xm)(σ)), 0̂

)
dσ

≤
∫ t−T/m

0

µ(σ)dσ ≤
∫ t

0

µ(σ)dσ < ε/2,

for |t− s| < η. If T/m ≤ s ≤ t ≤ T , then

D (xm(t), xm(s)) < ε/2 when |t− s| < ε.

Therefore A is equicontinuous on [0,T]. Set A(t) = {xm(t);m ≥ 1} for t ∈ [0, T ].
We are to show that A(t) is precompact for each t ∈ [0, T ]. We have

ρ(A(t)) ≤ ρ
(∫ t−T/m

0

F (s,A(s), (V A)(s))ds

)
+ρ

(∫ t

t−T/m
F (s,A(s), (V A)(s))ds

)
.

Given ε > 0, we can find m(ε) > 0, such that
∫ t
t−T/m µ(s)ds < ε/2, for all t ∈ [0, T ]

and m ≥ m(ε). Hence

ρ

(∫ t

t−T/m
F (s,A(s), (V A)(s))ds

)

= ρ

({∫ t

t−T/m
F (s, xm(s), (V xm))ds;m ≥ n(ε)

})

≤ 2

∫ t

t−T/m
µ(s)ds < ε.

It follows that

ρ(A(t)) ≤ ρ
(∫ t

0

F (s,A(s), (V A)(s))ds

)
≤ 2

∫ t

0

ρ (F (s,A(s), (V A)(s))) ds

≤ 2

∫ t

0

λ(s)[ρ(A(s)) + ρ((V A)(s))]ds.

255



However,

ρ(V A(s)) = ρ

(∫ t

0

K(t, s)A(s)ds

)
= ρ

({∫ t

0

K(t, s)xm(s)ds; m ≥ 1

})

≤ 2

∫ t

0

ρ ({K(t, s)xm(s); m ≥ 1}) ds ≤ 2

∫ t

0

K∆ρ ({xm(s); m ≥ 1}) ds

= 2

∫ t

0

K∆ρ(A(s))ds

and ∫ t

0

ρ (V A(s)) ds ≤
∫ t

0

2

∫ s

0

K∆ρ (A(τ)) dτ ds

= 2

∫ t

0

∫ t

τ

K∆ρ (A(τ)) dsdτ

= 2

∫ t

0

K∆(t− τ)ρ(A(τ))dτ ≤ K∆T

∫ t

0

ρ(A(τ))dτ.

Therefore we obtain that

ρ(A(t)) ≤ 2

∫ t

0

λ(s)[ρ (A(s)) +K∆Tρ (A(s))]ds.

Let R = e2(1+K∆T )
∫ T
0
λ(t)dt. Due to Gronwall inequality

ρ(A(t)) ≤ R
∫ t

0

ρ (A(s)) ds.

Therefore ρ(A(t)) = 0 and hence A(t) is precompact for every t ∈ [0, T ]. Since
A is equicontinuous and A(t) is precompact, one has that Arzela-Ascoli theorem
holds true in our case. Thus (passing to subsequences if necessary) the sequence
{xn(t)}∞n=1 converges uniformly on [0, T ] to a continuous function x(·) ∈ Ω. Due
to the triangle inequality

D ((Px)(t), x(t)) ≤ D ((Px)(t), (Pxn)(t))

+D ((Pxn)(t), xn(t)) +D (xn(t), x(t))→ 0,

we have (Px)(t) = x(t) for all t ∈ [0, T ], i.e. x(·) is a solution of (1.1). �
3.2. Remark. From Theorem 3.1 it is easy to see that the solution set of (1.1)
denoted by

Ω =

{
x(·) ∈ C([0, T ],En) : sup

t∈[0,T ]

D(x(t), x0) ≤ c
}

is compact.

4. Conclusion

We pay our attention to find existence of solution of fuzzy integro-differential
equations under mild assumption as compared with the already existing results
in the literature, To overcome some difficulties as lack of compactness and other
restrictive properties of fuzzy space En, we use Kuratowski measure of non com-
pactness, which enables us to use Arzela-Ascoli theorem.
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