Fuzzy integro-differential equations with compactness type conditions

T. Donchev *, A. Nosheen ${ }^{\dagger}$ and V. Lupulescu ${ }^{\ddagger}$

Abstract

In the paper fuzzy integro-differential equations with almost continuous right hand sides are studied. The existence of solution is proved under compactness type conditions.

Keywords: Fuzzy integro-differential equation; Measure of noncompactness.
2000 AMS Classification: 34A07, 34A12, 34L30.

1. Introduction

Many problems in modeling as well as in medicines are described by fuzzy integro-differential equations, which are helpful in studying the observability of dynamical control systems. This is the main reason to study these equations extensively. We mention the papers [1] and [2], where nonlinear integro-differential equations are studied in Banach spaces and in fuzzy space respectively. In [3], existence result for nonlinear fuzzy Volterra-Fredholm integral equation is proved. In [14], fuzzy Volterra integral equations are studied using fixed point theorem, while in [10], the method of successive approximation is used, when the right hand side satisfies Lipschitz condition. In [15] Kuratowski measure of noncompactness as well as imbedding map from fuzzy to Banach space is used to prove existence of solutions. In [11] existence and uniqueness result for fuzzy Volterra integral equation with Lipschitz right hand side and with infinite delay is proved using successive approximations method. We also refer to [4] where existence of solution of functional integral equation under compactness condition is proved.

In the paper we study the following fuzzy integro-differential equation:

$$
\begin{equation*}
\dot{x}(t)=F(t, x(t),(V x)(t)), x(0)=x_{0}, t \in I=[0, T], \tag{1.1}
\end{equation*}
$$

[^0]where $(V x)(t)=\int_{0}^{t} K(t, s) x(s) d s$ is an integral operator of Volterra type.

2. Preliminaries

In this section we give our main assumptions and preliminary results needed in the paper.

The fuzzy set space is denoted by $\mathbb{E}^{n}=\left\{x: \mathbb{R}^{n} \rightarrow[0,1] ; x\right.$ satisfies 1$\left.\left.)-4\right)\right\}$.

1) x is normal i.e. there exists $y_{0} \in \mathbb{R}^{n}$ such that $x\left(y_{0}\right)=1$,
2) x is fuzzy convex i.e. $x(\lambda y+(1-\lambda) z) \geq \min \{x(y), x(z)\}$ whenever $y, z \in \mathbb{R}^{n}$ and $\lambda \in[0,1]$,
3) x is upper semicontinuous i.e. for any $y_{0} \in \mathbb{R}^{n}$ and $\varepsilon>0$ there exists $\delta\left(y_{0}, \varepsilon\right)>0$ such that $x(y)<x\left(y_{0}\right)+\varepsilon$ whenever $\left|y-y_{0}\right|<\delta$ and $y \in \mathbb{R}^{n}$,
4) The closure of the set $\left\{y \in \mathbb{R}^{n} ; x(y)>0\right\}$ is compact.

The set $[x]^{\alpha}=\left\{y \in \mathbb{R}^{n} ; x(y) \geq \alpha\right\}$ is called α-level set of x.
It follows from 1) -4) that the α-level sets $[x]^{\alpha}$ are convex compact subsets of \mathbb{R}^{n} for all $\alpha \in(0,1]$. The fuzzy zero is

$$
\hat{O}(y)=\left\{\begin{array}{l}
0 \text { if } y \neq 0 \\
1 \text { if } y=0
\end{array}\right.
$$

Evidently \mathbb{E}^{n} is a complete metric space equipped with metric

$$
D(x, y)=\sup _{\alpha \in(0,1]} D_{H}\left([x]^{\alpha},[y]^{\alpha}\right)
$$

where $D_{H}(A, B)=\max \left\{\max _{a \in A} \min _{b \in B}|a-b|, \max _{b \in B} \min _{a \in A}|a-b|\right\}$ is the Hausdorff distance between the convex compact subsets of \mathbb{R}^{n}. From Theorem 2.1 of [7], we know that \mathbb{E}^{n} can be embedded as a closed convex cone in a Banach space \mathbb{X}. The embedding map $j: \mathbb{E}^{n} \rightarrow \mathbb{X}$ is isometric and isomorphism.

The function $g: I \rightarrow \mathbb{E}^{n}$ is said to be simple function if there exists a finite number of pairwise disjoint measurable subsets I_{1}, \ldots, I_{n} of I with $I=\bigcup_{k=1}^{n} I_{k}$ such that $g(\cdot)$ is constant on every I_{k}.

The map $f: I \rightarrow \mathbb{E}^{n}$ is said to be strongly measurable if there exists a sequence $\left\{f_{m}\right\}_{m=1}^{\infty}$ of simple functions $f_{m}: I \rightarrow \mathbb{E}^{n}$ such that $\lim _{m \rightarrow \infty} D\left(f_{m}(t), f(t)\right)=0$ for a.a $t \in I$.

In the fuzzy set literature starting from [12] the integral of fuzzy functions is defined levelwise, i.e. there exists $g(t) \in \mathbb{E}^{n}$ such that $[g]^{\alpha}(t)=\int_{0}^{t}[f]^{\alpha}(s) d s$.

Now if $g(\cdot): I \rightarrow \mathbb{E}^{n}$ is strongly measurable and integrable then $j(g)(\cdot)$ is strongly measurable and Bochner integrable and

$$
\begin{equation*}
j\left(\int_{0}^{t} g(s) d s\right)=\int_{0}^{t} j(g)(s) d s \text { for all } t \in I \tag{2.1}
\end{equation*}
$$

We recall some properties of integrable fuzzy set valued mapping from [7].
2.1. Theorem. Let $G, K: I \rightarrow \mathbb{E}^{n}$ be integrable and $\lambda \in \mathbb{R}$ then
(i) $\int_{I}(G(t)+K(t)) d t=\int_{I} G(t) d t+\int_{I} K(t) d t$,
(ii) $\int_{I} \lambda G(t) d t=\lambda \int_{I} G(t) d t$,
(iii) $D(G, K)$ is integrable,
(iv) $D\left(\int_{I} G(t) d t, \int_{I} K(t) d t\right) \leq \int_{I} D(G(t), K(t)) d t$.

A mapping $F: I \rightarrow \mathbb{E}^{n}$ is said to be differentiable at $t \in I$ if there exists $\dot{F}(t) \in \mathbb{E}^{n}$ such that the limits $\lim _{h \rightarrow 0^{+}} \frac{F(t+h)-F(t)}{h}$ and $\lim _{h \rightarrow 0^{+}} \frac{F(t)-F(t-h)}{h}$ exist, and are equal to $\dot{F}(t)$. At the end point of I we consider only the one sided derivative.

Notice that \mathbb{E}^{n} is not locally compact (cf. [13]). Consequently we need compactness type assumptions to prove existence of solution, we refer the interested reader to [5] and the references therein.

Let Y be complete metric space with metric $\varrho_{Y}(\cdot, \cdot)$. The Hausdorff measure of noncompactness $\beta: Y \rightarrow \mathbb{R}$ for the bounded subset A of Y is defined by

$$
\beta(A):=\inf \{d>0: A \text { can be covered by finite many balls with radius } \leq d\}
$$

and "Kuratowski measure" of noncompactness $\rho: Y \rightarrow \mathbb{R}$ for the bounded subset A of Y is defined by

$$
\rho(A):=\inf \{d>0: A \text { can be covered by finite many sets with diameter } \leq d\}
$$

where for any bounded set $A \subset Y$, we denote $\operatorname{diam}(A)=\sup _{a, b \in A} \varrho_{Y}(a, b)$. It is well known that $\rho(A) \leq \beta(A) \leq 2 \rho(A)$ (cf. [8] p.116).

Let $\gamma(\cdot)$ represent the both $\rho(\cdot)$ and $\beta(\cdot)$, then some properties of $\gamma(\cdot)$ are listed below:
(i) $\gamma(A)=0$ if and only if A is precompact, i.e. its closure \bar{A} is compact,
(ii) $\gamma(A+B)=\gamma(A)+\gamma(B)$ and $\gamma(\overline{c o} A)=\gamma(A)$,
(iii) If $A \subset B$ then $\gamma(A) \leq \gamma(B)$,
(iv) $\gamma(A \bigcup B)=\max (\gamma(A), \gamma(B))$,
(v) $\gamma(\cdot)$ is continuous with respect to the Hausdorff distance.

The following theorem of Kisielewicz can be found e.g. in [8].
2.2. Theorem. Let X be separable Banach space and let $\left\{g_{n}(\cdot)\right\}_{n=1}^{\infty}$ be an integrally bounded sequence of measurable functions from I into X, then $t \rightarrow \beta\left\{g_{n}(t), n \geq\right.$ $1\}$ is measurable and

$$
\begin{equation*}
\beta\left(\int_{t}^{t+h}\left\{\bigcup_{i=1}^{\infty} g_{i}(s)\right\} d s\right) \leq \int_{t}^{t+h} \beta\left\{\bigcup_{i=1}^{\infty} g_{i}(s)\right\} d s \tag{2.2}
\end{equation*}
$$

where $t, t+h \in I$.
The map $t \rightarrow\left\{\bigcup_{i=1}^{\infty} g_{i}(t)\right\}$ is a set valued (multifunction). The integral is defined in Auman sense, i.e. union of the values of the integrals of all (strongly) measurable selections.
2.3. Remark. Since the imbedding map $j: \mathbb{E}^{n} \rightarrow \mathbb{X}$ is isometry and isomorphism, one has that it preserve diameter of any closed subset i.e. $\rho(A)=\rho(j(A))$, for any closed and bounded set $A \in \mathbb{E}^{n}$.
2.4. Theorem. Let $\left\{f_{n}(\cdot)\right\}_{n=1}^{\infty}$ be a (integrally bounded) sequence of strongly measurable fuzzy functions defined from I into \mathbb{E}^{n}. Then $t \rightarrow \rho\left(\left\{f_{m}(t), m \geq 1\right\}\right)$ is measurable and

$$
\begin{equation*}
\rho\left(\int_{a}^{b} \bigcup_{m=1}^{\infty} f_{m}(s) d s\right) \leq 2 \int_{a}^{b} \rho\left(\bigcup_{m=1}^{\infty} f_{m}(s)\right) d s \tag{2.3}
\end{equation*}
$$

Proof. Since f_{m} are strongly measurable, one has that $j\left(f_{m}\right)(\cdot)$ are also strongly measurable and hence almost everywhere separably valued.

Thus there exists a separable Banach space $Y \subset X$ such that $j\left(f_{m}\right)(I \backslash N) \subset Y$, where $N \subset I$ is a null set.

Furthermore without loss of generality from Theorem 2.2 and Remark 2.3, we have

$$
\begin{aligned}
& \rho\left(\int_{a}^{b}\left(\bigcup_{m=1}^{\infty} f_{m}(s)\right) d s\right)=\rho\left(\int_{a}^{b}\left(\bigcup_{m=1}^{\infty} j\left(f_{m}(s)\right)\right) d s\right) \\
\leq & \beta\left(\int_{a}^{b}\left(\bigcup_{m=1}^{\infty} j\left(f_{m}(s)\right)\right) d s\right)=\int_{a}^{b} \beta\left(\bigcup_{m=1}^{\infty} j\left(f_{m}(s)\right)\right) d s \\
\leq & 2 \int_{a}^{b} \rho\left(\bigcup_{m=1}^{\infty} j\left(f_{m}(s)\right)\right) d s=2 \int_{a}^{b} \rho\left(\bigcup_{m=1}^{\infty} f_{m}(s)\right) d s
\end{aligned}
$$

Consequently, we get (2.3).
2.5. Remark. Evidently one can replace $\rho(\cdot)$ by $\beta(\cdot)$ in (2.3). It would be interesting to see is it possible to replace 2 in the right hand side by smaller constant, using the special structure of the fuzzy set space, i.e. is it true that

$$
\beta\left(\int_{a}^{b} \bigcup_{m=1}^{\infty} f_{m}(s) d s\right) \leq C \int_{a}^{b} \beta\left(\bigcup_{m=1}^{\infty} f_{m}(s)\right) d s
$$

for some $1 \leq C<2$?

3. Main Results

In this section we prove the existence of solution of (1.1). The following hypotheses will be used;
(H1) $F: I \times \mathbb{E}^{n} \times \mathbb{E}^{n} \rightarrow \mathbb{E}^{n}$ is such that
(i) $t \rightarrow F(t, x, y)$ is strongly measurable for all $x, y \in \mathbb{E}^{n}$,
(ii) $(x, y) \rightarrow F(t, x, y)$ is continuous for almost all $t \in I$.

Suppose there exist $a(\cdot), b(\cdot) \in L^{1}\left(I, \mathbb{R}_{+}\right)$such that:
(H2) $\rho(F(t, A, B)) \leq \lambda(t)(\rho(A)+\rho(B))$, for all non empty bounded subsets $A, B \in$ \mathbb{E}^{n} and $\lambda(\cdot) \in L^{1}\left(I, \mathbb{R}_{+}\right)$,
(H3) $D(F(t, x, y), \hat{0}) \leq a(t)+b(t)[D(x, \hat{0})+D(y, \hat{0})]$,
(H4) $K: \triangle=\{(t, s) ; 0 \leq s \leq t \leq a\} \rightarrow \mathbb{R}_{+}$is a continuous function.
3.1. Theorem. If $\left(\boldsymbol{H}_{1}\right)-\left(\boldsymbol{H}_{4}\right)$ hold, then problem (1.1) has at least one solution on $[0, T]$.

Proof. First, we will show that a solution of (1.1) is bounded. Indeed, we have

$$
\begin{array}{r}
D(x(t), \hat{0})=D\left(x_{0}, \hat{0}\right)+D\left(\int_{0}^{t} F(s, x(s),(V x)(s)) d s, \hat{0}\right) \\
\leq D\left(x_{0}, \hat{0}\right)+\int_{0}^{t} D(F(s, x(s),(V x)(s)), \hat{0}) d s \\
\leq D\left(x_{0}, \hat{0}\right)+\int_{0}^{t}\left(a(s)+b(s)\left[D(x(s), \hat{0})+D\left(\int_{0}^{s} K(s, \tau) x(\tau) d \tau, \hat{0}\right)\right]\right) d s \\
\leq D\left(x_{0}, \hat{0}\right)+\int_{0}^{t}\left(a(s)+b(s) D(x(s), \hat{0})+K_{\Delta} b(s) \int_{0}^{s} D(x(\tau) d \tau, \hat{0})\right) d s
\end{array}
$$

where $K_{\Delta}=\max _{(t, s) \in \Delta}|K(t, s)|$.
Therefore, if we denote $m(t)=D(x(t), \hat{0})$, then we obtain

$$
m(t)=m(0)+\int_{0}^{t}\left(a(s)+b(s) m(s)+K_{\Delta} b(s) \int_{0}^{s} m(\tau) d \tau\right) d s
$$

By Pachpatte's inequality (see Theorem 1 in [9]), we get that there exists $M_{0}>0$ such that $m(t)=D(x(t), \hat{0}) \leq M_{0}$ for all $t \in[0, T]$.

Moreover, we obtain that

$$
\begin{aligned}
& D((V x)(t), \hat{0})=D\left(\int_{0}^{t} K(t, s) x(s) d s, \hat{0}\right) \\
& \leq \int_{0}^{t} D(K(t, s) x(s), \hat{0}) d s \\
& \leq K_{\Delta} \int_{0}^{t} D(x(s), \hat{0}) d s \leq K_{\Delta} M_{0} T \doteq M_{1}
\end{aligned}
$$

It follows that

$$
D(F(t, x(t),(V x)(t)), \hat{0}) \leq a(t)+M b(t) \doteq \mu(t)
$$

where $M=M_{0}+M_{1}$. Since $a(\cdot), b(\cdot) \in L^{1}\left(I, \mathbb{R}_{+}\right)$, one has that $\mu(\cdot) \in L^{1}\left(I, \mathbb{R}_{+}\right)$ Let $c=\int_{0}^{T} \mu(s) d s+1$. We define

$$
\Omega=\left\{x(\cdot) \in C\left([0, T], \mathbb{E}^{n}\right): \sup _{t \in[0, T]} D\left(x(t), x_{0}\right) \leq c\right\}
$$

Clearly, Ω closed, bounded and convex set. We also define the operator P : $C\left[[0, T], \mathbb{E}^{n}\right] \rightarrow C\left[[0, T], \mathbb{E}^{n}\right]$ by

$$
(P x)(t)=x_{0}+\int_{0}^{t} F(s, x(s),(V x)(s)) d s, t \in[0, T]
$$

Therefore

$$
\begin{aligned}
& D\left((P x)(t), x_{0}\right)= D\left(\int_{0}^{t} F(s, x(s),(V x)(s)) d s, \hat{0}\right) \\
& \leq \int_{0}^{t} D(F(s, x(s),(V x)(s)), \hat{0}) d s \\
& \leq \int_{0}^{T} \mu(s) d s<c
\end{aligned}
$$

for $x \in \Omega$ and $t \in[0, T]$. Thus $P(\Omega) \subset \Omega$ and $P(\Omega)$ is uniformly bounded on $[0, T]$.

Next we have to show that P is a continuous operator on Ω. For this, let $x_{n}(\cdot) \in \Omega$ such that $x_{n}(\cdot) \rightarrow x(\cdot)$. Then

$$
\begin{aligned}
D\left(\left(P x_{n}\right)(t),(P x)(t)\right)=D(& \left.\int_{0}^{t} F\left(s, x_{n}(s),\left(V x_{n}\right)(s)\right) d s, \int_{0}^{t} F(s, x(s),(V x)(s)) d s\right) \\
& \leq \int_{0}^{t} D\left(F\left(s, x_{n}(s),\left(V x_{n}\right)(s)\right), F(s, x(s),(V x)(s))\right) d s
\end{aligned}
$$

Also, $V: \Omega \rightarrow \mathbb{E}^{n}$ defined by $(V x)(t)=\int_{0}^{t} K(t, s) x(s) d s$ is a continuous operator, because

$$
\begin{aligned}
& D\left(\left(V x_{n}\right)(t),(V x)(t)\right)= D\left(\int_{0}^{t} K(t, s) x_{n}(s) d s, \int_{0}^{t} K(t, s) x(s) d s\right) \\
& \leq \int_{0}^{t} D\left(K(t, s) x_{n}(s), K(t, s) x(s)\right) d s \\
& \leq K_{\Delta} \int_{0}^{t} D\left(x_{n}(s), x(s)\right) d s \rightarrow 0 \text { as } n \rightarrow \infty
\end{aligned}
$$

Thus by (H1), it follows that $D\left(\left(P x_{n}\right)(t),(P x)(t)\right) \rightarrow 0$ as $n \rightarrow \infty$ uniformly on $[0, T]$, so P is a continuous operator on $[0, T]$.

The function $t \rightarrow \int_{0}^{t} \mu(\cdot) d s$ is uniformly continuous on the closed set $[0, T]$, i.e. there exist $\eta>0$ such that $\left|\int_{s}^{t} \mu(\tau) d \tau\right| \leq \frac{\varepsilon}{2}$ for all $t, s \in[0, T]$ with $|t-s|<\eta$.

Further, for each $m \geq 1$, we divide $[0, T]$ into m subintervals $\left[t_{i}, t_{i+1}\right]$ with $t_{i}=\frac{i T}{m}$.

$$
x_{m}(t)=\left\{\begin{array}{l}
x_{0} \quad \text { if } \mathrm{t} \in\left[0, \mathrm{t}_{1}\right] \\
\left(P x_{m}\right)\left(t-t_{i}\right)
\end{array} \text { if } \mathrm{t} \in\left[\mathrm{t}_{\mathrm{i}}, \mathrm{t}_{\mathrm{i}+1}\right] .\right.
$$

Then $x_{m}(\cdot) \in \Omega$ for every $m \geq 1$. Moreover, for $t \in\left[0, t_{1}\right]$, we have

$$
\begin{gathered}
D\left(\left(P x_{m}\right)(t), x_{m}(t)\right)=D\left(\int_{0}^{t} F\left(s, x_{m}(s),\left(V x_{m}\right)(s)\right), \hat{0}\right) d s \\
\quad \leq \int_{0}^{t_{1}} D\left(F\left(s, x_{m}(s),\left(V x_{m}\right)(s)\right), \hat{0}\right) d s \leq \int_{0}^{t_{1}} \mu(s) d s
\end{gathered}
$$

and for $t \in\left[t_{i}, t_{i+1}\right]$, we have $t-t_{i} \leq \frac{T}{m}$ and hence

$$
\begin{gathered}
D\left(\left(P x_{m}\right)(t), x_{m}(t)\right)=D\left(\left(P x_{m}\right)(t),\left(P x_{m}\right)\left(t-t_{i}\right)\right) \\
=D\left(\int_{0}^{t} F\left(s, x_{m}(s),\left(V x_{m}\right)(s)\right) d s, \int_{0}^{t_{i}} F\left(s, x_{m}(s),\left(V x_{m}\right)(s)\right) d s\right) \\
=D\left(\int_{t-t_{i}}^{t} F\left(s, x_{m}(s),\left(V x_{m}\right)(s)\right) d s, \hat{0}\right) \\
\leq \int_{t-T / m}^{t} D\left(F\left(s, x_{m}(s),\left(V x_{m}\right)(s)\right) d s, \hat{0}\right) d s
\end{gathered}
$$

$$
\leq \int_{t-T / m}^{t} \mu(s) d s
$$

Therefore $\lim _{m \rightarrow \infty} D\left(\left(P x_{m}\right)(t), x_{m}(t)\right)=0$ on $[0, \mathrm{~T}]$. Let $A=\left\{x_{m}(\cdot) ; m \geq 1\right\}$. We claim that A is equicontinuous on $[0, T]$. If $t, s \in[0, T / m]$, then $D\left(x_{m}(t), x_{m}(s)\right)=$ 0 . If $0 \leq s \leq T / m \leq t \leq T$, then

$$
\begin{array}{r}
D\left(x_{m}(t), x_{m}(s)\right)=D\left(x_{0}+\int_{0}^{t-T / m} F\left(\sigma, x_{m}(\sigma),\left(V x_{m}\right)(\sigma)\right) d \sigma, x_{0}\right) \\
\leq \int_{0}^{t-T / m} D\left(F\left(\sigma, x_{m}(\sigma),\left(V x_{m}\right)(\sigma)\right), \hat{0}\right) d \sigma \\
\quad \leq \int_{0}^{t-T / m} \mu(\sigma) d \sigma \leq \int_{0}^{t} \mu(\sigma) d \sigma<\epsilon / 2
\end{array}
$$

for $|t-s|<\eta$. If $T / m \leq s \leq t \leq T$, then

$$
D\left(x_{m}(t), x_{m}(s)\right)<\epsilon / 2 \quad \text { when } \quad|t-s|<\epsilon
$$

Therefore A is equicontinuous on $[0, T]$. Set $A(t)=\left\{x_{m}(t) ; m \geq 1\right\}$ for $t \in[0, T]$. We are to show that $A(t)$ is precompact for each $t \in[0, T]$. We have

$$
\rho(A(t)) \leq \rho\left(\int_{0}^{t-T / m} F(s, A(s),(V A)(s)) d s\right)+\rho\left(\int_{t-T / m}^{t} F(s, A(s),(V A)(s)) d s\right)
$$

Given $\epsilon>0$, we can find $m(\epsilon)>0$, such that $\int_{t-T / m}^{t} \mu(s) d s<\epsilon / 2$, for all $t \in[0, T]$ and $m \geq m(\epsilon)$. Hence

$$
\begin{array}{r}
\rho\left(\int_{t-T / m}^{t} F(s, A(s),(V A)(s)) d s\right) \\
=\rho\left(\left\{\int_{t-T / m}^{t} F\left(s, x_{m}(s),\left(V x_{m}\right)\right) d s ; m \geq n(\epsilon)\right\}\right) \\
\leq 2 \int_{t-T / m}^{t} \mu(s) d s<\epsilon
\end{array}
$$

It follows that

$$
\begin{aligned}
\rho(A(t)) \leq \rho\left(\int_{0}^{t} F(s, A(s),(V A)(s)) d s\right) \leq & 2 \int_{0}^{t} \rho(F(s, A(s),(V A)(s))) d s \\
\leq & 2 \int_{0}^{t} \lambda(s)[\rho(A(s))+\rho((V A)(s))] d s
\end{aligned}
$$

However,

$$
\begin{array}{r}
\rho(V A(s))=\rho\left(\int_{0}^{t} K(t, s) A(s) d s\right)=\rho\left(\left\{\int_{0}^{t} K(t, s) x_{m}(s) d s ; m \geq 1\right\}\right) \\
\leq 2 \int_{0}^{t} \rho\left(\left\{K(t, s) x_{m}(s) ; m \geq 1\right\}\right) d s \leq 2 \int_{0}^{t} K_{\Delta} \rho\left(\left\{x_{m}(s) ; m \geq 1\right\}\right) d s \\
=2 \int_{0}^{t} K_{\Delta} \rho(A(s)) d s
\end{array}
$$

and

$$
\begin{aligned}
& \int_{0}^{t} \rho(V A(s)) d s \leq \int_{0}^{t} 2 \int_{0}^{s} K_{\Delta} \rho(A(\tau)) d \tau d s \\
&=2 \int_{0}^{t} \int_{\tau}^{t} K_{\Delta} \rho(A(\tau)) d s d \tau \\
&=2 \int_{0}^{t} K_{\Delta}(t-\tau) \rho(A(\tau)) d \tau \leq K_{\Delta} T \int_{0}^{t} \rho(A(\tau)) d \tau
\end{aligned}
$$

Therefore we obtain that

$$
\rho(A(t)) \leq 2 \int_{0}^{t} \lambda(s)\left[\rho(A(s))+K_{\Delta} T \rho(A(s))\right] d s
$$

Let $R=e^{2\left(1+K_{\Delta} T\right) \int_{0}^{T} \lambda(t) d t}$. Due to Gronwall inequality

$$
\rho(A(t)) \leq R \int_{0}^{t} \rho(A(s)) d s
$$

Therefore $\rho(A(t))=0$ and hence $A(t)$ is precompact for every $t \in[0, T]$. Since A is equicontinuous and $A(t)$ is precompact, one has that Arzela-Ascoli theorem holds true in our case. Thus (passing to subsequences if necessary) the sequence $\left\{x_{n}(t)\right\}_{n=1}^{\infty}$ converges uniformly on $[0, T]$ to a continuous function $x(\cdot) \in \Omega$. Due to the triangle inequality

$$
\begin{array}{r}
D((P x)(t), x(t)) \leq D\left((P x)(t),\left(P x_{n}\right)(t)\right) \\
+D\left(\left(P x_{n}\right)(t), x_{n}(t)\right)+D\left(x_{n}(t), x(t)\right) \rightarrow 0
\end{array}
$$

we have $(P x)(t)=x(t)$ for all $t \in[0, T]$, i.e. $x(\cdot)$ is a solution of (1.1).
3.2. Remark. From Theorem 3.1 it is easy to see that the solution set of (1.1) denoted by

$$
\Omega=\left\{x(\cdot) \in C\left([0, T], \mathbb{E}^{n}\right): \sup _{t \in[0, T]} D\left(x(t), x_{0}\right) \leq c\right\}
$$

is compact.

4. Conclusion

We pay our attention to find existence of solution of fuzzy integro-differential equations under mild assumption as compared with the already existing results in the literature, To overcome some difficulties as lack of compactness and other restrictive properties of fuzzy space \mathbb{E}^{n}, we use Kuratowski measure of non compactness, which enables us to use Arzela-Ascoli theorem.

Acknowledgement. The research of first Author is partially supported by a grant of the Romanian National Authority for Scientific Research, CNCS UEFISCDI, project number PN-II-ID-PCE-2011-3-0154, while the research of 2nd Author is partially supported by Higher Education Commission, Pakistan.

References

[1] P. Balasubramaniam, M. Chandrasekaran, Existence of solutions of nonlinear Integrodifferential equation with nonlocal boundary conditions in Banach space, Atti. Sere. Mat. Fis. Univ. Modena XLVI (1998) 1-13.
[2] P. Balasubramaniam, S. Muralisankar, Existence and uniqueness of fuzzy solution for the nonlinear Fuzzy Integrodifferential equations, Appl. Math. Left. 14 (2001) 455-462.
[3] K. Balachandran, P. Prakash, Existence of solutions of nonlinear fuzzy Volterra-Fredholm integral equations, Indian Journal of Pure Applied Mathematics 33 (2002), 329-343.
[4] J. Banas, B. Rzepka, An application of a measure of noncompactness in the study of Asymptotic Stability, Applied Mathematical Letters 16 (2003) 1-6.
[5] R. Choudary, T. Donchev, On Peano Theorem for fuzzy differential equations, Fuzzy Sets and Systems 177 (2011) 93-94.
[6] K. Deimling, Multivalued Differential Equations, De Grujter, Berlin, 1992.
[7] O. Kaleva, The Cauchy problem for fuzzy differential equations, Fuzzy Sets and Systems 35 (1990) 389-396.
[8] M. Kisielewicz, Multivalued differential equations in separable Banach spaces, J. Opt. Theory Appl. 37 (1982) 231-249.
[9] B. Pachpatte, A note on Gronwall-Bellman inequality, J. math. Anal. Appl. 44 (1973) 758762.
[10] J. Park, H. Han, Existence and uniqueness theorem for a solution of fuzzy Volterra integral equations, Fuzzy Sets and Systems 105 (1999) 481-488.
[11] P. Prakash, V. Kalaiselvi, Fuzzy Voltrerra integral equations with infinite delay, Tamkang Journal of Mathematics 40 (2009) 19-29,
[12] M. Puri, D. Ralescu, Fuzzy random variables, J. Math. Anal. Appl. 114 (1986) 409-422.
[13] H. Romano-Flores, The compactness of $\mathbb{E}(X)$, Appl. Math. Lett. 11 (1998) 13-17.
[14] P. Subrahmanyam, S. Sudarsanam, A note on fuzzy Volterra integral equation, Fuzzy Sets and Systems 81 (1996) 237-240.
[15] S. Song, Q. Liu,, Q. Xu, Existence and comparison theorems to Volterra fuzzy integral equation in (En,D), Fuzzy Sets and Systems 104 (1999), 315-321.

[^0]: *Department of mathematics, University of Architecture and Civil Engineering, 1 "Hr. Smirnenski" str., 1046 Sofia, Bulgaria and Department of Mathematisc, "Al. I. Cuza" University of Iasi, Bd. "Carol I" 11, Iasi 700506, Romania, Email: tzankodd@gmail.com
 ${ }^{\dagger}$ Abdus Salam School of Mathematical Sciences (ASSMS), Government College University, Lahore - Pakistan, Email: hafiza_amara@yahoo.com
 ${ }^{\ddagger}$ Abdus Salam School of Mathematical Sciences (ASSMS), Government College University, Lahore - Pakistan, Email: lupulescu_v@yahoo.com

