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Spatial decision making under determinism vs.
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Abstract

The aim of this study is to highlight the importance of uncertainty as-
sessments in GIS-based multi-attribute land-use decision making. To
this end, and based on the basic premise that uncertainty makes a dif-
ference, it makes use of an existing deterministic goal-driven and hier-
archical GIS-based land-use conflict model known as LUCIS (Land-Use
Conflict Identification Strategy), the aim of which is to create a land-
use conflict map between agricultural, urban and ecologically sensitive
land-use preferences for future planning scenarios. Being confined to
its agricultural preference (overall goal) mapping, the newly developed
uncertainty models and maps are compared with their corresponding
deterministic models and maps at each level of the LUCIS hierarchy.
The comparative models are applied to the case of Hillsborough County
in Florida, which is characterized by a high level of conflict between
the three land uses. Different levels of differences in terms of pat-
tern/shape/form and the degree of agricultural land-use suitability are
identified and assessed at all levels of the hierarchy.
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1. Introduction

The limitations associated with the classical Boolean logic representation of spatial
data in standard geographic information systems (GIS) [41; 6; 1], which is “crisp, deter-
ministic, and precise in nature” |1:143|, has resulted in the integration of multi-attribute
decision making (MADM) techniques (referred to in general as multi-criteria decision
making — MCDM — in MADM literature) with GIS [29]. This approach facilitates a wide
range of analytical procedures [7], and has gained increasing interest among modelers
over the last two decades, based on its ability to assess uncertainty in spatial MCDM
process.

GIS-based or spatial MADM is based on the discrete representation of spatial data,
generally in the form of a hierarchical structure [28]. Unlike the multi-objective process of
MCDM [28; 15], as in all multi-attribute decision making approaches this process involves
the definition of objectives, the choice of criteria for measuring these objectives and their
standardization, the criteria weighting that reflects the decision-makers’ preferences, and
an aggregation of the weighted standardized criterion values, allowing the alternatives to
be ranked, after which the best alternative will be selected [29; 30; 27].

1.1. Uncertainty analysis in land-use planning and environmental manage-
ment in spatial MCDM literature, and context of the current study. The
uncertainties in the decision-making process related to planning or environment-related
problems, including land-use suitability, are distinguishable in three dimensions, that is,
(1) location, (2) level, and (3) nature of the uncertainty [30]. In their review of some
basic works (see [45; 36; 46]) Mosadeghi et al. [30] suggest a linkage between uncertainty
analysis in MCDM and the dimensions of uncertainty with respect to uncertainty in en-
vironmental decision making (Figure 1). As can be seen in the figure, uncertainties that
are stochastic in nature are found in the context and model structure, and are related to
the decision makers’ preferences and knowledge of the MCDM process, while epistemic
uncertainties are found in the context, modeling technique and input, and are related to
model uncertainty. By definition, stochastic uncertainty, which is inherent in the context
of natural, behavioral, social, economic, and cultural systems, is random in nature and
cannot be eliminated [18; 30]. On the other hand, epistemic uncertainties are a result
of imperfect or incomplete knowledge, and can be reduced through empirical efforts and
high-quality data, monitoring and longer time series [18; 30; 32].

The following list explains the sources of uncertainty found in modeling that may
be dealt with in an uncertainty analysis in which stochastic uncertainties are excluded.
Uncertainty in the final result may originate from any of these stages [41], or may be
found in one or more of the different stages of the spatial (GIS-based) MCDM process
that may propagate in the final result [32]. As is common in many works [41; 18; 12;
11; 13; 40; 30; 32; 27|, these stages of the modeling process, which are characterized by
assessable (i.e., epistemic) uncertainty, can be listed as in the following with reference to
the locational dimension presented in Figure 1.

1. Selecting a particular/appropriate model (model structure);

2. Setting or defining the problems, goals and/or objectives (model structure);

3. Identifying appropriate attribute/criteria and/or parameters (model structure);

4. Obtaining high-quality data with minimal measurement and data processing  (context

and input) or algorithm (model technique) errors;

5. Decision making to obtain standardized criterion maps (context and model
technique);

6. Decision making for assigning of weights (model structure); and

7. Interpretation of the final results (context and model technique).



1247

Uncertainty in environmental Uncertainty analysis in
decision making MCDM
Location of uncertainty ' g :
Context g, ® & Problem structuring 1
2 S - ontex S5 $8 Method selection i
2 tochastic <::> 128 54 oc sel o !
'§ Uncertainty 12 g 3‘2 g Identification of criteria !
g Model Structure : %M Criteria weights !
=} 1
= 1 1 H
o Context e il bbbl
Q 1 E :
g istem] | ©5  Sclected mathematical
= Epistemic ) <',::> [~ elected mathematica I
=3 P =] . 1
& Uncertainty Model Technique , 2o % algorithm !
= ! £ Criteria estimation '
Input 1 = 1

Figure 1. Linkage between uncertainty terminology in environmental
decision-making science and MCDM
Source: [30:1104]

Although the number of studies that focus on uncertainty assessments in MCDM are
increasing in number, they are still considered insufficient by many scholars who con-
centrate on the requirement for the proper expression of uncertainty in GIS-based works
(see e.g., [14; 35; 40]). The shortfall, specifically, is in the quantification of uncertainty
in decision making and policy assessment concerning land-use planning [32] and for en-
vironmental processes [18].

The level of resolution to the problem of uncertainty in the above listed stages of the
modeling process in land-use or environmental decision making differs in existing litera-
ture. That is, while in some studies uncertainty is dealt with to a greater extent in terms
of both the number of works and the variety of techniques used, others are subject to
less attention by the modelers. For example, although the number of works that consider
uncertainty in relation to the selection of the model, goal/objectives, criteria/parameters
(stages 1 to 3) above is very limited [29; 11], those that are related to stage 4 on data
quality and processing is relatively high (see e.g., [2; 26; 39]). That said, it is also known
that in MCDM methods, the input data is generally assumed to be error free (see e.g.,
[41]), precise and accurate [29]. The majority of spatial MCDM literature focuses on
stages 5 and 6 [16], and to a much lesser degree, on stage 7, which deal with decision
making in terms of criteria standardization and weight assignment, and results interpreta-
tion, respectively. In literature, different MCDM techniques for dealing with uncertainty,
especially in stages 5 and 6, have been developed since the first introduction of this
decision-making process into the fields of economics and finance in the 1960s [30]. These
multi-attribute (multi-criteria) evaluation methods include the weighted linear combi-
nation (WLC), and as an extension to its limitations, the ordered weighted averaging
(OWA), as well as other additive techniques, such as multi-attribute value/utility the-
ory (MAVT/MAUT) and analytic hierarchy process (AHP). Some WLC-variant decision
rules are also included, such as ideal point methods (e.g., Technique for Order Preference
by Similarity to Ideal Solution-TOPSIS) and concordance methods (e.g., Elimination et
Choice Translating Reality-ELECTRE, Preference Ranking Organization Method for En-
richment Evaluations-PROMETHEE), and also some other methods that utilize theories
of Fuzzy sets, Random sets and Game [28; 41; 29; 16; 30).
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Literature contains a number of works that discuss the similarities and differences
between uncertainty analysis (UA) and sensitivity analysis (SA); and based on these, it
can be stated that while some authors claim there is no distinct difference between the
two concepts and that they may be used interchangeably [35; 16; 30; 31], others consider
them to be separate (see e.g., [28; 27;], but still emphasize the need of their integrated
use. As Ligmann-Zielinska and Jankowski [27] point out, UA is used to quantify the
variability of outcomes in a multi-criteria evaluation, given the model input uncertainty,
whereas SA is used to identify which criteria or criteria weights are most responsible for
this variability.

In spatial MCDM, works on land-use suitability or environmental management uncer-
tainty are dealt with using different methods, based on different theoretical backgrounds,
assumptions and different levels/types of data requirement. With reference to some
basic works [25; 8; 28; 41; 29; 35; 16; 11; 30; 31| a summary table charting these un-
certainty /sensitivity analysis methods, in addition to those that are deterministic, is
presented, with respect to their modeling type/underlying theory, typology, uncertainty
handling, method of criterion map combination, level of objectiveness and ease of com-
munication to the decision makers (Table 1).

The purpose of an uncertainty analysis in decision making is to determine the risk
in choosing a particular alternative [11]. Based on the above-listed basic works, it can
be stated that in turning the uncertainty into ‘risk’; in addition to either data-driven
traditional (a priori) probabilistic (e.g., logistic regression and Monte Carlo simulation),
data and knowledge-driven conditional (a posteriori) probabilistic (e.g., Bayesian net-
work) and their extensions (e.g., Dempster-Shafer Belief functions) or artificial intelli-
gence (e.g., neural network and fuzzy sets) methods, there are many other approaches,
including analytical error propagation, one-at-a-time (OAT), indicator-based (distance-
based) analysis, variance-based analysis, methods using random sets theory and game
theory (Table 1).

In spatial MCDM literature, which deals mainly with subjects of land-use suitability in
land-use planning and environmental management, uncertainty is handled mainly within
the 5" and 6" stages of the modeling process described earlier.

In environmental GIS-based MCDM studies, Falk et al. [18] assess the uncertainty
estimates of the outcomes of a deterministic environmental model (Revised Universal
Soil Equation-RUSLE), along with its input parameters; while Store and Kangas [41]
integrate expert knowledge with a spatial multi-criteria evaluation to model GIS habitat
suitability. As a resolution to the classical Boolean representation of GIS in uncertainty
modeling, and to make empirical data cost savings, Store and Kangas [41] utilize expert
knowledge that is based on the theoretical background of MAUT in habitat suitability.
For cost saving purposes, Castrignano et al. [10] opted for multivariate geostatistics in
GIS, utilizing ancillary less-expensive information to improve the estimate uncertainty
of a soil quality index. Facing the same GIS representation problem, Avdagic et al. [6]
and Reshmidevi et al. [37] developed a methodology to integrate a Mamdani-type fuzzy
inference rule base in GIS in land valorization for land-use planning and land suitability
for particular crops, respectively. In addition, Reshmidevi et al. [37] used the local
knowledge of farmers and experts, and compared two different aggregation methods:
WLC and Yager’s aggregation. Based on the same GIS limitation, but criticizing the
integration of Mamdani-type fuzzy logic in GIS, Adhikari and Li [1] utilize a Sugeno-
type fuzzy inference. Similar to Falk et al. [18|, who utilized Bayesian melding in a
cell-based GIS environment, O'Brien et al. [35] developed a tool called CaNaSTA (Crop
Niche Selection in Tropical Agriculture) to define site suitability for particular crops and
forages using sparse and uncertain data based on Bayesian modeling. In their tool, called
the Catchment Evaluation Decision Support System (CEDSS), which enables the explicit
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Table 1. Deterministic vs. uncertainty or sensitivity analysis methods
in multi-attribute modeling that utilize GIS and other spatial analysis
software in land-use suitability or environmental management

Deterministic /

Fuzzy logic (operations)

Fuzzy sets theory

“Possibility
theory”

Uncertainty due to imprecision
of knowledge or the ambiguity
of an event, i.e., to which
degree an event occurs

Set membership value is
between 0 and 1

. Modeling type / Method of Lo
Uncertainty or « b . . N Objectiveness /
O . Underlying Typology Uncertainty handling criterion map ..
Sensitivity analysis h . bi . Communication|
methods! theory’ combination
Boolean logic Nf’ weighting
(operations) (simple overlay of
0-1 maps)
Binary evidence Deterministic .
-extension to Boolean  |“Determinism” No uncertainty assumed WLC Easy
. The most Probability is either 0 or 1 L
Hogic | traditional [Set membership value is either commumeation to
Traditional set Oor1 WLC/OWA/MAVT/|decision makers
Index overlay theory AHP/ideal point
-extension to binary methods/
evidence concordance
methods
Logistic regression Uncertainty due to limitation Being data-
Generalized Linear and |Data-driven in knowledge (epistemic) or Methods listed i driven and a
Generalized Additive probabilistic Traditional |randomness in occurrence of he 1 (;ts isted in priori, more
Models “Probability probability |an event (stochastic) t le © mosti for objective
-extension of logistic theory” (a priori) Based on probability density, | qu_m_use h or
regression probability distribution co-_rzl ining the Relatively
Monte Carlo Simulation Probability is between 0 and 1 ;_;;\521‘2; miipi'lse complicated
Both data-driven Conditi Based on a priori probability o |
onditional they are used for .
and knowledge- (Bayesian) and knowledge-base a criterion ma Being knowledge-
Bayesian network driven rolzabilit posteriori probability is estimation t]};en driven, and to a
probabilistic ? tori };'i) obtained with the principle of Probabilistic certain extent,
“Bayesian theory” @ postertor)| o« cluded middle additive being a
g{;}g:ﬁedge- Extension of Makes a distinction between —|weighting/OWA/ gzztzz:}: more
Dempster-Shafer Belief S ; probability and ignorance MAUT/ AHP/ideal |*"™
X probabilistic Bayesian . N . hods/
functions “Dempster-Shafer|probabilit; removing the assumption of point methods Complicated
Bolo fp theory” P ¥ |excluded middle concordance
methods is/are
Classification and Data-driven for used
regression trees robust results but
—i\kj)ase:dlon decl.slion trees gl‘l.ow knowledge- Tolerant of imprecision, (In addition,
eural networ riven ambiguity, vagueness, MAUT is also used :
assessment for uncertainty in standardizing | Not necessarily
Cellular automata determ.n.ns.nc or criterion maps) more accurate
probabilistic rule but “more
base i informed”
ﬁ::;ﬁf;z:lcez Fuzzy additive decisions

weighting/ Fuzzy
MIN/Fuzzy
MAX/OWA/AHP/
ideal point
methods/
concordance
methods is/are
used

“Black box” to
the decision
makers

1Other basic uncertainty or sensitivity analysis methods not detailed here are analytical error propagation, one-at-a-time (OAT),
indicator-based (distance-based) analysis, variance-based analysis, methods using random sets theory and game theory.

2 Evolutionary (genetic) algorithms is a multi-objective decision making (MODM) method that utilizes artificial

intelligence, and so is not included in the table.

Source: Compiled from the explanations found in [25; 8; 28; 41; 29; 35; 16; 11; 30; 31]

visual exploration of uncertainties in decision making resulting from both weights and
attribute (criterion) values in GIS-based catchment management, Chen et al. [11] utilize
an indicator (distance)-based method facilitated by an OAT approach. On the other
hand, Ligmann-Zielinska and Jankowski [27] use a Monte Carlo simulation in addition to a
variance-based analysis in an uncertainty analysis in their UA-SA integrated methodology
aimed at defining habitat suitability for a wetland plant.

More transparent graphical display facilities of GIS, such as the work by Chen et al.
[11], have taken a novel approach, visualizing the uncertainties in criterion weighting
based especially on the AHP method, and thus its pairwise comparisons. In this respect,



1250

to evaluate epistemic uncertainties in coastal land-use planning decisions Mosadeghi et
al. [31] examine the sensitivity of AHP weighting decisions to input uncertainties, and
to this end, combine the conventional UA with the visualization capability of GIS and
the Monte Carlo simulation algorithm. Similarly, Chen et al. [12] developed a GIS-based
AHP-SA tool that utilizes the OAT method to assess the behavior and limitations of a
GIS-based irrigated cropping land-use suitability model. The tool provides access to an
interactive range of user-defined simulations to evaluate the dependency of the model
output on the weights of the input parameters, identifying the criteria that are sensitive
to weight changes. In further developing their work (AHP-SA), Chen et al. [13] devel-
oped the AHP-SA2 to increase the tool’s efficiency, while also improving its flexibility
and enhancing its visualization capability to analyze the weight sensitivity resulting from
both direct and indirect weight changes using the OAT technique. Likewise, based on
the subjectivity limitation of AHP, Ahmad et al. [3] developed a new technique called
the “Objective Spatial Analytic Hierarchy Process (OSAHP)”, combining AHP with re-
gression modeling to identify potential agroforestry areas using GIS. With the aim of
sustainable development and consensus building, and considering the uncertainties in
the land-use planning process, Soltani et al. [40] utilize a GIS-based urban land-use
model combined with UA. In their GIS-based MCDM they used AHP, sensitivity anal-
ysis, Monte Carlo simulation and probability classification methods, and made use of
the visual spatial representation of the results for different stages of the decision-making
process under different conditions.

As in the above-mentioned literature, this study deals mainly with the uncertainty in
the 5" and 6'" stages (decision making on criteria standardization and weight assign-
ment) of the spatial MCDM modeling process listed earlier, and with the 7" stage to the
extent of discussing the possibility of different results based on different interpretations
of the results of the modeling.

In doing this, rather than carrying out classical sensitivity analysis procedures on crite-
rion values and weights, the intention is to examine the differences between the results of
a deterministic approach and an uncertainty approach using standardized criterion maps
at lower levels of a hierarchical GIS-based multi-criteria model, and those of weighted and
aggregated maps at higher levels. By assessing the differences at each level (multi levels)
in the two modeling approaches, and between their equivalent overall goal (preference)
maps, this study aims to show that uncertainty makes a difference in the ranking and the
spatial pattern of the alternatives in land-use decision making, and presents empirical
proof of the importance of uncertainty assessment in spatial multi-criteria modeling.

In this respect, the study does not deal with the question of uncertainty in terms of
the potentially subjective decisions given by the decision makers, in this case, the two
modelers. In other words, the study does not make a sensitivity analysis of the criterion
values and weighting of the two models, but rather shows that the deterministic results
should not be seen as the only solution set with a particular ranking and spatial pattern
of alternatives in land-use suitability, and reveals that they are subject to change under
different conditions of decision making, which is characterized by uncertainty.

As mentioned earlier, although there is an increasing number of works on uncertainty
assessment, related especially to the 5" and 6 stages of spatial multi-criteria modeling,
there has to date been no one-to-one comparison of the deterministic and uncertainty
maps at each level of an MCDM land-use suitability model in a GIS environment.

With this study, two main types of uncertainty method, being probability and fuzzy
set theories, in addition to MAUT (Table 1), were used to obtain standardized criterion
maps at the lowest levels of the hierarchical structure of the existing deterministic model.
Then, a weighting process was carried out, which included trade-offs at levels under the
goal level and entropy at the goal level compared to existing model’s AHP at all levels of
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hierarchy with two exceptions (i.e., for one lower level sub-objective and for goals). After
weighting, each criterion map at the lower levels was aggregated at the higher levels to
obtain the preference (overall goal) map for a particular land-use type via either modeling
approach (deterministic vs. uncertainty). In these stages, each map pair from either of
the modeling approaches at each level of the hierarchy was compared for the case study
area, being Hillsborough County in the state of Florida.

The deterministic model used in this study is the Land-Use Conflict Identification
Strategy (LUCIS), the structure of which is described in brief in the following section.

1.2. Deterministic spatial multi-attribute land-use modeling: Land-Use Con-
flict Identification Strategy (LUCIS). The Land-Use Conflict Identification Strat-
egy (LUCIS) is a deterministic MADM process and “a goal-driven GIS model that pro-
duces a spatial representation of probable patterns of future land use” [9:9]. In order
to assess the conflicts between the three main land-use types (agricultural, urban, and
ecologically sensitive) and possible future land-use patterns, models are established to
obtain preference maps related to each of these land uses (Figure 2). Even though the
complete LUCIS deals with conflict identification based on three different land uses, and
in total involves a 6" level at the top of the hierarchical structure, the scope of this study
is limited up to 5'* level, and to the agricultural land use (Figure 2). In this respect, the
uncertainty maps obtained in this study, like their corresponding deterministic equiva-
lents from existing models, consist of the overall goal map, referred to as the preference
map hereafter, at the top of the hierarchical structure, followed by maps charting the
goals, objectives, sub-objectives and lower level sub-objectives at the lower levels.

VA

Agricultural land use
Z _ - ) multilevels

VAN Urban land use

’ - multilevels
Ecological sensitivity
multi levels

* Whenever exist, the upper level objectives in the hierarchy
are also assessed separately with a level name of 3’

Figure 2. Symbolic representation of multi-level LUCIS hierarchies
(study covers the levels concerning agricultural land use on the left,
the preference map being at the top)
Source: Adapted from [9:231,233,236]

The related numbering, naming and a short description of the LUCIS hierarchical
levels for the agricultural land-use preference map seen on the left part of Figure 2 is
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Table 2. Numbering, naming, and a short description of the LUCIS
hierarchical levels for the agricultural land-use preference map

Level 4
Goal maps

Level 3’
Upper level
objective maps*

Level 3
Objective maps

Level 2
Sub-objective maps

Level 1
Lower level sub-objective maps

Row crops
land

suitability (1)

Physical
suitability (11)

Soils suitability (111)

a:Grass; b:Strawberries; c¢:Corn;
d:Sugarcane; e:Cabbage;
f:Peppers; g:Soybeans;
h:Snapbeans; i:Watermelons;
j:Peanuts; k:Cucumbers

Land-use suitability (112)

a:City population; b:Row crops

Livestock
suitability (2)

Proximit; Local markets proximity (122 .
suitability (12) . p— o distance
Major roads proximity (123) -
Land value
suitability (13)
Land-use suitability (211) -
Physical Dist.ance to open wa.ter resources (212) | -
suitability (21) Aquifer rec}.)arge suitability (213)
High-intensity Soils suitability (214)
livestock Distance to existing urban areas (215)
suitability (2A) Proximity Local markets proximity (221)
suitability (22) | Major roads proximity (223)
Land value

suitability (25)

Low-intensity
livestock
suitability (2B)

Physical
suitability (23)

Land-use suitability (231)

Distance to open water resources (232) | -

Aquifer recharge suitability (233)
Soils suitability (234)

Proximity Local markets proximity (241) -
suitability (24) | Major roads proximity (243) -
Land value

suitability (26)

Land-use suitability (311)

suitability (52)

Physical Distance to open water resources (312) | -
. suitability (31) |Aquifer recharge suitability (313) -
Zpl:‘i‘:llgty ] Soils suitability (314) .
suitability (3) Pr9x1m1_ty Pl’O?{lmlty to processing plants (321) -
suitability (32) | Major roads proximity (323) -
Land value
suitability (33)
Physical Land-use suitability (411)
suitability (41) | Parcel size suitability (412)
Nursery Proximity Local markets proximity (421) -
suitability (4) | suitability (42) | Major roads proximity (423) -
Land value
suitability (43) 3
Land-use suitability (511)
Physical Aquifer recharge suitability (513)
suitability (51) |[Soils suitability (514) -
Timber Parcel size suitability (515) -
suitability (5)|" Proximity Local markets proximity (521)

Major roads proximity (522)

Land value
suitability (53)

presented in Table 2, in which all of the goals and objectives at all levels are phrased
in such a way that they are tried to be maximized in the decision-making process. As
is clearly apparent in Table 2, the LUCIS agricultural land-use hierarchical levels, each
of which is in fact a GIS map layer, follow a naming convention that is composed of an

alphanumeric code for each different level.

For example, Level 4: Goal map 1, Level

3: Objective 11, Level 2: Sub-objective 111 and Level 1: Lower Level Sub-objective
criterion maps under sub-objective 111 are named respectively with codes agl; aglol1;
aglollo111; and criterion maps under sub-objective aglol1sol11l, which are named with
a letter a—k to ensure ease in following, and since the maps at these levels are only a few
in number.
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2. Study area and data

Hillsborough County is located on the west coast of central Florida (Figure 3). It has
total of surface area of 1,072 square miles (1,048 sq mi of land and 24 sq mi of inland
water). Tampa is the County seat and the largest city in Hillsborough, in which there are
two more municipal cities: Temple Terrace and Plant City [23]. It is a rapidly urbanizing
county [44] with a population increase of 23.2 percent (from 997,936 to 1,229,226) and a
population density increase from 879 to 1082 persons/sq mi between 2000 and 2010 [43].
The rapid and continuous urban development, which has been mainly in the form new
suburban construction, especially into the more rural, unincorporated part of the county
[23], has caused both the environmental degradation of natural resources, such as soil
erosion and compaction, deforestation and disturbance to aquifers [44], and a decrease
in valuable agricultural lands, which makes up one of the most important production
capacities in the state total [38].

HILLSBOROUGH
Total area (mi?): 1,072 | Countyseat and the
largest city: Tampa
Land area (mi?): 1,048 |Incorporated cities
(163 mi%): Tampa, Temple|
Terrace, and Plant City

Inland water area (mi®): |Unincorporated area
24 (909 mi?): About 85% of

the total area |

Hillsborough (2000) FL (2000) Hillsborough (2010) FL (2010) i

Population: 997,936 15,982,378 1,229,226 18,801,310 {
Total households: 391,043 6,341,121 474,030 7,420,802 N !
Population density ML L Miles A
(persons/mi”: B 273 1,082 321 0 15 3 6 9 12 !

7

Figure 3. The study area, Hillsborough County in the state of Florida
Source: Map data compiled from [19]; Tabular data compiled from
[23;43]

The strong competition with an essentially high level of decision-making uncertainty
among the urban, agricultural and natural land uses in Hillsborough County was the
main reason for the selection of this area for a study of the impact of uncertainty on
a deterministic multi-criteria land-use modeling, aiming to identify land-use conflicts
(LUCIS) among the three land uses.

Aside from the annual agricultural sales of Hillsborough County, obtained from Census
of Agriculture data, and the ‘Critical Lands and Waters Identification Project (CLIP):
Version 2.0 data [21], all other data used in the study at both the county and state level
were obtained from the ‘Florida Geographic Data Library’ (FGDL) website [19], as the
source of the most recent available data at the time of writing.
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In this study, all the models for the deterministic approach were built and run us-
ing ArcGIS® software. The same software was used also for the uncertainty approach,
although for some models, additional software was needed, such as, spreadsheet environ-
ment (MS Excel®) and spatial data analysis (CrimeStat®).

3. Methodology and application

In this section, the methodology and its applications to the study area will be explained
in three subsequent stages. The first stage includes the development of uncertainty
models for LUCIS and the comparisons with their deterministic equivalents in terms of the
standardization of criterion maps (each different GIS layer) at the different hierarchical
levels (levels 1, 2 and 3) prior to any weighting being applied. The second stage involves
a comparison of the decision rules of the two different approaches (deterministic vs.
uncertainty) for combining the criterion maps under each relevant level of hierarchy
(levels 1, 2, 3, 3> and 4). In the final stage, a comparison is made for the preference
maps of the two modeling approaches (level 5). The results of the two modelings of these
three stages, considering all hierarchical levels of LUCIS (up to the 5”‘)7 are explained
in Section 4.

3.1. Comparison of newly developed uncertainty models and their existing
deterministic equivalents in criteria standardization (levels 1, 2 and 3). The
criteria standardization in uncertainty modeling was carried out using seven different
groups of methods, each applied to a different group of maps prior to any weighting (i.e.,
the maps have no other sub-level maps) (Table 2). The seven groups of methods are
listed in Table 3 according to the groups of criterion maps (GIS layers) to which they
were applied, which are referred using their alphanumeric names described earlier.

In general, the GIS-based uncertainty models in criteria standardization were devel-
oped with reference to the characteristics of the decision variable: whenever they are
numeric, the uncertainty is assumed to be a result of limited information related to the
decision-making process in a particular spatial system and dealt with traditional prob-
ability [25; 4; 28] (Table 1), contrary to the unit probability of an alternative in the
deterministic DM process [20; 22]. However, if the variables are categorical, and imply
that the uncertainty is a result of the imprecision or ambiguity of the information or, in
other words, if the variables are linguistic or fuzzy, the fuzzy set membership methods
[28] are used to obtain the criterion maps. Both of these two types of maps are then
compared with those obtained from the deterministic variables with binary, discrete or
continuous values at each level of the hierarchy.

In the former type of variables, probabilistic maps are obtained with discrete, contin-
uous or mixed variable values, and the transformation processes are based on probability
density or cumulative probability density functions, in which most of the maps can be
considered to be data-driven, based on objective probabilistic methods (Table 1) using
relative frequency (or area) distributions. The only exceptions to this are the two lower
level sub-objectives handled by MAUT, in which the derivation of utility functions in-
cludes the assessment of the decision maker’s expected utility. The remaining assessments
of uncertainty involve the use of fuzzy logic (Table 1) by means of linguistic variables.

In Table 4 below the detailed methodology applied to the seven different groups of cri-
terion maps are explained in terms of both the deterministic and uncertainty approaches.

3.2. Comparison of decision rules in criteria aggregation and weighting in the
deterministic and uncertainty models (levels 1, 2, 3, 3’ and 4). In the deter-
ministic modeling, the decision rule for combining the criterion maps at each weighting
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Table 3. Seven groups of uncertainty methods for criteria standard-
ization, and the criterion maps (GIS layers) to which they were applied

Methods Uncertainty Hierarchi- Criterion map name Objective
method type cal level p (in terms of minimization or maximization)
Expected utilities
based on frequencies Lower Level Sub-objective
Method 1 | multiplied by a Level 1 under Sub-objective -row crops-physical-soils
particular value aglollsolll
(vield)
Utility functions and
utility function
multiplied by a Lower Level Sub-objective
Method 2 |particular value Level 1 under Sub-objective -row crops-proximity-local markets
(probability of aglol2s0122
standard deviation
of the prediction)
Sub-objective aglol1s0112 |-row crops-physical-land-use
Sub-objective ag4041s0411 |-nursery-physical-land-use
Sub-objective aghob1so511 |- timber-physical-land-use
Sub-objective ag2021s0213 |-livestock-high-intensity livestock physical- aquifer
recharge
Fuzzy set — . . P . .
membership (and Sub-objective ag2023s0233 |- livestock-low-intensity livestock physical-aquifer
fuzzy overlay) based recharge
IMethod 3 on ei ort kn};wled o Level 2 Sub-objective ag3031s0313 |- specialty farming-physical-aquifer recharge
and spatial MCDI\/% Sub-objective agho51s0513 |- timber-physical-aquifer recharge
literalt)ure Sub-objective ag2021s0214 |-livestock-high-intensity livestock physical-soils
Sub-objective ag2023s0234 |- livestock-low-intensity livestock physical-soils
Sub-objective ag3031s0314 |-specialty farming-physical-soils
Sub-objective aghoblso514 |-timber-physical-soils
Sub-objective ag4041s0412 |- nursery-physical-parcel size
Sub-objective aghob1s0515 |- timber-physical-parcel size
Fuzzy set
membership based
on the mean and
standard deviations Sub-objective aglo12s0123 |- row crops-proximity-roads
of already grouped SO L
data with respect to Sub-objective ag4042s0421 |- nursery-proximity-local markets
Method 4 their f P Level 2 Sub-objective agho52s0521 |- timber-proximity-local markets
e1r tuzzy. Sub-objective ag4042s0423 |- nursery-proximity-roads
membership values ject g . y-proximity
based on expert ’ Sub-objective agho52s0522 |- timber-proximity-roads
knowledge and
spatial MCDM
literature
f‘rlel::;?oor?:i tion of Sub-objective ag2021s0211 |-livestock-high-intensity livestock physical-land-use
Method 5 robabilities based Level 2 Sub-objective ag2023s0231 |-livestock-low-intensity livestock physical-land-use
];n areas Sub-objective ag3031s0311 |-specialty farming-physical-land-use
Sub-objective ag2021s0212 |-livestock-high-intensity livestock physical-open
water
Fuzzy sot Sub-objective ag2023s0232 |-livestock-low-intensity livestock physical-open
memi,)ershi based water
on the mearI: and Sub-objective ag3031s0312 |-specialty farming-physical-open water
standard deviations Sub-objective ag2021s0215 |-livestock-high-intensity livestock physical-existing
of already grouped - urban S _— .
Method 6 data with respect to Level 2 Sub-objective ag2022s0221 |-livestock-high-intensity livestock proximity-local
N R markets
:?:;iﬁ::nigfir;ilo ¢ Sub-objective ag2024s0241 |-livestock-low-intensity livestock proximity-local
s markets
g:lo:f\eb;lmes, based Sub-objective ag3032s0321 |-specialty farming-proximity-processing plants
. Sub-objective ag2022s0223 |-livestock-high-intensity livestock proximity-roads
Sub-objective ag2024s0243 |-livestock-low-intensity livestock proximity-roads
Sub-objective ag3032s0323 |-specialty farming-proximity-roads
Fuzzy set
membership based Objective aglol3 -row crops-land value
on enumeration Objective ag2025 -livestock-high-intensity livestock-land value
Method 7 derived from spatial Level 3 Objective ag2026 -livestock-low-intensity livestock-land value

k-means clustering
and non-spatial
mean and standard
deviations

Objective ag3033
Objective ag4043
Objective agho53

-specialty farming-land value
-nursery-land value
-timber-land value
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Table 4. Detailed deterministic and uncertainty methodology applied
to the seven different groups of criterion maps

s0311

suitability for specialty

farming

the parcel data

Level | Map name Aim Deterministic models Uncertainty models
Expected utility estimation for each
row crop type by the number of pixels

(ak: (i.e., area) of each row crop type,
— oy L . Score assignment by linearly multiplied by the yield value of that
=3 different maximize soil . . il
S |Level 1 o increasing values between land 9 to | crop, and divided by the total of these
= types of suitability for each . o ) .
% |maps crops) under |crop type either individual or classified products
= solll increasing crop yield amounts (spreadsheet used for floating point
rasters, conditional map algebra
operation in GIS used for value
assignment)
- Cities’ populations (including neighbor
counties) interpolation by a
geostatistical process of kriging that
-Results from a deterministic provided a prediction and its variance
interpolation method (inverse raster. Prediction surface is used with
distance weighting — IDW) on the | an estimated utility function by using
(acit maximize proximity to cities of the county with non-zero indifference method for
N oy . p y population were used for standardization. This 0-1 range
=1 population; |local markets for row o Lo L.
2 Level 1 birow crops |crops (cities’ reclassifying the raster prediction map was multiplied by the
T |maps | P DS 1L -An Euclidian distance map of row | probability of square root of the
distance) population and row . . N . . .
= under 50122 |crop areas) crop areas used for reclassification | variance raster to give higher weights
P based upon the mean and 1/4 to the values having less errors and
standard deviation distances found | vice versa.(
in the zonal statistics table for row |-Row crops distance standardized
crop areas [9] utility scores was estimated by
application of a utility function to the
raw scores obtained by Euclidian
distances.®
maximize agricultural . Conversion of deterministic
o v - | Expert knowledge and spatial . . . .
50112, so411,|land-use suitability in M . . N assignments (1-9) into linguistic
CDM literature used in assigning X .
s0511 terms of land cover, Lo X rankings (1-very low and 9-very high)
. the deterministic values of either 1
soils and parcels to use fuzzy large or small
- and 9 or all or some of the values e .
minimize and . transformation in GIS to obtain
L. . between 1 and 9. The higher and 3 .
o maximize parcel size X e different levels of standardized
50412, s0515 N the highest suitability (9) values s 2
=3 for nursery and timber . o suitability scores between 0 and 1.2
S |Level 2 X were given to the existing and L.
= maps respectively higher potential areas or to the Contrary to final combination method
S 50214, 50234,/ maximize drainage PO max cell statistics operation in the
= 314) 514 ity of soil; lower criticality areas for the deterministic approach, of land cover
50924, so capacity of soils respective five agricultural goals, . pp .
. and soils map for so112 map a fuzzy
while the lower and the lowest (1)
L. . L. . OR overlay was used here, however,
50213, s0233,| maximize disturbance |suitability values were given to L L
N . similar to deterministic approach a
s0313, s0513 |to aquifers areas that have a reverse impact on focal L. for
suitability ocal statistics was used for s0213,
50233, 50313 and s0513 maps.
L L First, Euclidian distance raster
50123, s0423,| MaxmIze ProxXimity to | pang were created from major roads|
50522 roads for row crops, and from local market objects that
nursery and timber were considered to be the median
center of vacant lands for nursery
(s0421) and lumber yd/mill for Uncertainty models for these criterion
_: timber (s0521). maps were derived from fuzzy set
K] Level 2 Then, a reclassification was made memberships large transformation
s |maps L o [9] based upon the mean and 1/4 function in GIS by grouping of
= maximize proximity to | s¢andard deviation distances found | previous land-use sub-objective maps
50421, 50521 |local markets .for in the zonal statistics for the (s0112, s0411 and s0511).®
nursery and timber selection of a set of objects related to|
each of the respective sub-
objectives: row crop areas for s0123,
plant nursery for so421 and s0423,
and timber for s0521 and s0522.
imize land- . .
:E::I;ﬁfte ?0[11_ h?slj- Expert knowledge and MCDM Based on computation of probabilities
_‘g 50211, s0231 and low-iﬁtensitg literature used in assigning the and the functional transformation of
K] Level 2 livestock Y deterministic suitability scores from| the probabilities for the areas found to
% |maps maximize land-use 1 to 9 to the selected and rasterized | have been given a suitability score
= Xmz u objects on the related fields out of | greater than 1 in the respective

deterministic models. @
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maximize distance to
open water areas for
high-intensity livestock;

$0212, 50232, and wetlands and open

high-intensity livestock

- The same methodology used in the
method 4 above based on the Euclidian
distance raster maps obtained by selected

s0312 water areas for low- objects that the distance is either aimed | assessment as in method 4
intensity livestock and to be maximized or minimized. above. However, there were
specialty farming - The distance maps for the major roads differences in terms of
maximize distance to were the same as prepared for so123, -number of mean-standard

s0215 existing urban areas for | s0423 and s0522. deviation pairs of zonal

- For the zonal statistics table a set of

The same Euclidian distance
maps were used as a base in
the corresponding models with
a similar way of uncertainty

statistic raster maps

farming, nursery, timber

: maximize proximity to selections of the objects, which had a -number of groups of selections
S |Level 2 packing plants and food | suitability score of 9 from s0211 for s0212, | from raster maps
% |maps processing parcels for 50215, $0221 and s0223; from s0231 for -the way that linguistic hedges
= 991, 50241 high- and low-intensity | $0232 and s0243; from s0311 for s0312; a were ordered (interfering in
50321v S0, livestock and specialty selection of miscellaneous agriculture or this case)
SO farming, in addition to pasture parcels for s0241; and a selection |-the way that constant rasters
four main restaurants in| of orchard/citrus for so321 and s0323 were | were created
the county for high- used. The models ended with either
intensity livestock - Linearly increasing or decreasing fuzzy small (for s0212, s0232,
L. imity t suitability scores between 1 and 9 was 50312, s0215) or large (for
maximize proximity to determined by whether the goal is the 50221, 50241, s0321, 50223,
50223, 50243, |roads for high- and low- S PP o
. N N maximization or minimization of 50243, s0323) transformation
s0323 intensity livestock and . ) . ) . N .
N . distances from the respective sources functions with the default mid-
specialty farming : N )
point and spread values. @
Just values (market value) per acre for a
set of selected parcels, which were greater
and equal to 1 acre, for 013, 025, 026, 033
and 053 and 0.2 acre for 043 to exclude the
,ShYe.r areas, mcllu'ded crops andy pasture’; The uncertainty in obtaining
dairies/feedlots', 'packing plants', N Lo
L. . L L the utilities for suitability of
- maximize land value poultry/bees/fish'; 'pasture’, 'vacant
v o e . . the land values was handled
=1 013, 025, suitability for row crops, | acreage', 'miscellaneous agriculture'; .
S |Level 3 X . X N . o . ) by fuzzy set membership
g 026, 033, high- and low-intensity | 'orchard/citrus'’; timber'; and 'plant X
% |maps . . X . functions based on both
043, 053 livestock, specialty nursery', respectively. Then, the mean and L B
= alternatives’ (1i.e., parcels’)

standard deviation of the just value/acre
was used to update the vector data and
then to reclassify its (1-9 value) raster
form later

[9]. Score (1) was given to parcels with
‘header” and ‘note’ information as their

land-use description.

spatial and non-spatial
aspects. ©

@ See Appendix 1 for details of uncertainty method 2
@ See Appendix 2 for details of uncertainty method 3
® See Appendix 3 for details of uncertainty method 4
@ See Appendix 4 for details of uncertainty method 5
® See Appendix 5 for details of uncertainty method 6
© See Appendix 6 for details of uncertainty method 7

level (1, 2, 3, 3’ and 4) is the weighted summation of the standardized map scores using
Equation 3.1.

J

In this equation, x;; is the score of the i'" alternative with respect to the ;'™ attribute

(criterion), and the weight w; is a normalized weight, so that Z w; =1]28].

J
Similar to this, in the uncertainty approach the weighted summation turned out to be

of the linear utility function [33], where the scores are replaced by utilities [28] (Equation
3.2).

(3.2) Uq; = Zw]'uij
J
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In the deterministic models, the combining methods also involved some other opera-
tions, including conditional map algebra or cell statistics, whereby the related land-use
layers or urban land-use layers were used as constraint maps. In these operations, the
existence of urban uses were given the minimum suitability at the final level (for the
result of level 3 for goals 1, 3, 4, 5 and level 3’ for goal 2), or the agriculture-related land
uses were given maximum suitability or maximum cell statistic at each level at which
they were utilized (at level 2 for goal 1, for the result of level 2 and level 3’ for goal 2, for
the result of level 2 for goal 3). In the uncertainty approach, the only additional method
used after weighting was a transformation using Equation A.1.2 in Appendix 1 to obtain
the final so111 map. In this approach, the constraint mapping for existing urban and
suburban land uses was made only once on the final preference map.

In the deterministic modeling, all of the priority weights were obtained from the AHP
method carried out with the community and experts of a similar county, with only two
exceptions. These included the use of information obtained from the annual agricultural
sales of Hillsborough County in determining the weights for each row crop type at level 1
to obtain the soll11 at level 2, and the weights for five different goals at level 4 to obtain
the preference map at level 5.

After the row crops weighting at level 1, the objectives weighting at level 3 under
goal 1, and after goals weighting at level 4, the deterministic approach used Equation
3.3 to transform the suitability scores to a range of 1 to 9. The comparison of the final
preference map with the one obtained from the uncertainty approach was made on the
final untransformed map.

B (X _nglliin)(X_max _ ijin

(33) (X)) = e
(Xiold ~Xiold

In Equation 3.3, X;j is the transformed standardized score for the i*" alternative of
the j'" attribute (criterion), X;; is the raw standardized score, and ngll:in and X;ho0
and ngllgx and ngg)f are the minimum and maximum scores for the j'* attribute
before and after transformation, respectively.

In the uncertainty approach, to assess the decision maker’s (here, the modeler) prefer-
ence uncertainty on the priority weights at levels 1, 2, 3 and 3’ for all goals, with the aim
of maximizing agricultural suitability, a direct weighting estimation method a trade-off
— was utilized with consistency checks [33].

For the weighting of the goals themselves (at level 4), a mixed methodology was used
to assign weights based on their size in terms of acreage, just (market) value and annual
sales. This raised a question of how to weight these weights for different criteria. For this
purpose, and to assess the uncertainty in this process, the concept of entropy was utilized
by applying a series of formulations to the decision matrix (see [24:52-56]), consisting of
goals versus their weightings, based on the three different data sets.

3.3. Comparing the final stages in the two modelings to obtain the agricul-
tural preference maps, and the comparison of these two maps (level 5). The
deterministic and uncertainty approaches resulted in their own agricultural preference
maps after a weighted sum operation (Equations 3.1 and 3.2) on the goal maps. These
maps were finalized by merging them with the constraint map data relating to existing
urban-suburban land uses, which were assigned values of 1 and 0 the minimum stan-
dardized scores — in the deterministic and uncertainty models, respectively. However, the
comparison of preference maps also involved the exclusion of these areas from their final
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forms, since they covered the areas that were given and were not a result of the either of
the modelings.

4. Results and discussion

In the following sections the results obtained from the deterministic and uncertainty
modeling approaches are presented in the order in which they were compared in terms
of their methodology and application, as explained in Section 3.

4.1. Comparison of results of the criteria standardization obtained from the
two modeling approaches (levels 1, 2 and 3).

Method 1: The results of the maximization of soil suitability for each crop type from
the deterministic and uncertainty approaches were found to be different in terms of the
level of suitability assigned to areas of similar shapes, in that the latter approach (in this
case, the probabilistic one) considered not only yield values, but also their occurrences
in space. Since the frequencies have a much greater influence in the multiplication than
yield values, the larger areas assumed higher utilities for soil suitability, even though they
had lower yield values. When considering long-term land-use planning, this result can be
seen as a positive impact on the preservation of large row crop areas, despite their low
yields.

Method 2: The uncertainty method (in this case, the probabilistic one) adopted in
these two level-1 criterion maps, required subjective evaluations of the decision makers
(here, the modeler) by means of utility functions that result from the indifference tech-
nique (see Appendix 1). This and the other differences in data processing (such as kriging
and additional processes on its results as opposed to IDW in the deterministic approach)
yielded highly different results in terms of patterns and the levels of suitability for the
cities’ population map. In contrast, the deterministic model’s linear value assignment for
the Euclidian distance map and the non-linear utility function’s utility assignment in the
uncertainty approach produced rather similar results in terms of the relative placement
of higher values to alternatives closer to row crop areas (for an illustrative comparison of
the results of the two approaches having different and similar patterns and/or suitability
scores, refer to Figure 4 in Section 4.2).

Method 3: The resultant maps from the two approaches were found to be similar in
terms of patterns, although the levels of suitability that they reflected were found to be
different to the extent that their raw data value ranges were either different (as in s0213,
80233, 50313 and s0513) or as a natural result of nonlinear fuzzy membership functions
(as in s0112, s0214, s0234, s0314, so514 and so412) (see Appendix 2). The remaining
group of sub-objective criterion maps (so411, so511 and s0515) displayed similarities both
in terms of their patterns, and in their level of suitability, as an essential result of two
discrete groupings of the same selections from the raw data.

Method 4: The resultant maps from the two approaches were found to be differ-
ent, which resulted from the uncertainty approach’s assessment of major roads or local
markets proximities, based on the two-group categorization of the study area (see Appen-
dix 3). In addition to the variations between different levels for the land-use suitability
groups, the results showed also internal variations within each group. For each related
distance map, the uncertainty approach provided different series of suitability levels for
each different parcel of the highly suitable land uses, and for the areas having lower land-
use suitability based on a constant mean and standard deviation. On the other hand,
the deterministic criterion maps were distinguished by small quarter standard deviation
increments around the most suitable area distance buffer, as defined by the mean zonal
distance of the existing/ most suitable land for each respective agricultural goal, i.e., goal
1 (row crops), goal 4 (nursery) and goal 5 (timber).
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Method 5: When the results of the two approaches were compared, a more significant
variety was observed on the 0-1 uncertainty maps than on the 1-9 deterministic maps. The
probabilities computed in the former maps allowed the assignment of utilities for land-use
suitability with respect to their occurrences in space for the three different agricultural
activities (high- and low-intensity livestock, and specialty farming) that were evaluated
(see Appendix 4). The transformation of smaller probabilities to higher utilities for high-
intensity livestock (so211) and specialty farming (so311), and of higher probabilities
to higher utilities for low-intensity livestock (s0231), were based on the increasing and
decreasing revenues per unit area for the respective agricultural activities.

Method 6: The evaluations of the results of the two approaches were found to be
quite similar to those made in the Section Method 4, although differences existed in the
higher level of variety in the uncertainty maps. This was due to the grouping of the
respective land-use maps into three rather than two, in which the study area was divided
into areas of high-, moderate- and low-level land-use potential. Another difference was
found in the interfering fuzzy ranking in models 0212, s0232 and so312, which were set
in such a way that the nearer and then the nearest areas to the water resources were left
to be given the least suitable ranking in each of the three groups of land-use potentials,
i.e., high- and low-intensity livestock and specialty farming (see Appendix 5). Finally, in
contrast to the only proximity maximization problems handled in the Method 4 models,
both approaches dealt with both the aims of maximization of proximity and distance
(i.e., minimization of proximity) on the Euclidian distance maps.

Method 7: In comparing the results from the two approaches, although at first look,
the non-spatial component of the resultant corresponding objective criterion maps from
the uncertainty approach seems to resemble the deterministic maps, the final uncertainty
maps were found to have different patterns and levels of suitability. This was due to a
variety of factors, including (1) the existence of their spatial components, (2) the overall
fuzzy hedge ordering in each of the components after the enumeration process carried
out for both types, and (3) the respective fuzzy set membership values (see Appendix 6).

4.2. Comparison of results for criteria aggregation after weighting from the
two modeling approaches (levels 1, 2, 3, 3’ and 4). The results of the two ap-
proaches after any weighting process at levels of 1, 2, 3, 3’ and 4 turned out to be different
from each other, to the extent that their component maps are different. The level of dif-
ferences with respect to the same alternatives (pixels) between the two groups of results
at the same level can be categorized into four groups, such that they have either:
1. very different patterns/shapes/forms and different levels of suitability;
2. partially different patterns/shapes/forms and different levels of suitability;
3. similar patterns/shapes/forms and different levels of suitability; or
4. similar patterns/shapes/forms and similar levels of suitability.

Each of the above-listed groups of aggregated weighted map result differences are il-
lustrated by some of the level 2 and level 3 results in Figure 4’s la-4a (deterministic) vs.
1b-4b (uncertainty) sections.

4.3. Comparison and interpretation of agricultural preference maps from the
two modeling approaches (level 5). For a comparison of the preference maps (overall
goal) obtained from the two modeling approaches at level 5 of the hierarchical structure
of LUCIS, the z-scores of each pair of maps (including and excluding the existing urban-
suburban areas) and the z-score differences were computed. The maps, their distributions
and the summary statistics of these comparisons are shown in Figure 5.

When the first case was evaluated in terms of its z-scores, the deterministic result
was found to vary between -1.153 and 1.783, and the uncertainty between -1.157 and
1.978 (Figure 5). However, when the given urban-suburban areas were excluded from
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Figure 4. Deterministic (1a, 2a, 3a, 4a) and uncertainty (1b, 2b, 3b,
4b) aggregated maps for sub-objective 122 (la and 1b), objective 42
(2a and 2b), objective 31 (3a and 3b), and objective 41 (4a and 4b)

the analysis, which composed the modes (i.e., the most repeated land-use type) for both
distributions (see the 1°¢ and 3"¢ graph in the 2"¢ row of Figure 5), the minimum values
of the maps increased to -0.825 and -0.946, respectively. In the second case, the graph
of the deterministic result revealed a bi-modal distribution, with one near to its mean
(0.742), and the other towards the end of its lower tail (at about 1.53). Accordingly,
it suggested a data spread that cannot be attributed to a normal distribution (see the
2" graph in the 2% row of Figure 5); however, looking at the graph of the uncertainty
result (see the 4" graph in the 2"? row of Figure 5), it is seen that it was more or less
normally distributed about its own mean (0.744). The main difference between the two
results was observed in the uncertainty result filling the gap between the two modes of
the deterministic approach. This comparison can be illustrated by overlaying the two
graphs after converting them to the same scale, after which the difference can be seen in
the light grey tone frequency distribution in the 2% graph on the bottom row of Figure
5. It can also be seen in this graph that following the exclusion of unsuitable areas from
the analysis, a substantial part of all alternatives (pixels) in both results is observed on
the positive side of the z-score distribution.

The z-score difference maps for the two cases (i.e., including and excluding urban and
sub-urban areas) was found to vary between a minimum of -1.629 and a maximum of
1.263, suggesting a non-statistically significant difference between the two results in a
one-to-one comparison of each pixel (alternative) at a 95 percent confidence interval (see
the summary statistics in the 3™ and 4*" rows of Figure 5). Moreover, in the second
case, when the given urban-suburban areas were excluded, as would be expected, the
distribution of the difference map was found to be approximating a normal distribution
around a mean value, which was very close to zero (-0.0088) (see the 1°* graph and the
summary statistics on the bottom row of Figure 5). Accordingly, based on the comparison
of agricultural preference maps in terms of their z-score pixel values, it can be stated that
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the newly developed uncertainty models did not result in a significant difference over the
existing deterministic models of LUCIS.
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Uncertainty excluding existing
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Figure 5. Z-score agricultural preference maps of deterministic and
uncertainty approaches and their z-score difference maps, including and
excluding the existing urban-suburban areas, distributions and sum-
mary statistics of maps

On the other hand, as stated earlier, by means of three different land-use preference
maps (agricultural, urban and ecologically sensitive), the ultimate aim in LUCIS model-
ing is to achieve a land-use conflict map (Figure 2), and based on this, to develop possible
future land-use scenarios. The first step in the conflict analysis requires the three pref-
erence maps to be collapsed into three classes, in which each map is differentiated by
low, moderate and high levels of preferences [9]. Therefore, to be evaluated as a base
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map in the conflict analysis, the two agricultural preference maps from deterministic and
uncertainty modeling were also compared after being collapsed into three equal interval
rank groups, labeled 1 for low, 2 for moderate and 3 for high preferences, i.e., their agri-
cultural land-use suitability. The results of these analyses for both cases, i.e., including
and excluding the given urban-suburban areas, are shown in Figure 6.

In the first case, as expected, the total number of alternatives (pixels) on the two
preference maps was found to have a correspondence level as high as 83.72 percent,
about 40 percent of which was a result of the same given urban-suburban areas having
the same preference level of 1 (see the table on the left in Figure 6). Accordingly, the
Cohen’s Kappa, which is a measure of agreement between the two ordered preference
groups [34] of the two maps, was found to be 0.75 (Figure 6). Since the used data
was the population itself, its significance was not assessed. Nevertheless, the results for
the second case suggested a higher level of difference between the two maps. When the
existing urban-suburban areas were excluded, the total difference in one level of preference
from 1 to 2 or 2 to 1, and from 2 to 3 or 3 to 2, increased by almost two times, i.e., from
16.28 percent to 32.04 percent (see the two tables in Figure 6). In addition, although
negligible, the difference in two levels of preference from 1 to 3 or 3 to 1 increased to 0.18
percent from 0.00058 percent, which was the result of only one category of the collapsed
map having a value of 1 in the deterministic and 3 in the uncertainty components. That
is, in the second case, the collapsed map had a newly emerged category for two levels of
preference difference with a value of 3 from the deterministic component and 1 from the
uncertainty map. As a result of the second case analysis, as expected, the Cohen’s Kappa
value decreased to 0.39 (Figure 6), which suggested only a moderate level of agreement
between the two ordered preference groups of the two maps rather than a strong one [34].

5. Conclusion

Recognizing the need for studies relating to the proper expression of uncertainty in
GIS-based multi-criteria in land-use planning, this study has concentrated on epistemic
uncertainties, concerning particularly the last three stages of the spatial multi-criteria
modeling process commonly defined in spatial MCDM literature, being decision making
on criteria standardization, criteria weighting and the interpretation of the final results.
In general, the uncertainty associated with criteria standardization and weighting pro-
cesses is assessed by way of classical error propagation or sensitivity analyses, which
measure the impact of the errors found in, or perturbations made to the criterion val-
ues and their weights on the outputs in terms of the suitability ranking of alternatives.
Instead of utilizing these indirect methods of uncertainty assessment at the final output
level in decision making [28], this study set out with the main premise that uncertainty
makes a difference in terms of both the pattern and level of suitability of the alternatives
at each hierarchical level of multi-criteria land-use planning. In doing this, no consider-
ation was given to how “objective” or “sensitive” the decisions were, and by whom they
were taken in the decision-making process, whether individual modelers, a group of ex-
perts with different backgrounds — such as planners [42] —, community participants [9;
17] and/or politicians.

To this end, the study tried to show the importance of determining the risk in choos-
ing a particular alternative [11] in land-use planning, and for this purpose it made use of
LUCIS (Land-Use Conflict Identification Strategy), which is a deterministic GIS-based
multi-criteria decision process, and compared it with a newly developed equivalent un-
certainty modeling at each level of the hierarchical structure. Although the ultimate aim
of LUCIS is to represent the probable patterns of future land use based on a conflict map
obtained from the overlaying of low, moderate and high levels of preferences or suitability
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Figure 6. Agricultural preference maps and distributions of three-
class equal interval z-score agricultural preference maps, including
and excluding the existing urban and suburban areas, their cross-
tabulations and Cohen’s Kappa values
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for the three land uses (agricultural, urban, and ecologically sensitive) at the 6" level of
the hierarchy, the scope of this study was limited to the agricultural preference (overall
goal) map at the 5" level, starting from the maps in the 1°¢ level, corresponding to lower
level sub-objectives.

The two modeling approaches were applied to the case of Hillsborough County in the
state of Florida, which is characterized by heavy urbanization and an urban footprint
[44] that continues to expand into the valuable natural and agricultural areas. The
comparison of the methodologies and results of the two modeling were made in three
stages of the analysis: (1) in criteria standardization, prior to the application of any
weighting at levels 1, 2 and 3; (2) in criteria weighting and aggregation at levels 1, 2, 3,
3’ and 4; and (3) in obtaining the preference maps and the interpretation of these maps
at level 5.

The first stage at which uncertainty is assessed by means of probability, fuzzy sets
and multi-attribute utility theories under seven different groupings of the unweighted
criterion maps of the model revealed:

- different suitability levels and more variability in the alternatives for similar
physical boundaries (method 1 and method 5, respectively);

- different suitability levels with similar patterns (part of method 3);

- different suitability levels with different patterns (part of method 2, method 4,
method 7) with more variability (method 6); and

- similar suitability levels with similar patterns (part of method 2, part of method 3).

Similarly, the comparisons of the maps at the aggregation levels after the weighting
which were handled by Analytic Hierarchy Process in the deterministic modeling and us-
ing the trade-off method, except for the weights of goal maps in the uncertainty modeling,
were found to have differentiating levels of differences in terms of pattern/shape/form
and the degree of land-use suitability.

In the final stage of the analysis, which addresses directly the agricultural land-use
preferences in the decision-making process, a moderate level of difference was identified
between the two approaches when the given urban-suburban areas are excluded from the
analysis and when the agricultural preference map is collapsed into three different levels of
preference (low, moderate and high), which is a critical, and in fact an uncertain, process
in defining and interpreting the results of modeling. This process needs special attention
when the preference maps results are not utilized on the basis of individual alternatives
(pixels), but rather on the basis of data that is collapsed into only a few broad categories.
The main difference in these broad categories was reflected in the change between the
moderate and high levels of suitability between the two approaches in about 13 percent
of the alternatives in either direction, that is from moderate to high and vice versa, and
their locations in the southeast and north east parts of the county. The use of different
algorithms for modeling uncertainty in decision making in the standardization of criteria
values and criteria weighting would have given rise to a different set of solutions in
terms of the ranking and spatial pattern of agricultural land-use suitability. This study
has aimed to show this possibility, and to clarify that the unique solution set obtained
through a deterministic approach should not be considered as the only one, and also that
uncertainty assessments are an indispensable part of land-use planning, since they make
a difference. This point should be considered when engaged in informed decision and
policy making to allocate limited land resources to their most appropriate land uses in
future, being aware of the limitations and assumptions of the utilized modeling.
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Appendices

A.1. Details of uncertainty method 2. The probability raster of the standard devi-
ation of prediction for “cities’ population” was obtained by applying a probability distri-
bution (exponential) function observed for its distribution given in Equation A.1.1.

(A1) f(z M) =de ™

In this equation, the value of A\, which is a scale parameter, is estimated by calculating
the observed mean nearest neighbor distance of the used cities’ distribution. The final
criterion map was obtained by applying a cumulative exponential distribution with the
formula given in Equation A.1.2 on the multiplied raster.

(A12) f(z;N)=1—e "

The value of A\, which is now a rate parameter and is the reciprocal of the scale
parameter, found by dividing 1 by a denominator that was assumed to be the mean of
the distribution of the weighted cities’ population map obtained by Equation A.1.1.

Figure A.1.1 below shows the estimated utility function obtained in the spreadsheet
environment applied on the “row crops” Euclidian distance raster.

Utility 1,2
Outcome (Probability) 1
24213 0 LN
15000  0.0625 038 \
10000  0.125 0,6
7000 0.25 04 AN
3(5)88 8-55 02 D y = 3E-09x2 - 0,0001x + 0,9648
. ’ R?=0,98
500 0.875 0 . \‘?\ . . .
0 1 02 5000 10000 15000 20000 25000 30000
meters

Figure A.1.1. Utility scores and curve estimated through the indif-
ference technique for distance to row crop areas to obtain the row crops
distance criterion map
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A.2. Details of uncertainty method 3. Fuzzy large or small transformation func-
tions with their default mid-point and spread values were used, whereby the larger and
smaller input values are more likely to be a member of the set, respectively [5]. The only
two exceptions to the use of mid-point default values were the use of the mean of the
distribution of the raster values as for s0213, s0233, s0313 and so0513, and the mean of
parcels having a size of equal or greater than 10 acres for so412. After the rasterization
of this map, the values for Nodata (null) pixels were computed using a conditional map
algebra, assigning them a value through the multiplication of the number of cells by 100
to find their area in square meters, which was then converted to acres. Similarly, in the
model for the timber parcel size sub-objective (s0515), a conditional map algebra was run
so that the null pixels had a value of 1 in contrast to other selected and rasterized pixel
values of 9 before the fuzzy membership operation. Moreover, in the aquifer recharge
models, a conditional map algebra was run in which the null values (originally water
surfaces) were set to a membership value of 0. A final additional operation in the row
crops land-use model (sol112) was a fuzzy OR overlay on the fuzzy membership maps.

A.3. Details of uncertainty method 4. The models followed the course of actions
below.

1. Two zonal statistics raster maps were obtained for the regions having a fuzzy set
membership value of 0.5 < x < 1 (higher level of suitability from s0112, so411
and so511): one for the mean, and the one for the standard deviation, based
on the five respective Euclidian distance maps obtained for the deterministic
approach.

2. To assign the utilities of distances to major roads and/or local markets for the
three goals’ land-use values with a suitability level of 0.5 < = < 1, two conditional
map algebra were operated respectively on each of these statistical raster maps
described above, and on the respective Euclidian distance maps. As a result,
two new raster maps were obtained showing the rankings seen in Table A.3.1.

Table A.3.1. Ranks assigned to conditional rasters

Conditional Raster 1
Euclidian distances having a value lower than mean — 3 standard deviations 8
Euclidian distances having a value lower than mean — 2 standard deviations 7
Euclidian distances having a value lower than mean — 1 standard deviation 6
Euclidian distances having a value lower than mean 5
Otherwise 4
Conditional Raster 2
Euclidian distances having a value higher than mean + 3 standard deviations | 1
Euclidian distances having a value higher than mean + 2 standard deviations | 2
Euclidian distances having a value higher than mean + 1 standard deviation 3
Otherwise 4

3. For the areas with a value of 4 in the 2" conditional raster, the values of the 1%
conditional raster were computed (otherwise the values of the 1" were taken)
on a new raster that combined the two. The assignments in the first and second
conditional raster maps and the combined raster are illustrated on a normal
curve in Figure A.3.1.

4. In a similar way, the regions with a fuzzy set membership value of 0 < z < 0.5
(lower level of suitability from s0112, so411 and so511) were reclassified with the
same range of 1-8 by means of the constant rasters. These rasters were created
using the mean values of the mean and standard deviation zonal statistics maps
of the complementary areas (i.e., where 0.5 < x < 1).
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Figure A.3.1. The rank assignments for row crops, nursery and tim-
ber land-use suitability levels of 0.5 < z < 1 with respect to their
mean and standard deviations found from their distances to major
roads and/or local markets

5. The final ranking of the utilities for suitability, which gave higher priority to the
more suitable areas, were used in a fuzzy set membership operation after the
reclassification of the combined conditional maps for higher-to-lower suitability
rank groups, one after the other. That is, from 1-7 to 8-15 (for s0123, s0423 and
$0522) or from 1-8 to 9-16 (for so421 and s0521), and merging the two resultant
combined rasters. This was achieved through a maximum cell statistic operation
to obtain raster maps having values of 1-15 or 1-16 in different rankings for the
distances. Finally, the resultant maps for the five sub-objectives were obtained
through a fuzzy large transformation function with default mid-point and spread
values.

A.4. Details of uncertainty method 5. In the uncertainty models, the objects with
suitability scores greater than 1 in the deterministic models were selected. Since the
high-intensity livestock (so211) and specialty farming (so311) activities were carried out
mainly on smaller farmland areas and low-intensity livestock (s0231) on larger farmland
areas, their probabilities were computed from the area of each selected object divided
by the total area of all the selected objects. For the former two sub-objectives (so211
and so311), the probability values with a value of 0 at a 1/1,000,000 precision level
were assumed to be slivers, and were thus excluded from any further analysis. This
was to prevent them from having higher utilities for suitability based on the subsequent
transformation of their probabilities. The probabilities were then recalculated in the
same way, with the results processed on a spreadsheet, after which a transformation
function of a logarithm of base 0.000001 was carried out, resulting in a maximum utility
of 1 for the smallest probabilities for s0211 and s0311. The results of these functional
transformations were merged with the original vector data in the model, and raster maps
were created based on these utilities by way of a polygon-to-raster operation, followed
by the assignment of 0 to any pixels having null values by a map algebra operation. In
the model for low-intensity livestock land use (s0231), after obtaining a raster map of the
computed probabilities in the first step, the cumulative exponential distribution function
given in Equation A.1.2 was applied. The value of the rate parameter of A was found
by dividing 1 by the mean of the probability distribution, which was assumed to be the
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scale parameter. The model for s0231 was then finalized by the assignment of 0 to any
pixels having null values.

A.5. Details of uncertainty method 6. Although the uncertainty models utilized
the same Euclidian distance maps as a base in the corresponding deterministic models,
their results were different due to the uncertainties in these models, which were assessed
in a similar way to that explained in Method 4. The difference here was the evaluation
of three rather than two mean-standard deviation pairs of zonal statistic raster maps
(total of 6 rasters) by means of the three different selections. These were based on the
pixels from the resultant land-use suitability maps from s0211, s0231 and so311 for sub-
objective groups of (1) 80212, s0215, s0221 and s0223 related to high-intensity livestock
activities; (2) 50232, 80241 and 50243 related to low-intensity livestock activities; and (3)
s0312, so321 and s0323 related to specialty farming, respectively. In addition, instead
of two groups, the selection of three groups from the raster maps here included the
selection of alternatives (x) having utility levels based on the functional transformations
of the probabilities found for the respective land-use parcels, which were 0.5 < x < 1;
0 < x < 0.5 and x=0. Another difference was found in the interfering linguistic hedges (as
in 80212, 80232 and s0312) for these groups of probabilities (an example is given in Figure
A.5.1), rather than their one-after-the-other ordering (as in s0215, 0221, 0241, s0321,
80223, 0243 and s0323). Moreover, the constant rasters were created using the mean
values of the mean and standard deviation zonal statistics maps of the complementary
land-use probability groups having a value of 0 < z < 0.5 for models s0212, s0312, s0215,
80221, 50321, 50223, s0323, and by the one having a value of 0.5 < x < 1 for models 50232,
$0241 and s0243. Finally, the models ended with a fuzzy small (for s0212, 0232, s0312,
$0215) or large (for s0221, s0241, s0321, 80223, s0243, s0323) transformation function
with default mid-point and spread values.

very oW sssssssmmss
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1
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Figure A.5.1. Simplified fuzzy representations and combined rasters,
and the resultant fuzzy ranked sub-objective 212 criterion map

A.6. Details of uncertainty method 7. In order to handle any uncertainties in the
fuzzy set membership functions based on both the spatial and non-spatial aspects of the
alternatives, i.e., parcels, the uncertainty models involved the following steps:
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. To obtain the spatial component of the model, the parcel objects having the

land uses that were selected in the deterministic model were selected based on
the same sliver assumption criteria for each respective objective.

. The X-Y coordinates of the selected data centroids were computed in the GIS,

and the data was inputted into the spatial data analysis software in order to run
a K-means clustering routine, for which the separation parameter was set as 5.
Since the main clustering regions were observed to be 3 for objectives 13, 26, 33
and 43, and 2 for objectives 25 and 53, the K-location values were set as 3 and
2 for the respective objectives.

. The first and second standard deviation ellipses of the computed three or two

respective K-means clusters were visualized in the GIS, and their parameters
were used to compute the third standard deviation ellipses through a table to
ellipse operation.

. The model continued with dissolving, erasing and merging operations (and ge-

ometry repairment operations when needed to remove slivers etc.) to obtain
combined concentrated zones of three standard deviation ellipses with no self-
intersecting areas. Subsequently, these areas were rasterized and reclassified
with respect to their standard deviation ellipse numbers and as Nodata around
the third ellipses to be combined with the non-spatial component of the model.

. As for the non-spatial component, the parcel objects having descriptions other

than ‘header’ and ‘note’ were selected, and a raster layer was obtained from
these objects based on just value per acre field. This raster was reclassified with
the listed ranks below for the 3 K-means cluster objectives of 13, 26, 33 and 43,
and without rank 4 for the 2 K-means cluster objectives of 25 and 53.

- 0 and mean (7) as rank 1;

- (%) and (Z)+ one standard deviation (s) as rank 2;

- (%) + (s) and (T) + 2(s) as rank 3;

- (T) + 2(s) and a value that is more than the largest just value/acre value in
the data set as rank 4;

- Nodata as Nodata

. Two separate map algebra tools were used in an enumeration process of the two

classified standard deviation raster maps, with one based on the spatial (cluster
location) properties of the selected parcels, and the other on the just value/acre
values of all the parcels with respect to the mean and the standard deviation
statistics of the selected parcels. The enumeration processes involved the mul-
tiplication of the first component by 10, then adding the second component to
the result. These processes, their respective maps, the assignment of ranking
to the enumeration results and the combined enumeration map through a mean
cell statistic (max or min operations would also have given the same result) op-
eration can be seen in Figure A.6.1 with the example for objective 13. While all
other 3 K-means cluster objectives (026, 033, 043) utilized a similar 4x4 enumer-
ation and a 10-level ranking, 2 K-means cluster objectives (025 and 053) used a
3x3 enumeration tables removing the 4" column and 4*" row from the 4x4 one,
and a 6-level ranking, which replaced 7 with 6 in the 4x4 table (Figure A.6.1).

. Before carrying out the final fuzzy membership operation to obtain the final

objective criterion maps, the parcel objects having descriptions of ‘header’ and
‘note’ were selected and assigned a value of 11 for objectives 13, 26, 33 and
43, and a value of 7 for objectives 25 and 53, and then merged with the final
raster map obtained in the previous step already having a 1-10 or 1-6 ranking,
respectively.
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Figure A.6.1. The enumeration processes (a and b), rank assignment

to the enumeration results (¢) and the respective maps (d for a and e

for b), including their combined cell statistic resultant map (f) for a

further fuzzy set membership operation in the model for objective 13
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