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Generalized multi-phase regression-type estimators
under the e�ect of measuemnent error to estimate

the population variance
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Abstract

In this article, we suggest some regression-type estimators for the esti-
mation of �nite population variance using multi-variate auxiliary infor-
mation under multi-phase sampling schemes when measurement error
(ME) contaminates the study variable. An empirical study is also car-
ried out to judge the merits of proposed estimators.

Keywords: Multi-phase sampling, measurement error, mean square error, e�-

ciency.

2000 AMS Classi�cation: 62D05

Received : 28.01.2014 Accepted : 06.04.2015 Doi : 10.15672/HJMS.201612116352

1. Introduction

In sample surveys, it is customary to exploit the auxiliary information to enhance the
precision of estimators. Ratio and regression estimators provide one type of example.
Sometimes the sample units are chosen with probability proportionate to some measure
of size based on the auxiliary variate. In all these cases it is information on just one
auxiliary variate that is used for reasons of sample selection or estimation. Pretty often
we take information on several variates and it may be considered important to make use
of the whole of the available material to improve the precision of at least some of the key
items in the survey (see Raj [10]). Isaki [7] has discussed multi-variate ratio estimators
to estimate �nite population variance S2

y . Singh and Solanki ([16], [17]) and Solanki and
Singh [19] proposed the procedure for variance estimation using auxiliary information
under simple random sampling.

Two-phase sampling of a �nite population occurs when a sample from the population
is itself sampled, with the goal of determining variates in the sub-sample not already
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available in the sample. An important example is the regression estimator for means
or totals, which uses values of an auxiliary variable from the full sample to estimate
the mean of a variable of interest that is available only on the subsample. Multi-phase
sampling is not widely discussed in literature. Mukerjee et al. [9] considered mainly
three phases. Singh [18] proposed a class of estimators for population variance under two-
phase sampling, whose composition was partially de�ned for the single auxiliary variable.
Dorfman [5] proposed regression estimator for estimation of population variance under
two-phase sampling scheme. Allen et al. [1] proposed a family of estimators of population
mean using multi-auxiliary information in presence of measurement errors.

In most of the statistical studies, it is one of the common believes that the data are
error-free but usually in realistic circumstances this statement is not absolutely met and
the data are infected by errors. The consequences made for the error free data become
invalid for the measurement error situation. Some important sources of measurement
error are discussed in Cochran [3]. In sampling theory, the use of suitable auxiliary infor-
mation results in considerable reduction in mean square error. Shukla et al. ([11],[12])
contributed by suggesting a mean estimator as well as class(es) of factor-type estima-
tor(s) in the presence of measurement error. Singh and Karpe [13] have paid attention
towards the estimation of population mean of the study variable y using the auxiliary
information in presence of measurement error. Singh and Karpe [14] considered the
problem of estimation of population variance S2

y under the assumptions: (i) when the
study variable y is measured without error and auxiliary variable x is a�ected by error
with known error variance S2

v , (ii) when the study variable y is a�ected by error with
known error variance S2

u and the auxiliary variable x is free from error. Furthermore, un-
der the assumption of measurement error in study variabley, Singh and Karpe [15] paid
attention towards the estimation of �nite population variance S2

y . Bhushan et al. [2]
proposed two-phase generalized class of regression-type estimators using auxiliary infor-
mation. Diana and Giordan [4] have proposed a family of estimators for the population
variance S2

y by assuming error in both variables yand x under the regression approach. In
practical application, let a psychiatrist wants to estimate the population variance of level
of pathology in certain class of patients which depends upon the thinking disturbance ,
aggressive attitude, number of major miss-haps in life, ect.

In literature, the work on estimation of �nite population variance using multi-auxiliary
variables under multi-phase sampling is lacking especially when the study variable y is
assumed to be contaminated with measurement error, so the present article is one of the
steps to the solution of such situation.

Proposed Set-up: In the present study, we consider the following set-up:

(1) Complete Information Case (CIC): When information on all q auxiliary variables
is known (we use single phase sampling).

(2) Incomplete Information Case (IIC): When information on some auxiliary vari-
ables is known.

(3) No Information Case (NIC): When information on all q auxiliary variables is
unknown.

In Section 2, the symbols and notations used in this article are discussed. Section 3
presents the generalized regression-type variance estimator based on complete informa-
tion of the multi-auxiliary variables about population variance, when the study variable
is contaminated with measurement error. Section 4 present the generalized regression-
type variance estimator when population variance of few auxiliary variables is known. In
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Section 5, the generalized regression-type variance estimator is proposed when the pop-
ulation variance of all multi-auxiliary variable is unknown. Sections 6, 7 and 8 present
the e�ciency comparison, numerical analysis and concluding remarks respectively.

2. Symbols and notations

Let U = {1, 2, ....., j, ...., N} be a �nite population of N distinct and identi�able units.
Let y and xi (i = 1, 2, ..., r, r + 1, ..., q) , be the study and the q auxiliary variables re-
spectively, taking values yj and xij for the j -th population unit. We are interested
in estimating the �nite population variance

(
S2
y

)
under multi-phase sampling schemes.

Speci�cally we assume that a preliminary large sample n(1) is drawn with simple random
sampling without replacement (SRSWOR) from a population and information on the
auxiliary variable x1 is taken. In second phase, a relatively small sample of size n(2) is

drawn from n(1)

(
n(2) < n(1)

)
and information on both auxiliary variables x1 and x2 is

taken. This procedure goes up to the last phase when the smallest sample of size n(q+1)(
n(q+1) < n(q) < .... < n(1)

)
is drawn. At this phase, all the q auxiliary variables as well

as the variable of interest y are also observed. According to assumption, the measure-
ment error is present in the variable of interest y denoted by y⊗ with known variance S2

u.
Moreover, let S2

xi and s2
xi(l)

denote the known population variance and sample variance

of the i-th auxiliary variable (i = 1, 2, ..., r, r + 1, ..., q) at l-th phase (l = i, ..., q, q + 1) ,
respectively. We limit our numerical study to two-phase sampling using three auxiliary
variables.

The observational or measurement errors are de�ned as
uj(l) = y⊗j(l) − yj(l) and vij(l) = x⊗ij(l) − xij(l) (i = 1, 2, ..., r, r + 1, ..., q) ,

where uj(l) and vij(l)are assumed to be stochastic with zero mean and constant variances

S2
u and S2

vi . As ȳ(l) and x̄i(l) are unbiased estimators but s2
y(l)

and s2
xi(l)

are biased esti-
mators.
Let

(
Ȳ , X̄i

)
and

(
S2
y , S

2
xi

)
be the population means and population variances of the true

values of yj(l) and xij(l) respectively with corresponding sample means
(
ȳ(l), x̄i(l)

)
and

sample variances
(
s2
y(l)

, s2
xi(l)

)
at l-th phase. We know that ȳ⊗(l) = 1

n(l)

∑n(l)

j=1 y
⊗
i(l)is un-

biased estimator but s⊗2
y(l)

= 1
n(l)−1

∑n(l)

j=1

(
y⊗j(l) − ȳ

⊗
(l)

)2

is biased estimator of S2
y due

to measurement error. Similarly x̄⊗ij(l) = 1
n(l)

∑n(l)

j=1 x
⊗
ij(l) is unbiased estimator but

s⊗2
xi = 1

n(l)−1

∑n(l)

j=1

(
x⊗ij(l) − x̄

⊗
i(l)

)2

(i = 1, 2, ..., r, r + 1, ..., q) is biased estimator of S2
xi

due to measurement error at l-th phase.
The expected values of s⊗2

y(l)
and s⊗2

xi are given by

E
(
s⊗2
y(l)

)
= S2

y + S2
u and E

(
s⊗2
xi(l)

)
= S2

xi + S2
vi ,

where S2
u and S2

vjare known, then the unbiased estimators of S2
y and S2

xjare

Ŝ2
y(l)

= s⊗2
y(l)
− S2

u and Ŝ2
xi(l)

= s⊗2
xi(l)
− S2

vi(i = 1, 2, ..., r, r + 1, ..., q).

To obtain the properties of proposed estimators, we use the following approximations.
For l-th and (l + 1)-th phase, we de�ne the notations as

Let s⊗2
y(l)

= S2
y

(
1 + e⊗y(l)

)
, s⊗2

y(l+1)
= S2

y

(
1 + e⊗y(l+1)

)
, s2

y(l)
= S2

y

(
1 + ey(l)

)
,

s⊗2
xi(l)

= S2
xi

(
1 + e⊗xi(l)

)
, s2

xi(l)
= S2

xi

(
1 + exi(l)

)
, s2

xi(l+1)
= S2

xi

(
1 + exi(l+1)

)
,
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such that E
(
e⊗2
y(l)

)
= ϕ(l)S

4
yA
∗
yy, E

(
e⊗2
y(l+1)

)
= ϕ(l+1)S

4
yA
∗
yy, E

(
e2
y(l)

)
= ϕ(l)S

4
yλ
∗
yy,

E
(
e2
xi(l)

)
= ϕ(l)S

4
xiλ
∗
xixi , E

(
e2
xi(l+1)

)
= E

(
exi(l)exi(l+1)

)
= ϕ(l+1)S

4
xiλ
∗
xixi ,

E
(
e⊗y(l)exi(l)

)
= ϕ(l)S

2
yS

2
xiλ
∗
yxi , E

(
e⊗y(l)exi(l+1)

)
= ϕ(l+1)S

2
yS

2
xiλ
∗
yxi ,

where A∗yy = γ2y +
2+γ2u(1−θy)2

θ2y
, θy =

S2
y

S2
y+S2

u
, γ2y = β2(y) − 3 and γ2u = β2(u) − 3,

here β2(y) and β2(u) are the population co-e�cients of kurtosis for the variable y and u.

Let λ∗xixi = λxixi − 1, λ∗yxi = λyxi − 1, µ∗yxi = µyxi − µyµxi , µy = S2
y , µxi = S2

xi and

ϕ(l) = 1
n(l)

.

Also λts =
µ22(t,s)

µ20(t,s)µ02(t,s)
= µts

µtµs
or t = y, xi and s = y, xi (i = 1, 2, ...., r, r + 1, ...., q) ,

where µab(t,s) =
∑N

i=1(ti−T̄)a(si−S̄)b

N−1
.

For a = 2 and b = 2⇒ µ22(t,s) =
∑N

i=1(ti−T̄)2(si−S̄)2

N−1
.

For a = 0 and b = 2⇒ µ02(t,s) =
∑N

i=1(si−S̄)2

N−1
.

For a = 2 and b = 0⇒ µ20(t,s) =
∑N

i=1(ti−T̄)2

N−1
.

3. Generalized Regression-Type Estimators Using Multi-Auxiliary

Variables

In this section, the estimators are formulated under the proposed setup.

3.1. Generalized regression-type estimators using multi-auxiliary variables

under multi-phase sampling in the presence of ME under CIC. Let s⊗2
y(l)

and

s2
xi(l)

be the sample variances of the study variable y under measurement error and the

i-th auxiliary variable (i = 1, 2, ..., r, r + 1, ..., q) respectively. The population variance
S2
xi (i = 1, 2, ..., r, r + 1, ..., q) of all multi-auxiliary variables is known. We consider the

following generalized multi-phase regression-type estimator for population variance S2
y

using αi (i = 1, 2, ..., r, r + 1, ..., q) as unknown constants.

(3.1) Ŝ⊗2
y1 = s⊗2

y(l)
+

q∑
i=1

αi
(
S2
xi − s

2
xi(l)

)
.

In terms of e's, we have

(3.2) Ŝ⊗2
y1 − S

2
y = S2

ye
⊗
y(l)
−

q∑
i=1

αiS
2
xiexi(l) .

Squaring (3.2) and then taking expectation, we get MSE
(
Ŝ⊗2
y1

)
as

(3.3) MSE
(
Ŝ⊗2
y1

)
= E

(
S2
ye
⊗
y(l)
−

q∑
i=1

αiS
2
xiexi(l)

)2

.

For optimum value of αi = (−1)i+1
|Λyxi |(yx̃q)

|Λxx(q×q)|
(i = 1, 2, ..., q), the resulting minimum

MSE
(
Ŝ⊗2
y1

)
, to �rst order of approximation, is given by
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(3.4) MSE
(
Ŝ⊗2
y1

)
min

= ϕ(l)S
4
y

[
A∗yy −

q∑
i=1

(−1)i+1
|Λyxi |(yx̃q)

|Λxx(q×q)|
µxiλ

∗
yxi

µy

]
.

Let <2
s2y.s

2
x̃q

=
∑q
i=1 (−1)i+1

|Λyxi |(yx̃q)

|Λxx(q×q)|
µ∗
yxi
µ2
y
, then (3.4) can be written as

(3.5) MSE
(
Ŝ⊗2
y1

)
min

= ϕ(l)S
4
y

[
A∗yy −<2

s2y.s
2
x̃q

]
.

Remark 3.1.1: Single-phase sampling using q auxiliary variables

For full information case using q multi-auxiliary variables, we replace l by 1, which is the
case of simple random sampling. The estimator given in (3.1) becomes

(3.6) Ŝ⊗2†
y1 = s⊗2

y(1)
+

q∑
i=1

αi
(
S2
xi − s

2
xi(1)

)
.

For the optimum values of αi = (−1)i+1
|Λyxi |(yx̃q)

|Λxx(q×q)|
(i = 1, 2, ..., q) , the resulting mini-

mum MSE
(
Ŝ⊗2†
y1

)
, to �rst order of approximation, is given by

(3.7) MSE
(
Ŝ⊗2†
y1

)
min

= ϕ(1)S
4
y

[
A∗yy −<2

s2y.s
2
x̃q

]
.

Here |Λyxi |(yx̃q) is the determinant of matrix of population variances of the variables

y, x1, ...., xq and |Λxx(q×q)| is the determinant of matrix of population variances of the
variables x1, ...., xq.

Remark 3.1.2: Single-phase sampling using q auxiliary variables in the

absence of measurement error

Let the observations of variable of interest y be recorded without an error. Substituting
S2
u = 0 in (3.5), we get A∗yy = λ∗yy,

(3.8) MSE
(
Ŝ2
y1

)
min

= ϕ(1)S
4
y

[
λ∗yy −<2

s2y.s
2
x̃q

]
.

3.2. Generalized regression-type estimators using multi-auxiliary information

under multi-phase sampling in the presence of ME under IIC. Let s2
xi(l)

and

s2
xi(l+1)

be sample variances of the auxiliary variables xi (i = 1, 2, . . . , r, r+ 1, . . . , q) at l-

th and (l + 1)-th phases respectively with the sample size n(l) and n(l+1) having the pop-

ulation variance S2
xi . Also s

⊗2
y(l+1)

be the sample variances of the study variable y of size

n(l+1) selected at (l + 1)-th phase. The population variance S2
xi (i = 1, 2, ..., r, r + 1, ..., q)

on some auxiliary variables is known. We formulate the generalized regression-type
estimator for the estimation of unknown �nite population variance S2

y using αi, δi
(i = 1, 2, ..., r) and γi (i = r + 1, r + 2, ..., q) as unknown constants.

Ŝ⊗2
y2 =s⊗2

y(l+1)
+

r∑
i=1

αi
(
S2
xi − s

2
xi(l)

)
+

r∑
i=1

δi
(
S2
xi − s

2
xi(l+1)

)
+

q∑
i=r+1

γi
(
s2
xi(l)
− s2

xi(l+1)

)
.(3.9)
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In terms of e's, we have

(3.10)

Ŝ⊗2
y2 −S

2
y =

[
S2
ye
⊗
y(l+1)

−
r∑
i=1

αiS
2
xiexi(l) −

r∑
i=1

δiS
2
xiexi(l+1)

+

q∑
i=r+1

γiS
2
xi

(
exi(l) − exi(l+1)

)]
.

Squaring (3.10) and then taking expectation, we get

MSE
(
Ŝ⊗2
y2

)
=E

[
S2
ye
⊗
y(l+1)

−
r∑
i=1

αiS
2
xiexi(l) −

r∑
i=1

δiS
2
xiexi(l+1)

+

q∑
i=r+1

γiS
2
xi

(
exi(l) − exi(l+1)

)]2

.(3.11)

For the optimum values of αi = (−1)i+1

(
|Λyxi |(yx̃q)

|Λxx(q×q)|
−
|Λyxi |(yx̃r)

|Λxx(r×r)|

)
, δi = (−1)i+1 |Λyxi |(yx̃r)

|Λxx(r×r)|

(i = 1, 2, ..., r) and γi = (−1)i+1
|Λyxi |(yx̃q)

|Λxx(q×q)|
(i = r + 1, r + 2, ..., q) , the resulting mini-

mum MSE
(
Ŝ⊗2
y2

)
, to �rst order of approximation, is given by

MSE
(
Ŝ⊗2
y2

)
min

=S4
y

[
ϕ(l+1)A

∗
yy − ϕ(l)

r∑
i=1

(−1)i+1
|Λyxi |(yx̃r)

|Λxx(q×q)|
µ∗yxi
µ2
y

+
(
ϕ(l) − ϕ(l+1)

) q∑
i=1

(−1)i+1
|Λyxi |(yx̃q)

|Λxx(q×q)|
µ∗yxi
µ2
y

]
.(3.12)

Let <2
s2y.s

2
x̃r

=
∑r
i=1 (−1)i+1

|Λyxi |(yx̃q)

|Λxx(q×q)|
µ∗
yxi
µ2
y
. then (3.12) can be written as

(3.13) MSE
(
Ŝ⊗2
y2

)
min

= S4
y

[
ϕ(l+1)A

∗
yy − ϕ(l)<2

s2y.s
2
x̃r

+
(
ϕ(l) − ϕ(l+1)

)
<2
s2y.s

2
x̃q

]
.

Remark 3.2.1: Two-phase sampling using q auxiliary variables

For the case of two-phase sampling using q multi-auxiliary variables, we replace l by
1. The estimator given in (3.9) becomes

(3.14)

Ŝ⊗2†
y2 = s⊗2

y(2)
+

r∑
i=1

αi
(
S2
xi − s

2
xi(1)

)
+

r∑
i=1

δi
(
S2
xi − s

2
xi(2)

)
+

q∑
i=r+1

γi
(
s2
xi(1)

− s2
xi(2)

)
.

For optimum values of αi = (−1)i+1

(
|Λyxi |(yx̃q)

|Λxx(q×q)|
−
|Λyxi |(yx̃r)

|Λxx(r×r)|

)
, δi = (−1)i+1

|Λyxi |(yx̃q)

|Λxx(q×q)|

(i = 1, 2, ..., r) and γi = (−1)i+1
|Λyxi |(yx̃q)

|Λxx(q×q)|
(i = r + 1, r + 2, ..., q) , the minimum

MSE
(
Ŝ⊗2†
y2

)
, to �rst order of approximation, is given by

(3.15)

MSE
(
Ŝ⊗2†
y2

)
min

= S4
y

[
ϕ(2)

(
A∗yy −<⊗2

s2y.s
2
x̃r

)
+
(
ϕ(1) − ϕ(2)

)(
<⊗2

s2y.s
2
x̃q

−<⊗2

s2y.s
2
x̃r

)]
.
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Remark 3.2.2: Two-phase sampling using q auxiliary variables in the ab-

sence of measurement error

Let the observations of variable of interest y be recorded without an error. Substituting
S2
u = 0 in (3.13), we get A∗yy = λ∗yy, so

(3.16) MSE
(
Ŝ2
y2

)
min

= S4
y

[
ϕ(2)λ

∗
yy − ϕ(1)<2

s2y.s
2
x̃r

+
(
ϕ(1) − ϕ(2)

)
<2
s2y.s

2
x̃q

]
.

3.3. Generalized regression-type estimators using multi-auxiliary information

under multi-phase sampling in the presence of ME under NIC. Let s⊗2
y(l+1)

and

s2
xi(l+1)

be the sample variances of the study variable y under measurement error and the

i-th auxiliary variable (i = 1, 2, ..., r, r + 1, ..., q) respectively at (l + 1)-th phase, whereas
s2
xi(l)

be the sample variance of i-th auxiliary variable at l-th phase. The population

variance S2
xi (i = 1, 2, ..., r, r + 1, ..., q) of all multi-auxiliary variables is unknown. We

consider the following generalized regression-type estimator for population variance S2
y

under no information case using αi (i = 1, 2, ..., r, r + 1, ..., q) as unknown constant.

(3.17) Ŝ⊗2
y3 = s⊗2

y(l+1)
+

q∑
i=1

αi
(
s2
xi(l)
− s2

xi(l+1)

)
.

To the �rst order of approximation, we write (3.17) as

(3.18) Ŝ⊗2
y3 − S

2
y = S2

ye
⊗
y(l+1)

+

q∑
i=1

S2
xiαi

(
exi(l) − exi(l+1)

)
.

Squaring (3.18) and then taking expectation, we get MSE as

(3.19) MSE
(
Ŝ⊗2
y3

)
= S4

yE

[
e⊗y(l+1)

+

q∑
i=1

αi
(
exi(l) − exi(l+1)

)]2

.

For optimum value of αi = (−1)i+1
|Λyxi |(yx̃q)

|Λxx(q×q)|
(i = 1, 2, ..., q) ,the resulting minimum

MSE
(
Ŝ⊗2
y3

)
, to �rst order of approximation, is given by

MSE
(
Ŝ⊗2
y3

)
min

=S4
y

[
ϕ(l+1)

(
A∗yy −

q∑
i=1

(−1)i+1
|Λyxi |(yx̃q)

|Λxx(q×q)|
µ∗yxi
µ2
y

)

+ϕ(l)

q∑
i=1

(−1)i+1
|Λyxi |(yx̃q)

|Λxx(q×q)|
µ∗yxi
µ2
y

]
.(3.20)

We can write (3.20) in compact form as

(3.21) MSE
(
Ŝ⊗2
y3

)
min

= S4
y

[
ϕ(l+1)A

∗
yy +

(
ϕ(l) − ϕ(l+1)

)
<2
s2y.s

2
x̃q

]
.

Remark 3.3.1: Two-phase sampling using q auxiliary variables

For no information case using q auxiliary variables, we replace l by 1, which is the case
of two-phase sampling. The estimator given in (3.17) becomes

(3.22) Ŝ⊗2†
y3 = s⊗2

y(2)
+

q∑
i=1

αi
(
s2
xi(1)

− s2
xi(2)

)
.
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For optimum value of αi = (−1)i+1
|Λyxi |(yx̃q)

|Λxx(q×q)|
(i = 1, 2, ..., q), the resulting minimum

MSE
(
Ŝ⊗2†
y3

)
, to �rst order of approximation, is given by

(3.23) MSE
(
Ŝ⊗2†
y3

)
min

= S4
y

[
ϕ(2)A

∗
yy +

(
ϕ(1) − ϕ(2)

)
<⊗2

s2y.s
2
x̃q

]
.

Remark 3.3.2: Two-phase sampling using q auxiliary variables in the absence

of measurement error

Let the observations of variable of interest y be recorded without an error. Substituting
S2
u = 0 in (3.21), we get A∗yy = λ∗yy,

(3.24) MSE
(
Ŝ2
y3

)
min

= S4
y

[
ϕ(2)λ

∗
yy +

(
ϕ(1) − ϕ(2)

)
<2
s2y.s

2
x̃q

]
.

4. E�ciency Comparison

To obtain the e�ciency of proposed estimators, we compare the mean square errors of
proposed multi-phase regression-type variance estimators under measurement error with
the estimators assumed to be free of error.
By (3.7) and (3.8), (3.15) and (3.16), (3.23) and (3.24), it is evident that

(4.1) λ∗yy < A∗yy.

Note: The Condition (4.1) is always true.

Remark: The numerical comparison is made under the e�ciency conditions given above.

5. Data Description

Population 1: (Source: Mukherjee et al. [8])
The fertility data is based on 64 countries. Let y =Total fertility rate, 1980�1985, the
average number of children born to a woman, using age speci�c fertility rates for a given
year, x1 = Child mortality, the number of deaths of children under age 5 in a year per
1000 live births, x2 =Female literacy rate, (percent) and x3 =Per capita GNP (in billions)
in 1980.

N = 64, S2
y = 2.277, S2

x1 = 5772.670, S2
x2 = 676.409, S2

x3 = 7429417.00,

Ȳ = 5.549, X̄1 = 141.500, X̄2 = 51.188, X̄3 = 1401.250, S2
u = 1.255,

λyy = 2.773, λx1x1 = 2.341, λx2x2 = 1.631, λx3x3 = 34.046,

λyx1 = 1.458, λyx2 = 1.069, λyx3 = 0.540, λx1x2 = 1.415,

λx1x3 = 1.921, λx2x3 = 0.372, Ayy = 1.234.

Population 2:(Source: Gujarati [6])
The data is baesd on the demand for chicken in USA, 1960-1982. Let y = Per capita
consumption of chickens in pounds, x1 = Real disposable income per capita in dollars,
x2 = Real retail price of chicken per pound (in cents) and x3 = Real retail price of pork
per pound (in cents).

N = 23, S2
y = 54.360, S2

x1 = 381735.00, S2
x2 = 123.592, S2

x3 = 1240.710,

Ȳ = 39.669, X̄1 = 1035.065, X̄2 = 47.995, X̄3 = 90.400, S2
u = 3.987,

λyy = 2.03, λx1x1 = 2.696, λx2x2 = 1.756, λx3x3 = 1.951, λyx1 = 2.094,

λyx2 = 1.541, λyx3 = 1.758, λx1x2 = 1.997, λx1x3 = 2.145, λx2x3 = 1.755,
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Ayy = 1.033.

Population 3:(Source: Vandaele [20])
The data is based on the crime rate data of USA in 1960. Let y =Number of o�enses
reported to police per million population, x1 =Number of males of age 14-24 per 1000
population, x2 =Indicator variable for southern states and x3 =Mean number of years of
schooling times 10 for persons age 25 or older.

N = 47, S2
y = 1495.853, S2

x1 = 151.516, S2
x2 = 0.229, S2

x3 = 124.076,

Ȳ = 90.508, X̄1 = 137.511, X̄2 = 0.340, X̄3 = 105.406, S2
u = 1428.881,

λyy = 3.859, λx1x1 = 3.684, λx2x2 = 1.423, λx3x3 = 1.896, λyx1 = 0.456,

λyx2 = 0.743, λyx3 = 1.041, λx1x2 = 1.354, λx1x3 = 1.356, λx2x3 = 1.220,

Ayy = 2.703.

Table 1. MSE of proposed ratio-type estimators Ŝ⊗2†
y1 , Ŝ⊗2†

y2 and Ŝ⊗2†
y3

Estimators Pop.1 Pop.2 Pop.3

Ŝ⊗2†y1 0.408 119.840 17.957

0.112 2.05 42.106

Ŝ⊗2†y2 0.709 453.212 62.581

0.134 14.781 1.408

Ŝ⊗2†y3 0.554 280.270 19.282

0.379 2.050 42.106

*The results written in Table 1 in bold format are the absolute values of measurement
error.

6. Conclusion

In general, the presence of measurement error in the survey data invalidates the results.
The goal of this study was to show how measurement error is to be seperated in case of
multi-phase sampling using multi-auxiliary variables for estimation of population vari-
ance S2

y . The values of absolute measurement error are shown in Table 1. It is also evident
that the condition (4.1) holds for all the populations. Hence, the use of proposed esti-
mators are highly preferred in the cases of multi-phase sampling under CIC, IIC and NIC.
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