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Gamma-admissibility of generalized Bayes
estimators under LINEX loss function in a

non-regular family of distributions
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Abstract
Consider an estimation problem in a non-regular family of distribu-
tions under the LINEX loss function. Reviewing the admissibility of
estimators under a vague prior information leads to the concept of
gamma-admissibility. The purpose of this article is to give a sufficient
conditions for a generalized Bayes estimator of a parametric function
to be gamma-admissible. Some examples are given.
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1. INTRODUCTION
Admissibility of estimator is an important problem in statistical decision theory; Con-

sequently, this problem has been considered by many authors under various types of loss
functions both in an exponential and in a non-regular family of distributions. For exam-
ple under squared error loss function (Karlin [5], Ghosh & Meeden [3], Ralescu & Ralescu
[10], Sinha & Gupta [13], Hoffmann [4], Pulskamp & Ralescu [9], Kim [6] and Kim &
Meeden [7]), under entropy loss function (Sanjari Farsipour [11, 12]) and under LINEX
loss function (Tanaka [14, 15, 16]) and squared-log error loss function (Zakerzadeh &
Moradi Zahraie [18]).

In Bayesian statistical inference arbitrariness of a unique prior distribution is a per-
manent question. Robust Bayesian inference deals with the problem of expressing un-
certainty of the prior information. A gamma-admissible approach is used which allows
to take into account vague prior information on the distribution of the unknown param-
eter θ. The uncertainty about a prior is assumed by introducing a class Γ of priors.
If prior information is scarce, the class Γ under consideration is large and a decision is
close to a admissible decision. In the extreme case when no information is available the
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Γ-admissible setup is equivalent to the usual admissible setup. If, on the other hand, the
statistician has an exactly prior information and the class Γ contains a single prior, then
the Γ-admissible decision is an usual Bayes decision. So it is a middle ground between
the subjective Bayes setup and full admissible. See Berger [1] for useful references on
robust Bayesian analysis.

Eichenauer-Herrmann [2] gained a sufficient conditions for an estimator of the form
(aX + b)/(cX + d) to be Γ-admissible under the squared error loss in a one-parameter
exponential family.

The most popular convex and symmetric loss function is the squared error loss func-
tion which is widely used in decision theory due to its simple mathematical properties.
However in some cases, it does not represent the true loss structure. This loss function is
symmetric in nature i.e. it gives equal weightage to both over and under estimation. In
real life, we encounter many situations where over-estimation may be more serious than
under-estimation or vice versa. As an example, in construction an underestimate of the
peak water level is usually much more serious than an overestimation.

The LINEX loss function was initially introduced by Varian [17] in the context of real
estate assessment; estimation under this loss from the Bayesian perspective was studied
by Zellner [19]. Subsequently, it became a workhorse in the literature on asymmetric
loss. For an estimator δ of estimand h(θ), it is given by

(1.1) L(δ, h(θ)) = b
{
ec(δ−h(θ)) − c(δ − h(θ))− 1

}
,

where c 6= 0 and b > 0. If we define ∇ := δ − h(θ), then L(∇) = b
{
ec∇ − c∇− 1

}
.

Some properties of the loss (1.1) are as follows:
(i) The constant b serves to scale this loss and without loss of generality we can

assume that it is equal 1.
(ii) The constant c determines the shape of the loss; For c > 0 this loss function

is quite asymmetric about 0 with overestimation being more costly than under-
estimation. As |∇| → ∞, L(∇) increases almost exponentially when ∇ > 0 and
almost linearly when ∇ < 0. For c < 0, the linearity-exponentially phenomenon
is reversed.

(iii) For |c| → 0, this loss is almost symmetric and not far from a squared error loss
function; In fact since ec∇ ≈ 1 + c∇+ c2∇2/2, thus L(∇) ≈ c2∇2/2.

(iv) It is everywhere differentiable and its derivatives are continuous.

1.1. Remark. Linear-exponential where the name LINEX is justified by the fact that
is this loss function rises approximately linearly on one side of zero and approximately
exponentially on the other side.

A full discussion of the properties of this loss, may be found in Zellner [19] and Parsian
& Kirmani [8].

In this paper we consider the Γ-admissibility of generalized Bayes estimators in a
non-regular family of distributions under the loss (1.1) where class Γ consists of all
distributions which are compatible with the vague prior information. To this end, in
Section 2, we state some preliminary definitions and results. In Section 3, main theorem
will obtain. Finally, in Section 4, we give an application of the Γ-admissibility in proof
the Γ-minimaxity of estimators. Some examples are given.

2. Preliminaries
2.1. Definition of Γ-admissibility. In the present paper it is assumed that vague
prior density on the distribution of the unknown parameter θ is available. Let Π denote
the set of all priors, i.e. Borel probability measures on the parameter interval Θ and Γ
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be a non-empty subset of Π. Suppose that the available vague prior information can be
described by the set Γ, in the sense that Γ contains all prior which are compatible with
the vague prior information.

Eichenauer-Herrmann [2] has defined the Γ-admissibility of an estimator as follows.

2.1. Definition. An estimator δ∗ is called Γ-admissible, if

r(π, δ) ≤ r(π, δ∗), π ∈ Γ,

for some estimator δ implies that

r(π, δ) = r(π, δ∗), π ∈ Γ,

where r(π, δ) is the Bayes risk of δ.

2.2. Remark. From Definition 2.1, it is obvious that
- A Π-admissible estimator is admissible.
- A {π}-admissible estimator is simply a Bayes strategy with respect to the prior π.
- In general neither Γ-admissibility implies admissibility nor admissibility implies Γ-admissibility.

Hence, the available results on admissibility cannot be applied in order to prove the
Γ-admissibility of an estimator. Consequently, it is necessary to study the problem of
Γ-admissibility of estimators.

2.2. A non-regular family of distributions. Let X be a random variable whose
probability density function with respect to some σ-finite measure µ is given by

fX(x; θ) =

{
q(θ)r(x), θ < x < θ

0, otherwise

where θ ∈ Θ =: (θ, θ̄) and Θ is a nondegenerate interval (possibly infinite) on the real
line. Also r(x) is a positive µ-measurable function of x and

q−1(θ) =

∫ θ

θ

r(x)dµ(x) <∞

for θ ∈ Θ. This family is known as a non-regular family of distributions.
Suppose π(θ) be a prior (possibly improper) by its Lebesgue density pπ(θ) over Θ

which is positive and continuous. Let h(θ) be a continuous function to be estimated from
Θ to R and the loss to be (1.1). The generalized Bayes estimator of h(θ) with respect to
π(θ) is given by δπ(X), where

(2.1) δπ(x) = −1

c
ln

{∫ θ̄
x
e−ch(θ)q(θ)pπ(θ)dθ∫ θ̄
x
q(θ)pπ(θ)dθ

}
for θ < x < θ̄, provided that the integrals in (2.1) exist and are finite.

3. Main results
In this section, main results will obtain.
For some real number λ0 let a, b : [λ0,∞) 7→ Θ be continuously differentiable functions

with a(λ0) < b(λ0), where a and b are supposed to be strictly decreasing and strictly
increasing, respectively. For λ ≥ λ0 a prior πλ is defined by its Lebesgue density pπλ of
the form

pπλ(θ) :=

(∫ b(λ)

a(λ)

pπ(t)dt

)−1

I[a(λ),b(λ)](θ)pπ(θ).

Throughout this paper, we restrict estimators to the class
∆ := {δ|(A1) and (A2) are satisfied},
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where
(A1) Eθ[|δ(X)|] <∞ and Eθ

[
eaδ(X)

]
<∞ for all θ ∈ Θ,

(A2)
∫ b(λ)

a(λ)
Eθ [|δ(X)− h(θ)|] pπ(θ)dθ <∞ and

∫ b(λ)

a(λ)
Eθ
[
ea(δ(X)−h(θ))

]
pπ(θ)dθ for λ ≥

λ0 and all θ which θ < a(λ) < θ < b(λ) < θ̄.

3.1. Remark. In the statistical game (Γ,∆, r), a Γ-admissible estimator is an admissible
strategy of the second player.

The next lemma is essential to obtain our results.

3.2. Lemma. Let S(θ) be a continuous and non-negative function over Θ = (θ, θ̄). Let
G(λ) :=

∫ b(λ)

a(λ)
S(θ)dθ. Suppose that there exists a positive function R(θ) such that

G(λ) ≤ 4
(
min

{
R(b(λ))b′(λ),−R(a(λ))a′(λ)

})− 1
2
(
G′(λ)

) 1
2

for λ ≥ λ0. If ∫ ∞
λ0

min
{
R(b(λ))b′(λ),−R(a(λ))a′(λ)

}
dλ =∞,

then S(θ) = 0 for a.a. θ ∈ Θ.

Proof. See Eichenauer-Herrmann [2]. �

Now, the main result of the present paper can be stated.

3.3. Theorem. Suppose that δπ ∈ ∆ and put

K(x, θ) :=

∫ θ

x

{
e−cδπ(x) − e−ch(t)

}
q(t)pπ(t)dt,

and

γ(θ) :=
ech(θ)

pπ(θ)q(θ)

∫ θ

θ

r(x)ecδπ(x)K2(x, θ)dµ(x).

If πλ ∈ Γ for all λ ≥ λ0 and∫ ∞
λ0

min{γ−1(b(λ))b′(λ),−γ−1(a(λ))a′(λ)}dλ =∞,(3.1)

then δπ(X) is Γ-admissible under the loss (1.1).

Proof. Let δ ∈ ∆ be an estimator such that r(π, δ) ≤ r(π, δπ) for every prior π ∈ Γ.
Since πλ ∈ Γ for λ ≥ λ0, we must have

0 ≤

(∫ b(λ)

a(λ)

pπ(t)dt

)
{r(πλ, δπ)− r(πλ, δ)}

=

∫ b(λ)

a(λ)

Eθ [L(δπ, h(θ))− L(δ, h(θ))] pπ(θ)dθ

for all θ ∈ Θ. From Condition (A1), we see that it is equivalent to

0 ≤
∫ b(λ)

a(λ)

Eθ

[{
e
cδ(X)

2 − e
cδπ(X)

2

}2
]
e−ch(θ)pπ(θ)dθ

≤
∫ b(λ)

a(λ)

Eθ [c{δ(X)− δπ(X)}] pπ(θ)dθ

− 2

∫ b(λ)

a(λ)

Eθ

[
e−ch(θ)e

cδπ(X)
2

{
e
cδ(X)

2 − e
cδπ(X)

2

}]
pπ(θ)dθ.
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An application of the Fubini’s theorem gives

0 ≤
∫ b(λ)

a(λ)

∫ θ

θ

{
e
cδ(x)

2 − e
cδπ(x)

2

}2

r(x)dµ(x)e−ch(θ)pπ(θ)q(θ)dθ

≤
∫ b(λ)

θ

∫ b(λ)

x

{c(δ(x)− δπ(x))}r(x)q(θ)pπ(θ)dθdµ(x)

− 2

∫ b(λ)

θ

∫ b(λ)

x

e−ch(θ)e
cδπ(x)

2

{
e
cδ(x)

2 − e
cδπ(x)

2

}
r(x)q(θ)pπ(θ)dθdµ(x)

−
∫ a(λ)

θ

∫ a(λ)

x

{c(δ(x)− δπ(x))} r(x)q(θ)pπ(θ)dθdµ(x)

+ 2

∫ a(λ)

θ

∫ a(λ)

x

e−ch(θ)e
cδπ(x)

2

{
e
cδ(x)

2 − e
cδπ(x)

2

}
r(x)q(θ)pπ(θ)dθdµ(x)

(3.2)

which is guaranteed by Condition (A2).
Using the inequality x−y ≤ e−y(ex−ey) for all x and y, the first term of the right-hand

side in (3.2) is less than

2

∫ b(λ)

θ

∫ b(λ)

x

e−
cδπ(x)

2

{
e
cδ(x)

2 − e
cδπ(x)

2

}
r(x)q(θ)pπ(θ)dθdµ(x).

By Schwartz inequality, sum of the first and the second terms of the right-hand side in
(3.2) is less than

2

{∫ b(λ)

θ

(
e
cδ(x)

2 − e
cδπ(x)

2

)2

r(x)dµ(x)

} 1
2
{∫ b(λ)

θ

ecδπ(x)K2(x, b(λ))r(x)dµ(x)

} 1
2

.

Hence, if we define

T (θ) :=

∫ θ

θ

{
e
cδ(x)

2 − e
cδπ(x)

2

}2

r(x)dµ(x),

and

M(θ) := T (θ)e−cb(θ)q(θ)pπ(θ),

then Equation (3.2) implies

0 ≤
∫ b(λ)

a(λ)

T (θ)e−ch(θ)q(θ)pπ(θ)dθ

≤ 2
{
T (b(λ))e−ch(b(λ))q(b(λ))pπ(b(λ))b′(λ)

} 1
2 {
γ−1(b(λ))b′(λ)

}− 1
2

+ 2
{
−T (a(λ))e−ch(a(λ))q(a(λ))pπ(a(λ))a′(λ)

} 1
2 {−γ−1(a(λ))a′(λ)

}− 1
2

≤ 4
(
min{γ−1(b(λ))b′(λ),−γ−1(a(λ))a′(λ)}

)− 1
2 ×

(
M(b(λ))b′(λ)−M(a(λ))a′(λ)

) 1
2

(3.3)

for λ ≥ λ0, where the definition of the function γ(θ) has been used. Now a continuous,
differentiable and increasing function H : [λ0,∞]→ R is defined by

H(λ) :=

∫ b(λ)

a(λ)

T (θ)e−ch(θ)q(θ)pπ(θ)dθ.
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So (3.3) can be written in the form

H(λ) ≤ 4
(
min{γ−1(b(λ))b′(λ),−γ−1(a(λ))a′(λ)}

)− 1
2 (H ′(λ))

1
2

for λ ≥ λ0. Therefore, from Lemma 3.2 we obtain T (θ) = 0 for a.a.θ ∈ Θ, and conse-
quently from (A1), we have δ(x) = δπ(x) a.e.µ. This completes the proof. �

3.4. Remark. K(x, θ) can expressed as

K(x, θ) =
1∫ θ̄

x
q(u)pπ(u)du

∫ θ

x

∫ θ̄

θ

{
e−ah(s) − e−ah(t)

}
q(s)pπ(s)q(t)pπ(t)dsdt,

by (2.1) and the symmetry of the integrand.

3.5. Example. As Example 1 in [18], suppose that X1, ..., Xn are i.i.d. random variables
according to an exponential distribution whose probability distribution function is given
by

f(x; θ) =

{
ex−θ, x < θ

0, x > θ

where θ(∈ R) is unknown. X = X(n) is sufficient for θ and its probability distribution
function is given by

fX(x; θ) =

{
nen(x−θ), x < θ

0, x > θ

The generalized Bayes estimator of h(θ) = θ with respect to the Lebesgue prior is given
by

δπ(X) = X +
1

c
ln
n+ c

n
,

if n+ c > 0. A direct calculation gives

K(x, θ) =
1

n+ c
e−nθ

(
e−cθ − e−cx

)
,

and

γ(θ) =
2c2

n(n+ c)2(n− c) .

Let class Γ0 consists of all priors with mean 0, i.e., Γ0 := {π ∈ Π|
∫

Θ
θpπ(θ)dθ = 0}.

Define functions a and b by a(λ) = −λ and b(λ) = λ for λ ≥ λ0 > 0, i.e., the prior πλ
is the uniform distribution on the interval [−λ, λ]. Hence, πλ ∈ Γ0 for all λ ≥ λ0. Since
(3.1) is satisfied, Theorem 3.3 implies that δπ(X) is Γ0-admissible under the loss (1.1).

3.6. Remark. It is difficult to express γ(θ) explicitly and it can have a complicated
form, so to apply Theorem 3.3, we have to seek the suitable upper bound of γ(θ). For
the case when h(θ) is bounded, we can get the next corollary.

3.7. Corollary. Suppose that h(θ) is bounded and δπ ∈ ∆. Put

K̃(x, θ) :=

∫ θ̄
θ
q(s)pπ(s)ds

∫ θ
x
q(t)pπ(t)dt∫ θ̄

x
q(u)pπ(u)du

,

and

γ̃(θ) :=
1

pπ(θ)q(θ)

∫ θ

θ

r(x)K̃2(x, θ)dµ(x).
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If πλ ∈ Γ for all λ ≥ λ0 and∫ ∞
λ0

min{γ̃−1(b(λ))b′(λ),−γ̃−1(a(λ))a′(λ)}dλ =∞,

then δπ(X) is Γ-admissible under the loss (1.1).

Proof. It can be shown that there exist constants C and C̄ such that C < ecδπ(x) < C̄
for all x ∈ (θ, θ̄). Further, since h(θ) is bounded, there exists a constant C such that
|K(x, θ)| ≤ CK̃(x, θ) for all (x, θ) ∈ {(x, θ)|θ < x < θ < θ̄}. This completes the proof by
Theorem 3.3. �

3.8. Example. As Example 2 in [18], suppose that X1, ..., Xn are i.i.d. random variables
according to a uniform distribution over the interval (0, θ) where θ(∈ R+) is unknown.
Then the probability distribution function of the sufficient statistic X = X(n) is given by

fX(x; θ) =

{
n
θn
xn−1, 0 < x < θ
0, otherwise

Let h(θ) = Pθ(X1 ≤ 1) = 1
θ
I{1<θ}(θ) + I{θ<1}(θ), where IA(θ) is the indicator function

of the set A. Then the generalized Bayes estimator of h(θ) with respect to π(θ) by its
density pπ(θ) = 1/θ is given by δπ(X), where

δπ(x) =

 −
1
c

ln
{
e−c(1− xn) + n

∫ x
0
yn−1e−c

y
x dy

}
, 0 < x < 1

− 1
c

ln
{
n
∫ 1

0
yn−1e−c

y
x dy

}
, 1 < x

We can easily obtain

K̃(x, θ) =
1

nθn

{
1−

(x
θ

)n}
,

and

γ̃(θ) =
θ

3n2
.

Let Γm := {π ∈ Π|
∫

Θ
θpπ(θ)dθ = m}, i.e., Γm consists of all priors with mean m. Define

functions a and b by a(λ) = m ln(λ)/(λ− 1) and b(λ) = λa(λ) for λ ≥ λ0 > 1. Since∫
Θ

θpπλ(θ)dθ =

(∫ b(λ)

a(λ)

1

t
dt

)−1

(b(λ)− a(λ)) = m

for all λ ≥ λ0, so that πλ ∈ Γm. A short calculation yields

a′(λ) = m
λ− 1− λ ln(λ)

λ(λ− 1)2
< 0,

and

b′(λ) = m
λ− 1− ln(λ)

(λ− 1)2
> 0,

for λ ≥ λ0. Because of λ− 1− ln(λ) < λ ln(λ)− λ+ 1 for λ ≥ λ0 and limλ→∞ b(λ) =∞,
one obtains∫ ∞
λ0

min{γ̃−1(b(λ))b′(λ),−γ̃−1(a(λ))a′(λ)}dλ = (3n2)

∫ ∞
λ0

min

{
b′(λ)

b(λ)
,−a

′(λ)

a(λ)

}
dλ

= (3n2)

∫ ∞
λ0

b′(λ)

b(λ)
dλ =∞

which implies, according to Corollary 3.7 that δπ(X) is Γm-admissible under the loss
(1.1).
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3.9. Remark. Typically all the result in this paper go through with some modifications
for the density

fX(x, θ) =

{
q(θ)r(x), θ < x < θ̄

0, otherwise

where θ ∈ Θ = (θ, θ̄) is unknown.

4. An application
In the presence of vague prior information frequently the Γ-minimax approach is used

as underlying principle. In this section, we provide the definition of the Γ-minimaxity of
an estimator and then express the relation between this concept and the Γ-admissibility.
Finally, we give an example.

4.1. Definition. A Γ-minimax estimator is a minimax strategy of the second player in
the statistical game (Γ,∆, r); δ∗ is called a Γ-minimax estimator, if

sup
π∈Γ

r(π, δ∗) = inf
δ∈∆

sup
π∈Γ

r(π, δ),

where r(π, δ) is the Bayes risk of δ.

4.2. Definition. A Γ-minimax estimator δ∗ is said to be unique, if

r(π, δ) = r(π, δ∗), π ∈ Γ,

for any other Γ-minimax estimator δ.

4.3. Remark.
- From Definition 4.2, it is obvious that a unique Γ-minimax estimator is Γ-admissible.
- If a Γ-admissible estimator δ is an equalizer on Γ, i.e., r(., δ) is constant on Γ, then δ is
a unique Γ-minimax estimator.

4.4. Example. In Example 3.5, we have Eθ[X] = θ−(1/n) and Eθ[ecX ] = (n/(n+c))ecθ.
Thus, the risk function of δπ is equal to

R(δπ, θ) = bEθ
[
ec(δπ−θ) − c(δπ − θ)− 1

]
= b

{ c
n
− ln

(n+ c

n

)}
.

So, δπ is an equalizer on Γ0, since its risk function is constant. Hence, δπ(X) is the
unique Γ0-minimax estimator for θ.
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