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Robust model selection criteria for robust S and
LTS estimators
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Abstract
Outliers and multi-collinearity often have large influence in the
model/variable selection process in linear regression analysis. To in-
vestigate this combined problem of multi-collinearity and outliers, we
studied and compared Liu-type S (liuS-estimators) and Liu-type Least
Trimmed Squares (liuLTS) estimators as robust model selection crite-
ria. Therefore, the main goal of this study is to select subsets of inde-
pendent variables which explain dependent variables in the presence of
multi-collinearity, outliers and possible departures from the normality
assumption of the error distribution in regression analysis using these
models.
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1. Introduction
Traditional variable selection methods are based on classical estimators and tests

which depend on normality assumption of errors. Even though many robust alternatives
to the traditional model selection methods have been offered in the past 30 years, the
associated variable selection problem has been somewhat neglected. For instance, in re-
gression analysis, Mallows’s Cp (Mallows, 1973) is a powerful selection procedure. But,
since the Cp statistics is based on least squares estimation, it is very sensitive to outliers
and other departures from the normality assumption on the error distribution. The need
for robust selection procedures is obvious, because using Mallow’s Cp variable selection
method cannot estimate and select parameters robustly. Ronchetti (1985) and Ronchetti
et. al. (1997) proposed and investigated the properties of a robust version of Akaike’s
Information Criterion (AIC). Hampel (1983) suggested a modified version of it. Hurvich
and Tsai(1990) compared several model selection procedures for L1 regression. Ronchetti
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and Staudte (1994) proposed a robust version of Mallows’s Cp. Sommer and Huggins
(1996) proposed a robust Tp criterion based on Wald Statistics.

Consider the linear regression model

(1) Y = Xβ+ ε

where Y is an n × 1 response vector; X is an n × p full rank matrix of predictors; β is
an p vector of unknown parameters; ε, is an error vector with mean 0 and variance σ2I.
For convenience, it is assumed that the X variables are standardized so that X

′
X has

the form of correlation matrix.

Multi-collinearity and outliers are two main problems in regression methods. To cope
with multi-collinearity, some techniques are proposed. Ridge regression estimator is
one of the most widely used estimators to overcome multi-collinearity. Ridge regression
estimator is defined as

(2) β̂r(k) = (X
′
X + kI)−1X

′
Xβ̂OLS

where k > 0 is the shrinkage parameter. Since β̂R(k) is sensitive to outliers in the y-
direction, an alternative robust ridge M-estimator has been proposed by Sivapulle (1991).
Since β̂R(k) is a complicated function of k, Liu (1993) proposes a new biased estimator
for β. Liu estimator

(3) β̂L(d) = (X
′
X + I)−1(X

′
X + dI)β̂OLS

is obtained by shrinking the ordinary least squares (OLS) estimator using the matrix
(X

′
X+I)−1(X

′
X+dI) Where 0 < d < 1 is a shrinking parameter. Since OLS is used in

Liu estimator, the presence of outliers in y direction may affect β̂L(d). To overcome this
problem, Arslan and Billor (2000) proposed an alternative class of Liu-type M-estimators
(LM) which is defined as:

(4) β̂LM (d) = (X
′
X + I)−1(X

′
X + dI)β̂M

LM estimator is obtained by shrinking an M-estimator (β̂M ) instead of the OLS esti-
mator using the matrix (X

′
X + I)−1(X

′
X + dI). The main objective of this proposed

estimator is to decrease the effects of the simultaneous occurrence of multicollinearity
and outliers in the data set.

Let λ1 ≥ λ2 ≥ . . . λp be the eigenvalues ofXX
′
and q1, q2, . . . , qp be the corresponding

eigenvectors. Let Λ = diag(λ1, λ2, . . . , λp) and P = (q1, q2, . . . , qp) such that X
′
X =

PΛP
′
. The regression model can be written in the canonical form by

Y = β01 +Cα+ ε

where C = XP and α = P
′
β.

Then, the LM-estimator of α, α̂LM (d), becomes

(5) α̂LM (d) = (Λ + I)−1(Λ + dI)α̂M

This estimator is resistant to the combined problem of multicollinearity and outliers in
the y direction (Arslan and Billor, 2000).

In order to obtain α̂LM (d) we used the robust choice of d given in equation (5). Robust
d value is

(6) d̂M = 1− Â2

[ p∑
i=1

1

λi(λi + 1)
/

p∑
i=1

ˆαMi
2

(λi + 1)2

]
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where Â2 is

(7) Â2 = s2(n− p)−1
n∑
i=1

[
Ψ(ri/s)

]2
/
[ 1

n

n∑
i=1

[
Ψ

′
(ri/s)

]]2
(Arslan and Billor, 2000).

2. Model Selection Estimators
2.1. Robust Cp Criteria.

Mallow’s Cp (Mallows, 1973) is a powerful technique for model selection in regression.
Since the Cp is based on OLS estimation, it is sensitive to outliers and other departures
from the normality assumption on the error distribution.
Ronchetti and Staudte (1994) define a robust version of Cp as follows:

(8) RCp =
Wp

σ̂2
− (Up − Vp)

where Wp =
∑
i

ŵ2
i r

2
i =

∑
i

ŵ2
i (yi − ŷi)2, wi is a weight for i. th observation, and σ̂2 is a

robust and consistent estimator of σ̂ in the full model given by σ̂2 = Wfull/Ufull. Wfull,
is the weighted residual sum of squares for full model. The constants Up =

∑
i

var(ŵiri)

and Vp =
∑
i

var(ŵix
T
i (β̂p − β)) are computed assuming that the subsets are correct and

σ = 1.
In robust Cp (RCP) criterion used by Ronchetti and Staudte (1994), Up-Vp value is
constant for all models. In our study, the value of Up-Vp changes according to each subset.
Moreover, Ronchetti and Staudte (1994) have used weighting least squares (WLS) while
computing the estimates. However, we use Huber-type estimation and Huber weights,
instead of WLS. So, Up-Vp is

(9) Up − Vp ∼ nE‖η‖2 − 2tr(NM−1) + tr(LM−1QM−1)

(see Ronchetti and Staudte,1994).
where E‖η‖2 =

∑
1≤i≤n

η2(xi, εi), N = E[η2η
′
xx

′
] and L = E[w

′
ε(w

′
ε+ 4w)xx

′
].

Mallows’s Cp and RCP are useful tools for model selection in regression. However, they
have several disadvantages. First they are difficult to generalize to the situations where
residuals are less defined. Second, they are computer intensive and their computation,
particularly in robust version, can be time consuming as they require fitting of all sub-
models (Sommer and Huggins, 1996). Sommer and Huggins (1996) proposed a flexible
easily generalized alternative based on the Wald test (see, Wald, 1994) which requires
computation of estimates only from the full model. Models, with values of RCP close to
Vp or smaller than VP, will be preferred to others.

2.2. Robust Tp criteria.

A robust version of Tp (RTp), based on generalized M-estimators of the regression pa-
rameters, is defined by

(10) RTp = β̂
′
2Σ−1

22 β̂2 − k + 2p

where Σn is the covariance matrix,

Σn =

[
Σ11 Σ12

Σ21 Σ22

]
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and

β̂ = (β̂1, β̂2) = (X
′
V X)−1X

′
V Y ,

and k and p are dimensions of full model and submodel, respectively, β̂1 = (β0, β1, . . . , βp−1)

and β̂2 = (βp, . . . , βk−1) (Hampel et all,1986 ). If submodel P is correct, the value of
RTp should be close to p (Sommer and Huggins, 1996).

2.3. S and LTS estimators.

Rousseeuw and Yohai (1984) proposed S-estimator which is another high breakdown
point estimator having the same asymptotic properties as the M-estimator and used in
model selection in linear regression analysis. It has a higher statistical efficiency than
LTS estimation even though S and LTS estimates share the same breakdown value. The
S-estimator minimizes the sample S-scale of the fitted residuals, while the LTS estimator
minimizes the sample root mean square error. To obtain a high breakdown point estima-
tor, which is also

√
n-consistent and asymptotically normal, was the motivation for the

S-estimators. The ρ is considered to be a quadratic function. Let k = EΦ[ρ] where Φ is
the standard normal distribution. For any given sample {r1, r2, . . . , rn} of residuals, an
M-estimate of scale σ(r1, r2, . . . , rn) is the solution to

ave{ρ(ri/σ)}
where ave denotes the arithmetic mean over i = 1, 2, . . . , n. For each value of β, the
dispersion of the residuals ri = yi − xTi β can be calculated using the upper equation .
Then, the S-estimator β̂ of β be defined as

argmin
β
σ(r1(β), r2(β), . . . , rn(β))

and the final scale estimate is σ̂ = σ(r1(β̂), r2(β̂), . . . , rn(β̂)).
The least trimmed squares (LTS) estimate proposed by Rousseeuw (1984) is defined as
the p-vector

Θ̂LTS = argmin
Θ
QLTS(Θ)

where

QLTS(Θ) =

h∑
i=1

r2
(i)

r2
(1) ≤ r2

(2) ≤ · · · ≤ r2
(n) are the ordered squared residuals r2

i = (yi − xTi Θ), i = 1, . . . , n,
and h is defined in range n

2
+ 1 ≤ h ≤ 3n+p+1

4
.

2.4. Suggested Model Selection Method.

In this study, in order to compute RCP and RTP criteria, we propose to use α̂S and
α̂LTS instead of α̂M in equation (5), leading to

(11) α̂pr(dM ) = α̂S(dM ) = (Λ + I)−1(Λ + d̂MI)α̂S

and

α̂pr(dM ) = α̂LTS(dM ) = (Λ + I)−1(Λ + d̂MI)α̂LTS

Consequently these estimators are used in (12) and (13) to estimate parameters β̂Liu.S
and β̂Liu.LTS that are used in the calculation of selection criteria RCP and RTP.

(12) β̂Liu.S = P
′
α̂S(dM )

(13) β̂Liu.LTS = P
′
α̂LTS(dM )
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where P = (q1, q2, . . . , qp) is the eigenvector matrix, such that XX
′

= PΛP
′
.

In addition, we propose to use S estimator and LTS (least trimmed square) estimator
in (12) for the calculation of selection criteria RCP and RTP, given in (8) and (10),
respectively. In this way, β̂ for Vp in (8) and β̂ in (10) are obtained by using S estimator
(β̂Liu.S), LTS estimator (β̂Liu.LTS). Equation (12) and Equation (13) are referred as
robust Liu-S and robust Liu-LTS estimator, respectively.

2.5. Simulation Study.

In this section, a simulation study was performed to investigate and compare the robust
variables selection criteria using S and LTS estimators. First, five independent variables
were generated from Uniform distribution (−1, 1). The data were obtained according
to the M1 = β = (5, 3,

√
6, 0, 0) and M2 = β = (2

√
5, 4,
√

3, 1, 0) models. These pa-
rameters were obtained by considering β

′
β/σ2 (non-central signal-to-noise parameter)

and φ =
∑
i

V
′
j β/

√∑
j

β2
i

∑
ij

V 2
ij criteria and also used by Gunst and Mason(1977) and

Erar(1982). In order to search of the effects of multicolinearity and outlier together over
the robust selection criteria, a powerful linear dependency structure and a divergent-
value were formed in the data sets between the x1 and x4; x2 and x3 variables in these
models. Moreover, robust-d value is used in the robust Liu.M, robust Liu.S and robust
Liu.LTS estimators, which are given equation 12-13. These estimators are used for com-
putation of robust Tp (RTP) selection criteria based on Wald tests and robust Cp (RCP).

Furthermore, another goal of this simulation study is to see the results of RCP and RTP
selection criteria with liu-S and liu-LTS estimators and to compare the results of RCP
and RTP selection criteria with Liu and robust Liu.M estimators used in the previous
studies (Çetin, 2009).

In order to obtain the percentages of subsets of criteria, a program was coded by using
S-Plus function in this study. The results of the two models are given in the tables below.
The numbers in these tables are shown how many times each subset is selected.

Table 1 shows that, the RTP, which is calculated by using both Liu.S and Liu. LTS
estimators selects the real model which includes x1, x2, x3, with a proportion of %82 in
a hundred repetitions, and it picked optional models x1, x2, x3, x4 and x1, x2 ,x3, x5
respectively in the proportions of %100 and %98. However, RCP criteria which is calcu-
lated by Liu.S and Liu.LTS estimators do not determine any subsets. On the contrary to
RCP criteria calculated by Liu estimator gives better results than RTP criteria (Çetin,
2009).

As it can be seen from Table 2, RCP and RTP, both Liu.S and Liu.LTS estimators
give the same results in case of multicollinearity. However, RTP criteria tend to choose
multivariable models more often.

Table 3 gives the results under the assumption of multicollinearity and outliers together.
RCP criteria do not work well when both the multicollinearity and outliers are present
in the data. RTP criteria results are similar to those given in Table 2.

If we investigate Table 4,5 and 6, we can say that the results are similar to the result of
model 1. Thus, we can say that Liu.s estimators with RCP and RTP criteria do not show
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Table 1. Proportions of subsets order selected by criteria without out-
lier and multicollinearity for M1 model

With robust Liu.S estimators With robust Liu.LTS estimators
subsets RCP < VP RTP < P RCP < VP RTP < P

X1 0 0 0 0
X2 0 0 0 0
X3 0 0 0 0
X4 0 0 0 0
X5 0 0 0 0
X1 x2 12 0 14 0
X1 x3 0 0 0 0
X1 x4 0 0 0 0
X1 x5 0 0 0 0
X2 x3 0 0 0 0
X2 x4 0 0 0 0
X2 x5 0 0 0 0
X3 x4 0 0 0 0
X3 x5 0 0 0 0
X4 x5 0 0 0 0
X1 x2 x3 8 82 6 86
X1 x2 x4 2 0 0 0
X1 x2 x5 0 0 0 0
X1 x3 x4 2 0 1 0
x1 x3 x5 0 0 0 0
x1 x4 x5 5 0 1 0
x2 x3 x4 0 0 1 0
x2 x3 x5 0 0 0 0
x2 x4 x5 0 0 0 0
x3 x4 x5 0 0 0 0
x1 x2 x3 x4 0 100 0 100
x1 x2 x3 x5 0 98 0 99
x1 x2 x4 x5 6 0 0 0
x1 x3 x4 x5 0 0 0 0
x2 x3 x4 x5 11 0 16 0

any improvements. Liu.lts estimators with RCP and RTP criteria show better results.
Under multi-collinearity condition, RTP and RCP criteria selected the true model (1234)
but RTP tend to select other four variable models as well. Moreover, Liu.S and Liu.lts
estimators with RCP and RTP criteria did not perform well under outliers and multi-
collinearity.
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Table 2. Proportions of subsets order selected by criteria in case of
multicollinearity for M1 model

With robust Liu.S estimators With robust Liu.LTS estimators
subsets RCP < VP RTP < P RCP < VP RTP < P

x1 0 3 1 4
x2 28 0 23 0
x3 0 0 0 0
x4 0 0 1 0
x5 0 0 0 0
x1 x2 58 21 42 25
x1 x3 76 22 57 24
x1 x4 0 7 0 5
x1 x5 0 33 1 31
x2 x3 32 1 10 1
x2 x4 78 0 59 2
x2 x5 49 1 41 1
x3 x4 36 1 32 1
x3 x5 3 1 6 1
x4 x5 0 7 0 5
x1 x2 x3 52 72 46 43
x1 x2 x4 7 87 25 83
x1 x2 x5 77 73 70 45
x1 x3 x4 57 93 44 91
x1 x3 x5 83 74 72 45
x1 x4 x5 11 78 45 63
x2 x3 x4 84 91 63 90
x2 x3 x5 75 10 66 5
x2 x4 x5 80 88 75 90
x3 x4 x5 87 100 73 100
x1 x2 x3 x4 5 95 5 96
x1 x2 x3 x5 7 62 3 32
x1 x2 x4 x5 1 90 4 92
x1 x3 x4 x5 0 100 0 100
x2 x3 x4 x5 0 100 0 100
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Table 3. Proportions of subsets order selected by criteria in case of
multicollinearity and outliers for M1 model

With robust Liu.S estimators With robust Liu.LTS estimators
subsets RCP < VP RTP < P RCP < VP RTP < P

x1 4 0 3 1
x2 10 0 13 0
x3 3 0 3 0
x4 2 2 6 2
x5 1 0 6 0
x1 x2 10 1 20 2
x1 x3 11 1 13 2
x1 x4 20 4 18 9
x1 x5 13 1 11 1
x2 x3 3 0 9 0
x2 x4 13 11 16 11
x2 x5 3 0 16 0
x3 x4 10 11 13 12
x3 x5 11 0 24 0
x4 x5 10 7 19 9
x1 x2 x3 11 9 8 4
x1 x2 x4 14 75 24 64
x1 x2 x5 10 10 8 4
x1 x3 x4 18 78 31 66
x1 x3 x5 8 10 8 4
x1 x4 x5 18 62 20 40
x2 x3 x4 3 79 3 68
x2 x3 x5 1 0 3 1
x2 x4 x5 4 99 3 93
x3 x4 x5 1 100 0 100
x1 x2 x3 x4 1 76 0 66
x1 x2 x3 x5 7 14 5 5
x1 x2 x4 x5 1 97 4 91
x1 x3 x4 x5 1 100 4 100
x2 x3 x4 x5 4 100 5 100
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Table 4. Proportions of subsets order selected by criteria without out-
lier and multicollinearity for M2 model

With robust Liu.S estimators With robust Liu.LTS estimators
subsets RCP < VP RTP < P RCP < VP RTP < P
x1 33 0 9 1
x2 23 0 0 0
x3 28 0 0 0
x4 45 0 0 0
x5 7 0 2 0
x1 x2 9 0 24 0
x1 x3 8 48 7 0
x1 x4 6 0 5 0
x1 x5 8 0 1 0
x2 x3 9 0 1 0
x2 x4 10 0 3 0
x2 x5 0 0 5 0
x3 x4 9 0 1 0
x3 x5 3 0 1 0
x4 x5 6 0 2 0
x1 x2 x3 9 56 100 67
x1 x2 x4 2 0 0 2
x1 x2 x5 10 0 2 1
x1 x3 x4 8 53 4 2
x1 x3 x5 8 49 1 1
x1 x4 x5 2 0 0 1
x2 x3 x4 93 0 0 1
x2 x3 x5 6 0 0 2
x2 x4 x5 93 0 0 1
x3 x4 x5 1 0 4 3
x1 x2 x3 x4 43 60 85 100
x1 x2 x3 x5 41 35 0 22
x1 x2 x4 x5 60 0 1 12
x1 x3 x4 x5 72 71 1 1
x2 x3 x4 x5 82 0 1 1
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Table 5. Proportions of subsets order selected by criteria in case of
multicollinearity for M2 model

With robust Liu.S estimators With robust Liu.LTS estimators
subsets RCP < VP RTP < P RCP < VP RTP < P
x1 53 73 9 1
x2 43 0 43 1
x3 66 0 10 2
x4 45 0 11 1
x5 3 0 0 3
x1 x2 10 31 12 2
x1 x3 10 37 51 2
x1 x4 19 50 10 5
x1 x5 18 33 15 3
x2 x3 9 13 10 1
x2 x4 12 10 59 2
x2 x5 17 12 46 2
x3 x4 9 9 36 10
x3 x5 3 11 9 14
x4 x5 6 17 7 15
x1 x2 x3 100 73 100 56
x1 x2 x4 2 91 51 81
x1 x2 x5 10 73 87 25
x1 x3 x4 89 97 85 29
x1 x3 x5 83 73 98 13
x1 x4 x5 100 87 98 26
x2 x3 x4 93 96 99 39
x2 x3 x5 60 23 56 7
x2 x4 x5 93 97 78 19
x3 x4 x5 50 85 73 32
x1 x2 x3 x4 58 100 85 99
x1 x2 x3 x5 41 68 78 3
x1 x2 x4 x5 50 100 80 12
x1 x3 x4 x5 72 100 80 10
x2 x3 x4 x5 67 100 78 10
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Table 6. Proportions of subsets order selected by criteria in case of
multicollinearity and outliers for M2 model

With robust Liu.S estimators With robust Liu.LTS estimators
subsets RCP < VP RTP < P RCP < VP RTP < P
x1 62 53 8 3
x2 45 20 23 4
x3 68 20 10 20
x4 45 10 10 15
x5 31 10 9 3
x1 x2 10 28 7 2
x1 x3 10 33 7 5
x1 x4 31 52 11 10
x1 x5 36 31 10 3
x2 x3 19 23 14 5
x2 x4 21 10 34 9
x2 x5 17 17 46 6
x3 x4 39 19 54 11
x3 x5 1 11 7 20
x4 x5 13 17 7 15
x1 x2 x3 100 56 23 15
x1 x2 x4 100 100 78 88
x1 x2 x5 100 73 89 25
x1 x3 x4 99 54 62 29
x1 x3 x5 83 53 72 13
x1 x4 x5 100 100 85 46
x2 x3 x4 93 99 66 49
x2 x3 x5 60 20 72 37
x2 x4 x5 93 97 72 99
x3 x4 x5 50 100 72 100
x1 x2 x3 x4 75 100 83 45
x1 x2 x3 x5 79 93 72 5
x1 x2 x4 x5 64 100 74 100
x1 x3 x4 x5 79 100 86 100
x2 x3 x4 x5 89 100 77 100
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3. Conclusion

RTP criteria with Liu.S and Liu.LTS estimators propose the best performance in case
of the absence of any violation in the model assumptions. Despite the absence of any
distortion in the assumptions, RCP criteria does not select the true model. Under the
presence of outliers and multicollinearity, both RTP and RCP with Liu.S and Liu.LTS
estimators do not work well. However, RCP criteria with Liu estimator showed better
results (Çetin, 2009).
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