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Abstract

Bayesian methodology is an important technique in statistics, and
especially in mathematical statistics. It consists of the sample
information along with the prior information available about the
parameter before the sample has been observed. This paper exhibits
the estimation of the parameters of queueing model with inter-arrival
time and service time which follows Gumbel distribution. Bayesian
procedure is applied to obtain the estimation of the model parameters
and the tra�c intensity of queueing model based on the informative
and the non-informative prior knowledges. In this paper, the Bayesian
estimates are carried out by numerically and graphically with the
help of Markov Chain Monte Carlo (MCMC) simulation technique,
particularly in Gibbs sampling algorithm.
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1. Introduction

Statistical inference in queueing theory has drawn the attention of researcher in the
past few decades. The problem of estimation is concerned with the parameters of the
queueing process such as arrival rate, service rate and tra�c intensity. It is the most
important thing in the queueing systems [6]. The pioneer investigators have derived
the Maximum Likelihood Estimates (MLE) for the arrival and service parameters of an
M/M/1 queueing model [9] and an in�nite server queueing model [4]. The hypothesis
testing for the point and the interval estimations of the M/M/1 queueing model using
Bayesin approaches [7] and the non-zero waiting time of the model has been disscussed
by using the convential and the Bayesian approaches along with the risk factors [8]. The
�ve di�erent approaches has been applied for the constructed 100(1-α) % of the Con-
�dence Interval (CI) of the intensity of the queuing system [22]. Examining the MLE
and Moment Estimate (ME) of the parameters of the inter-arrival and the service time
distributions of GI/G/1 queueing model are discussed [3]. Consequently, the inferential
procedures are concerned with the tra�c intensity of M/Ek/1 queueing model which
discussed [16]. The stationary solution of MLE of Markovian two server queueing model
parameters have been obtained in the case of the non-identical servers [11]. Later, the
stationary solution of the MLE of the generalized form of the multi-server queueing model
in the presence of the non-identical servers and some of the CI of these model parameters
are obtained [28]. Meanwhile, the MLE and the Bayesian estimates of the M/M/1/1
queueing model parameters are explained and the large sample test for the model pa-
rameters are also discussed [17]. The inferential process for the parameters of the bulk
service queues is derived by using the Bayesian hierarchical model approaches [1]. Re-
cently, the single server queueing model with working vacations has considered based on
MLE approaches and simulation studies are carried out by the performance measures of
the model [21].

The service times and the inter-arrival times of queueing model are not followed by
the exponential distribution because of the high variability is observed in the inter-arrival
time and the service time, most of the times are smaller than the minor proportion of
the time and this leads to the characterisation of the heavy tails not only by the expo-
nentially distributed [25]. In this regard, serveral authors have been devoted by queueing
models based on the heavy tailed distribution [13], [15], [26]. Weibull, Parato, log-
normal, Burr type III, Burr type XII and Gumbel distributions are some heavy tailed
behaviour distributions [19]. The Bayesian estimation for the double Pareto lognormal
(dPlN) distribution which has been proposed by the model in the queueing system for the
heavy-tailed phenomena [10]. The evaluation of M/G/1 queueing model with the service
time as assumed to Gumbel distribution, which has been explained by numerically and
graphically based on the various combinations of the arbitrary values [20]. The extended
queueing model when service time distributed according to Gumbel distribution under
multiple working vacations scenario and the model parameters has been estimated based
on Bayesian approaches with Gibbs sampling algorithm through Markov Chain Monte
Carlo (MCMC) technique [18].

This article introduces tele-tra�c and insurance data and some of the unusual char-
acteristics of these types of data which motivate some of the inter-arrival and service
time model that are analyzed through heavy tailed nature, particularly in Gumbel dis-
tribution. In insurance context, the claim sizes can take on extremely large values so
they can be well modeled by heavy-tailed distribution. However, one di�erence between
the insurance data and the internet tra�c data is that in the insurance context, high
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autocorrelations are not observed to such an extent as with the tele-tra�c data and that
the insurance claims processes do not exhibit burstiness so much as the tele-tra�c data,
which suggests that heavy-tailed, but independent distributions may be reasonable for
modeling insurance claims data in many contexts [12].

This paper proposes the new queueing model when exponential times of the inter-
arrival time and service time are disappeared due to unusual characteristics. Therefore,
the inter-arrival times of two successive arrival of customers and service times becomes
a heavy tailed. For this reason, here the inter-arrival times and service times of the sys-
tem follows Gumbel distribution. No attempts are found in the literature on evaluating
the queueing models under Gumbel distribution based on Bayesian approaches. Deter-
mination of Gumbel/Gumbel/1 queueing model using Bayesian approach is discussed.
The posterior distribution of the queueing model is derived incorporating the natural
conjugate prior and non-informative prior to the parameters of the Gumbel distribution.
The objective of this paper is to analyse the tra�c congestion of the Gumbel/Gumbel/1
queueing model satisfying the stability condition of the system.

The probability generating function and cumulative distribution function of the Gum-
bel distribution are based on the location parameter, α and the scale parameter, β,
respectively,

(1.1) f(x : α, β) =
1

β
e
− (x−α)

β e−e
− (x−α)

β
for x ∈ <, α ∈ <;β > 0 and

(1.2) F (x) = e−e
− (x−α)

β

with the mean α+ βγ where γ = 0.5722... is the Euler's constant.

This paper is organized into the �ve sections, this is being the �rst. Section 2 contains
model descriptions. The frame work of Bayesian estimation of model parameters is
presented in section 3. The computational studies for the empirical Bayesian estimates
by using Gibbs sampling algorithm in MCMC technique of the model are discussed in
section 4 and section 5 provides the summary and conclusion of this work.

2. Model descriptions

Consider an Gumbel/Gumbel/1 queueing model,

• The inter-arrival time of two consecutive arrival of the customers which follows
Gumbel distribution (α, β) with mean inter-arrival time,
1/λ = 1/[α+ βζ] where Euler's constant, ζ= 0.5277....

• The service time of the system is distributed according to Gumbel distribution
(γ, δ) with mean service time, 1/µ = 1/[γ + δζ] where Euler's constant, ζ=
0.5277....

• The inter-arrival times and the service times are mutually independent of each
other.

• The server gives the services the single stage service with First In First Out
(FIFO) discipline.

• In order to learn about the congestion of the system, the inference about the
parameters governing the whole system θ = {α, β, γ, δ} is considered.



1278

• The queueing system is consolidated and operated for the long time which indi-
cates that it is working at equilibrium and satis�es the ergodic condition.

• Note that, the ergodic assumption implies that the parameters can only move
freely in the reduced parametric space Θe = {θ : λ < µ, λ, µ > 0}. Hence, the

tra�c intensity of the model is ρ = γ+δζ
α+βζ

< 1.

3. Estimation on Gumbel/Gumbel/1 model

The Bayesian methodology consists of the sample information along with the prior
information available about the parameter before the sample has been observed. The
Bayesian approach treats that the model parameters are the random variables. The suit-
able probability distribution is determined for the models parameters for the queueing
system say τ(θ) with reference to the prior information. The information about the pa-
rameter given by the sample x is obtained from the likelihood function, L(θ|x). A prior
probability distribution that represents perfect ignorance or indi�erence would produce
the posterior probability distribution that represents that one should need about the
parameter on the basis of the evidence alone. The prior distributions can be classi�ed
into two main categories like the informative prior and non-informative prior (vague,
objective, and di�use). The informative prior expresses the previous knowledge about
parameter and the non-informative prior provides the formal way of expressing ignorance
of the value of the parameter over the permitted range. The e�orts to construct the priors
may be represented by the absence of the knowledge. They have failed because no prob-
ability distribution to represent the pure ignorance. Combining these two information,
the updated information about the parameter is obtained as the posterior distribution,
τ(θ|x). The inference about the parameter, θ is drawn from this posterior distribution.
More details about the Bayesian methods can be found in [2], [27].

In the Gumbel/Gumbel/1 queueing model, the na inter-arrival times
xa = (x1a , x2a , ..., xna) are a random samples distributed according to Gumbel (α, β) and
the ns recorded service time xs = (x1s , x2s , ..., xns) constitute a
random sample from Gumbel (γ, δ). The joint probability generating function of this
model is

(3.1) f(x|θ) =
1

β
e

(xa−α)
β ee

(xa−α)
β 1

δ
e

(xs−γ)
δ ee

(xs−γ)
δ ∀ xa, xs > 0

where θ = {λ < µ; α, β, γ and δ > 0}.

From Eqn. 3.1, the corresponding likelihood equation are as follows,

(3.2) L(θ|x) = Πn
i=1

1

βna
e

(xia
−α)

β ee
(xia

−α)

β
Πn
j=1

1

δns
e

(xjs
−γ)
δ ee

(xjs
−γ)
δ

where, xa =
∑n
i=1 xia is the total time until the arrival of na customer considered in the

queue and xs =
∑n
j=1 xjs is the total time taken by the server to compelete the service

under consideration. Note that, the restriction in the domain of the likelihood in Eqn. 3.2
corresponding to the ergodic condition of the queueing model.

Suppose that, the inverted Gamma distribution is employed as a probability model
for the inter-arrival and service parameters based on the information obtained from the
history of previous process of the queues respectively. The inverted Gamma distribution
is a natural conjugate prior for sampling from the gumbel distribution for the inter-arrival
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and service parameters. The probability density function of inverted Gamma distribution
is given in Eqn. 3.3.

τ(c, d) =

{
d

Γ(c)
x−(c+1)e−c/x c,d>0; x>0

0 otherwise
(3.3)

In certain situations, especially in the investigation of new problems of a pioneering
nature, useful prior information may not be available. In such situations, the statistician
will be forced to select a prior distribution which will re�ect a situation of no prior infor-
mation. This led to the notion of vague or di�used or non-informative prior distributions.
The parameters is continuous and can take any value in a �nite interval, then one can
use a continuous uniform distribution as the prior distribution for the parameter. Such
prior distributions are called non-informative priors and sometimes as vague priors (see
more [5], [2], [27]). Furthermore, it may be considered that the uniform distribution
is a non-informative prior knowledge about the model parameters α, β, γ and δ. The
probability density function of uniform distribution is

(3.4) τ3(φ) =
1

q − p ; 0 < p ≤ φ ≤ q

The updated inforamtions of posterior distribution is obtained for the model param-
eters is given by

τI (α, β, γ, δ|data) ∝ d1d2d3d4

βnaδnsΓ (c1) Γ (c2) Γ (c3) Γ (c4)
α−(c1+1)β−(c2+1) ×

γ−(c3+1)δ−(c4+1)e−(c1/α+c2/β+c3/γ+c4/δ) ×

Πn
i=1e

(xia
−α)

β ee
(xia

−α)

β
Πn
j=1e

(xjs
−γ)
δ ee

(xjs
−γ)
δ

(3.5)

(3.6) τNI (α, β, γ, δ|data) ∝ 1

βnaδns
Πn
i=1e

(tia
−α)

β ee
(xia

−α)

β
Πn
j=1e

(xjs
−γ)
δ ee

(xjs
−γ)
δ

Since, the posterior distributions of the informative and the non-informative prior
knowledges are not attained in the closed form expression. Hence, MCMC simulation
technique is more appropriate to deal with the empirical estimates of the model pa-
rameters. The empirical Bayesian estimates are computed particularly through Gibbs
sampling algorithm [24] using OpenBugs software.

4. Gibbs sampling algorithm in MCMC technique

The Markov chains have signi�cant role in Bayesian statistics because it is generally
possible to construct the Markov chain in such a way that the target distribution is the
joint posterior distribution of all the unknown parameters in the Bayesian model. Thus,
the Markov chain Monte Carlo methods provide a way of generating samples from the
joint posterior distribution in the realistic and high-dimensional Bayesian models. The
Gibbs sampling algorithm is a special case of Metropolis-Hastings sampling algorithm
which one particular way of constructing the transition kernel to produce the Markov
chain with the desired target distribution. The Gibbs sequence converges to the sta-
tionary(equilibrium) distribution that is independent of the initial values, and by the
attaining this stationary distribution is the target distribution. The step-by-step proce-
dure in Gibbs sampling alogrithm for the proposed queueing model as follows:
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(1) Set initial values α(0), β(0), γ(0), δ(0)

(2) For t=1,...,T
(a) For i=1,2,...,n

(i) Generate x
(t)
i from f

(
x|α(t−1), β(t−1), γ(t−1), δ(t−1)

)
(b) Generate α(t) ∼ τ

(
α|x(t)

)
(c) Generate β(t) ∼ τ

(
β|x(t)

)
(d) Generate γ(t) ∼ τ

(
γ|x(t)

)
(e) Generate δ(t) ∼ τ

(
δ|x(t)

)
The MCMC samples are generated through Gibbs sampling algorithm from the poste-

rior distribution of model parameters for the given set of the informative priors Eqn. 3.3
and non-informative prior Eqn. 3.4 for obtaining the Bayes estimates of the model. The
markov chain is run in OpenBugs for 10,000 number of iterations for various arbitrary
values and samples.

4.1. Convergence diagnostics of MCMC. From the outputs of OpenBugs, the diag-
nostic checking plots for each model parameters are presented in Appendix. The Markov
chain has converged in both informative and non-informative priors since it likely to be
sampling from the stationary distribution and horizontal band, with no long upward or
downward trends as shown in Figure [15, 16, 17, 18]. Moreover, the autocorrelation is
almost negligible for all the model parameters (see Figure[19, 20, 21, 22]). Therefore, the
generated samples, in each iteration from posterior densities under informative and non-
informative priors are independent to each other. Further, the kernal densities of model
parameters α, β, γ, δ for various samples 50, 100, 150, 200, 250 and α = 0.2, 0.3, 0.4, 0.5,
β = 0.3, 0.4, 0.5, 0.6, γ = 0.1, 0.2, 0.3, 0.4, & δ = 0.2, 0.3, 0.4, 0.5 under informative and
non-informative priors are displayed (see Figure[23, 24, 25, 26]) for checking the conver-
gence of the algorithm. Also, the Monte Carlo Error (MC.E) of
Gumbel/Gumbel/1 queueing model is presented Table.1 & Table.3. It is to be observed
that, MC error is minimum for each estimates in model parameters.

4.2. Numerical results of Bayesian estimation. The posterior mean and 95 % cred-
ible region of Gumbel/Gumbel/1 queueing model parameters are presented in Table.1 -
Table.4. Meanwhile, the empirical Bayesian estimates of tra�c intensity of the model
are computed from the posterior mean of corresponding parameter and it is to be ob-
served that in Figure [1, 2] , the stable intensity level has been maintained when sample
observations and values of model parameters increase in both prior informations. The
congenstion level of the each model belongs to the interval of 0.5 - 0.95.

5. Summary and conclusion

In this paper, the Bayesian estimates of an Gumbel/Gumbel/1 queueing model un-
der the informative and non- informative prior knowledges is considered. The empirical
posterior mean, 95 % credible region and the diagonostic checking plots are carried out
for various size of the sample observations and di�erent sets of arbitrary values based on
Gibbs sampler through the MCMC simulation technique using the OpenBugs software.
From those results, the tra�c intensity of the model has been increased when the model
parameters of inter-arrival time and service time are increased but not in the increas-
ing size sample observations. Meanwhile, the stable intensity level has been maintained
when the sample observations and the values of model parameters are increased in both
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Table 1. Empirical Bayesian estimates of Gumbel/Gumbel/1 queue-
ing model for various arbitrary values and samples based on informative
priors

Arbitrary Samples α̂ MC.E β̂ MC.E γ̂ MC.E δ̂ MC.E

α = 0.2, 50 0.257 0.00040 0.233 0.00038 0.195 0.00026 0.212 0.00029

β = 0.3, 100 0.331 0.00030 0.268 0.00027 0.178 0.00017 0.154 0.00015

γ = 0.1, 150 0.331 0.00024 0.258 0.00018 0.218 0.00016 0.189 0.00014

δ = 0.2 200 0.294 0.00019 0.250 0.00017 0.193 0.00014 0.156 0.00011

250 0.299 0.00020 0.264 0.00014 0.183 0.00011 0.154 0.00093

α = 0.3, 50 0.359 0.00050 0.290 0.00041 0.297 0.00045 0.338 0.00050

β = 0.4, 100 0.331 0.00029 0.268 0.00025 0.279 0.00025 0.238 0.00021

γ = 0.2, 150 0.402 0.00035 0.333 0.00025 0.318 0.00022 0.259 0.00019

δ = 0.3 200 0.407 0.00024 0.345 0.00022 0.314 0.00019 0.247 0.00017

250 0.428 0.00020 0.311 0.00018 0.298 0.00017 0.253 0.00013

α = 0.4, 50 0.574 0.00057 0.411 0.00050 0.435 0.00054 0.587 0.00062

β = 0.5, 100 0.464 0.00038 0.379 0.00032 0.347 0.00036 0.342 0.00027

γ = 0.3, 150 0.508 0.00043 0.473 0.00033 0.386 0.00026 0.316 0.00021

δ = 0.4 200 0.515 0.00038 0.446 0.00028 0.428 0.00026 0.353 0.00025

250 0.484 0.00030 0.419 0.00025 0.428 0.00023 0.331 0.00019

α = 0.5, 50 0.687 0.00073 0.585 0.00061 0.468 0.00069 0.440 0.00055

β = 0.6, 100 0.464 0.00035 0.379 0.00030 0.460 0.00050 0.394 0.00039

γ = 0.4, 150 0.582 0.00045 0.487 0.00038 0.560 0.00041 0.473 0.00032

δ = 0.5 200 0.670 0.00039 0.551 0.00037 0.571 0.00037 0.473 0.00028

250 0.608 0.00035 0.513 0.00023 0.541 0.00031 0.415 0.00023

Table 2. 95% Credible region of Gumbel/Gumbel/1 queueing model
for various arbitrary values and samples based on informative priors

Arbitrary Samples α β γ δ
Values LB UB LB UB LB UB LB UB

α = 0.2, 50 0.1908 0.3266 0.1823 0.3002 0.1578 0.2697 0.1541 0.2491

β = 0.3, 100 0.2778 0.3880 0.2268 0.3164 0.1471 0.2099 0.1310 0.1811

γ = 0.1, 150 0.2887 0.3762 0.2270 0.2956 0.1872 0.2500 0.1654 0.2158

δ = 0.2 200 0.2584 0.3322 0.2235 0.2802 0.1709 0.2156 0.1397 0.1749

250 0.2653 0.3337 0.2385 0.2934 0.1632 0.2035 0.1388 0.1707

α = 0.3, 50 0.2777 0.4459 0.2297 0.3685 0.2373 0.3763 0.2539 0.4272

β = 0.4, 100 0.2774 0.3865 0.2267 0.3166 0.2313 0.3280 0.204 0.2797

γ = 0.2, 150 0.3458 0.459 0.2932 0.381 0.2765 0.3619 0.2279 0.2958

δ = 0.3 200 0.3589 0.4580 0.3071 0.3873 0.2792 0.3507 0.2217 0.2769

250 0.3888 0.4688 0.4688 0.3444 0.2658 0.3309 0.2286 0.2800

α = 0.4, 50 0.4551 0.6915 0.3293 0.5134 0.3503 0.5456 0.4655 0.7124

β = 0.5, 100 0.3879 0.5410 0.3242 0.4439 0.2767 0.4197 0.2900 0.4040

γ = 0.3, 150 0.4322 0.5860 0.4152 0.5422 0.3352 0.4396 0.2782 0.3627

δ = 0.4 200 0.4516 0.5802 0.3999 0.5000 0.3766 0.4809 0.3140 0.3958

250 0.4297 0.5382 0.3790 0.4637 0.3865 0.4716 0.2995 0.3665

α = 0.5, 50 0.5258 0.8328 0.4738 0.7197 0.3503 0.5582 0.3422 0.5937

β = 0.6, 100 0.3877 0.5430 0.3238 0.4437 0.3823 0.5415 0.3358 0.4632

γ = 0.4, 150 0.5016 0.6628 0.4265 0.5559 0.4819 0.6391 0.4163 0.5381

δ = 0.5 200 0.5925 0.7496 0.4936 0.6155 0.5031 0.6422 0.4224 0.5303

250 0.5417 0.6749 0.4647 0.5683 0.4880 0.5964 0.3756 0.4589

prior informations. Hence, this model is appropriate for studying the queueing system
when the inter-arrival time and service time follows heavy tailed particularly in Gumbel
distribution.
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Appendices

Diagnostics checking plots

(a) 50 Samples (b) 100 Samples (c) 150 Samples

(d) 200 Samples (e) 250 Samples

Figure 3. History plots of model parameter α under informative prior for various
samples and arbitrary values

(a) 50 Samples (b) 100 Samples (c) 150 Samples

(d) 200 Samples (e) 250 Samples

Figure 4. History plots of model parameter β under informative prior for various
samples and arbitrary values
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(a) 50 Samples (b) 100 Samples (c) 150 Samples

(d) 200 Samples (e) 250 Samples

Figure 5. History plots of model parameter γ under informative prior for various
samples and arbitrary values

(a) 50 Samples (b) 100 Samples (c) 150 Samples

(d) 200 Samples (e) 250 Samples

Figure 6. History plots of model parameter δ under informative prior for various
samples and arbitrary values
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(a) 50 Samples (b) 100 Samples (c) 150 Samples

(d) 200 Samples (e) 250 Samples

Figure 7. Auto correlation plots of model parameter α under informative prior
for various samples and arbitrary values

(a) 50 Samples (b) 100 Samples (c) 150 Samples

(d) 200 Samples (e) 250 Samples

Figure 8. Auto correlation plots of model parameter β under informative prior
for various samples and arbitrary values
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(a) 50 Samples (b) 100 Samples (c) 150 Samples

(d) 200 Samples (e) 250 Samples

Figure 9. Auto correlation plots of model parameter γ under informative prior
for various samples and arbitrary values

(a) 50 Samples (b) 100 Samples (c) 150 Samples

(d) 200 Samples (e) 250 Samples

Figure 10. Auto correlation plots of model parameter δ under informative prior
for various samples and arbitrary values
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(a) 50 Samples (b) 100 Samples (c) 150 Samples

(d) 200 Samples (e) 250 Samples

Figure 11. Kernal densities of model parameter α under informative prior for
various samples and arbitrary values

(a) 50 Samples (b) 100 Samples (c) 150 Samples

(d) 200 Samples (e) 250 Samples

Figure 12. Kernal densities of model parameter β under informative prior for
various samples and arbitrary values
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(a) 50 Samples (b) 100 Samples (c) 150 Samples

(d) 200 Samples (e) 250 Samples

Figure 13. Kernal densities of model parameter γ under informative prior for
various samples and arbitrary values

(a) 50 Samples (b) 100 Samples (c) 150 Samples

(d) 200 Samples (e) 250 Samples

Figure 14. Kernal densities of model parameter δ under informative prior for
various samples and arbitrary values
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(a) 50 Samples (b) 100 Samples (c) 150 Samples

(d) 200 Samples (e) 250 Samples

Figure 15. History plots of model parameter α under non-informative prior for
various samples and arbitrary values

(a) 50 Samples (b) 100 Samples (c) 150 Samples

(d) 200 Samples (e) 250 Samples

Figure 16. History plots of model parameter β under non-informative prior for
various samples and arbitrary values
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(a) 50 Samples (b) 100 Samples (c) 150 Samples

(d) 200 Samples (e) 250 Samples

Figure 17. History plots of model parameter γ under non-informative prior for
various samples and arbitrary values

(a) 50 Samples (b) 100 Samples (c) 150 Samples

(d) 200 Samples (e) 250 Samples

Figure 18. History plots of model parameter δ under non-informative prior for
various samples and arbitrary values
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(a) 50 Samples (b) 100 Samples (c) 150 Samples

(d) 200 Samples (e) 250 Samples

Figure 19. Auto correlation plots of model parameter α under non-informative
prior for various samples and arbitrary values

(a) 50 Samples (b) 100 Samples (c) 150 Samples

(d) 200 Samples (e) 250 Samples

Figure 20. Auto correlation plots of model parameter β under non-informative
prior for various samples and arbitrary values
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(a) 50 Samples (b) 100 Samples (c) 150 Samples

(d) 200 Samples (e) 250 Samples

Figure 21. Auto correlation plots of model parameter γ under non-informative
prior for various samples and arbitrary values

(a) 50 Samples (b) 100 Samples (c) 150 Samples

(d) 200 Samples (e) 250 Samples

Figure 22. Auto correlation plots of model parameter δ under non-informative
prior for various samples and arbitrary values
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(a) 50 Samples (b) 100 Samples (c) 150 Samples

(d) 200 Samples (e) 250 Samples

Figure 23. Kernal densities of model parameter α under non-informative prior
for various samples and arbitrary values

(a) 50 Samples (b) 100 Samples (c) 150 Samples

(d) 200 Samples (e) 250 Samples

Figure 24. Kernal densities of model parameter β under non-informative prior
for various samples and arbitrary values



1296

(a) 50 Samples (b) 100 Samples (c) 150 Samples

(d) 200 Samples (e) 250 Samples

Figure 25. Kernal densities of model parameter γ under non-informative prior
for various samples and arbitrary values

(a) 50 Samples (b) 100 Samples (c) 150 Samples

(d) 200 Samples (e) 250 Samples

Figure 26. Kernal densities of model parameter δ under non-informative prior
for various samples and arbitrary values


