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Abstract
A modification to Welch test statistic is proposed to test the equality
of population means of various groups under a Weibull distribution.
The proposed test statistic is simple and corresponds to the standard
Welch test statistic in which the maximum likelihood mean and vari-
ance estimators are replaced with robust estimators based on quantile,
quantile least square and repeated median. The influence function and
breakdown point of these robust estimators are obtained to show their
robustness properties. In the simulation study, various experimental
designs are considered to evaluate the performance of proposed modi-
fied Welch classical ANOVA tests in terms of the type I-errors studies
via simulation study.
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1. Introduction
Analysis of variance (ANOVA) is one of the most used model which can be seen in
many fields such as medicine, engineering, agriculture, education, psychology, sociology
and biology to investigate the source of the variations. In general, the main interest
is in testing the homogeneity of group means using the classical ANOVA which uses
F-test statistic. One-way ANOVA is based on assumptions that the normality of the
observations and the homogeneity of group variances. If the assumptions of normality
and homogeneity of variances are invalid and also outliers are present, classical ANOVA
does not give accurate results. Therefore, test statistics based on robust methods should
be used instead of the classical ANOVA.
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The one-way ANOVA under the violation of assumptions has been studied extensively.
To deal with non-normal data and/or heteroscedastic variances across groups, many
alternatives such as Q, Welch, Brown-Forsythe and Modified Brown-Forsythe tests have
been developed instead of classical ANOVA. The statistic Q has been extensively studied
by many authors under a variety of assumptions. It is one of the most commonly used
test statistic for homogeneity at population means in meta-analysis, see for example [5],
[12]. [3] showed that under the null hypothesis Q asymptotically follows a Chi-Square
distribution. [7] and [13] derived improved approximations to the distribution of Q
under the null hypothesis; these approximations are more accurate for small sample sizes
of groups. [9] extended the methods of Welch to find approximate distributions to Q
under alternative hypotheses. [9] provide approximations for the non-null distributions
of their weighted statistics which are found to be useful in obtaining approximations
to the power of the Welch test. A number of authors have discussed extensions of the
Welch methods based on the use of robust estimators for the population location and
scale parameters. Notable among these are the efforts of [14], [15], and the references
contained there in. [10] consider three common robust estimators: Huber’s proposal two
estimator of location and scale, Hampel’s M-estimator of location with scale estimated
by the median absolute deviation (MAD), and the trimmed mean with scale estimated
by the Winsorized standard deviation.

One of the important assumptions of ANOVA is normality. However, in the applica-
tion this assumption does not work for the real life data modeled by the exponential,
Weibull or lognormal distributions especially in reliability, engineering and life science
field. The characteristics of these distributions can be explained by Weibull distribution
which is also known as Extreme Value Type III minimum distribution. This has made
it extremely popular among reliability engineering, biology and medicine. This distri-
bution is the most commonly used distribution for modeling reliability data, because it
represents a wide range of asymmetric distributions. Moreover, ANOVA cannot handle
censored or interval data because of the non-normality. The simplest possible lifetime
distribution is exponential distribution. However, its constant hazard rate is improper
and unrealistic in many cases. Gamma distribution is another candidate distribution for
lifetimes. Nevertheless, distribution function or survival function of gamma distribution
cannot be expressed in a closed form if the shape parameter is not an integer. Since it
is in terms of an incomplete gamma function, one needs to obtain the distribution func-
tion, survival function or the hazard rate by numerical integration. This makes gamma
distribution little bit unpopular compared to the Weibull distribution, which has a nice
distribution function, survival function and hazard function [6]. The Weibull distribution
was introduced by the Swedish physicist Weibull (1951). He claimed that his distribution
applied to a wide range of problems and illustrated this point with seven examples rang-
ing from the strength of steel to the height of adult males in the British Isles [1]. It has
been used in many different fields like material science, engineering, physics, chemistry,
meteorology,medicine, pharmacy, quality control, biology, geology, geography, economics
and business.

This paper proposes a modified Welch test statistic to test the equality of population
means of groups by utilizing robust estimators for the means and variances of Weibull
distribution with outlier, and evaluates the performance of modified test in terms of the
type I-errors via simulation study. The modified test statistic is called robust Welch
(RW ) test statistic. Since it is obtained by using robust mean and variance estimators
based on quantile (Q), quantile least square (QLS) and repeated median (Rmed) instead
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of maximum likelihood. The influence function (IF ) and breakdown point (BP ) of ro-
bust estimators of mean and variance are obtained to show their robustness properties.
The behavior of the developed robust test statistic is examined by Monte-Carlo simula-
tion study. In the simulation study, various experimental designs are considered such as
balanced and unbalanced sample sizes for k=3,6 groups with homogeneous and hetero-
geneous variances. The type I errors of the improved robust test statistic and classical
ANOVA under the Weibull distribution are obtained.

The remainder of the paper is organized as follows. Section 2 introduces robust modified
Welch test statistics. Section 3 gives explicit robust estimators of the mean and variance
of Weibull distribution. The most important robustness measures are IF and BP that
are derived in Section 4. To show the performance of the considered test statistic, a
simulation study and the results are presented in Section 5. The last section summarizes
the conclusions of the study.

2. Robust Welch Test Statistic
The Welch test statistic was proposed by [13] as following:

(2.1) W =
q̂w
k − 1

{1 +
2(k − 2)Â

k2 − 1
}−1.

where

Â =

k∑
i=1

[
1− (ŵi/

k∑
j=1

ŵj)

]2
/vi(2.2)

qw ≡
k∑
i=1

ŵi(µ̂i − µ̂w)2(2.3)

and vi = ni−1 is the degrees of freedom for i. sample. In (2.2) and (2.3), µ̂i is maximum
likelihood estimator of the mean for each sample, σ̂2

i is the maximum likelihood estimator
of variance and ŵi ≡ ni/σ̂

2
i is the estimator of weights based on variance estimator. If

the appropriate weights are known, the value of estimation is

(2.4) µ̂w =

k∑
i=1

ŵiµ̂i/

k∑
i=1

ŵi.

The Welch test statistic has approximately Fk−1,vw distribution with k − 1,
vw = (k2−1)

3Â
degrees of freedom [13].

In this study, a modification to the Welch test statistic is proposed under a Weibull
distribution. The test statistic is simple and corresponds to the standard Welch test
statistic in which the maximum likelihood mean and variance estimators are replaced
with robust estimators based on Q, QLS and Rmed. So the robust Welch test statistic
is given by

(2.5) RW =
q̂rw
k − 1

{1 +
2(k − 2)Âr
k2 − 1

}−1.
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where

Âr =

k∑
i=1

[
1− (ŵri/

k∑
j=1

ŵrj)

]2
/vi(2.6)

qrw ≡
k∑
i=1

ŵri(µ̂ri − µ̂rw)2(2.7)

and vi = ni − 1 is the degrees of freedom for i. sample.

In (2.7), µ̂ri is robust estimator of mean for each sample, σ̂2
ri is robust estimator of

variance and ŵri ≡ ni/σ̂2
ri is the robust estimator of weights based on variance estimator.

If the appropriate weights are known, the value of robust estimation are

(2.8) µ̂rw =

k∑
i=1

ŵriµ̂ri/

k∑
i=1

ŵri.

In (2.7) and (2.8), µ̂ri and σ̂2
ri are the robust Q, QLS and Rmed estimators of mean and

variance for Weibull distribution.

The robust Welch test statistic has approximately Fk−1,vrw distribution with k − 1,
vrw = (k2−1)

3Âr
degrees of freedom.

3. Robust Estimators of Weibull Distribution
The estimations of mean and variance of Weibull distribution are a basic subject of the
paper. The density function f(x;λ, β) = β

λ
(x/λ)β−1 exp[−(x/λ)β ], x, λ, β > 0. The

parameter λ is called a scale parameter. The parameter β is the shape parameter.
The mean and variance of a Weibull random variable are the functions of the shape β
and scale λ parameters can be expressed as E(X) = λΓ(1 + 1/β) and V ar(X) =
λ2[Γ(1 + 2/β)− Γ2(1 + 1/β)]. We consider robust estimators which were proposed by
[2] to achieve the robust estimates of the mean and variance of this distribution. The
estimators proposed by [2] are robust to outliers, but they have the additional advantage
of being an explicit function of the data.

In this study we restrict our attention to estimators that have the following set of prop-
erties: an explicit formula; a 50% breakdown point and a bounded IF . We propose the
robust estimators of mean and variance by considering robust estimators based on Q,
QLS and Rmed. We also derive their IF s and their breakdown points. The proposed
estimators for mean and variance all have a high breakdown point and bounded IF .

In the following Section 3.1 and Section 3.2, quantile and regression estimators are given
for robust mean and variance estimators of Weibull distribution.

3.1. Quantile-estimators. The quantile estimators of mean and variance for Weibull
distribution are given by

µ̂WQ = λ̂QΓ(1 + 1/β̂Q),

σ̂WQ = λ̂2
Q[Γ(1 + 2/β̂Q)− Γ2(1 + 1/β̂Q)](3.1)

where [2] proposed the quantile estimators of shape and scale parameter
β̂Q = 1

log(q̂α2/q̂α1 )
log log(1−α2)

log(1−α1)
, and λ̂Q = q̂α/[− log(1− α)]1/β̂Q .
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3.2. Regression estimators. The quantiles of the general log-Weibull distribution in
G−1
λ,β(α) = β−1 log(− log(1−α))+log λ are linearly related to the quantiles of the standard

log-Weibull distribution, with intercept b0 = log λ and slope b1 = 1/β. Replacing the
theoretical quantiles with their empirical counterparts yields a linear regression equation
yi = b0 + b1zi + εi where yi = log q̂i/(n+1) and zi = G−1(i/(n + 1)). [2] considered two
robust and explicit regression estimators for b1 and b0: the Quantile Least Squares and
the Repeated Median estimators. The corresponding estimates of scale and shape of the
Weibull distribution were then directly given by λ̂ = exp(b̂0) and β̂ = 1/b̂1.

Quantile Least Square: The QLS estimators of mean and variance of Weibull distri-
bution are given by

µ̂WQLS = λ̂QLSΓ(1 + 1/β̂QLS)

σ̂WQLS = λ̂2
QLS[Γ(1 + 2/β̂QLS)− Γ2(1 + 1/β̂QLS)](3.2)

where the QLS estimators of shape and scale parameters proposed by [2] :
λ̂QLS = exp(b̂0QLS) and β̂QLS = 1/b̂1QLS where b̂0QLS and b̂1QLS are QLS regression
estimators for b0 and b1 ( for details see [2]).

Repeated Median: The Rmed estimators of mean and variance of Weibull distribution
are given by

µ̂WRmed = λ̂RmedΓ(1 + 1/β̂Rmed)

σ̂WRmed = λ̂2
Rmed[Γ(1 + 2/β̂Rmed)− Γ2(1 + 1/β̂Rmed)](3.3)

where the Rmed estimators of shape and scale parameters were proposed by [2]: λ̂Rmed =

exp(b̂0Rmed) and β̂Rmed = 1/b̂1Rmed where b̂0Rmed and b̂1Rmed are Rmed regression
estimators for b0 and b1 ( for details see [2]).

4. Robustness of estimators
Robustness of estimators can be measured in different ways. The most important ro-
bustness measures are IF and BP of the estimators. In this study we derive IF and
BP for the proposed estimators of mean and variance for Weibull distribution. The IF
acts like the first derivative of functional defined on empirical distributions which we
evaluate at the estimator. IF should be bounded to be robust. The breakdown point is
a global robustness measure which describes how many percent gross errors are still tol-
erated before increasingly offensive outliers force our estimator to wander off to infinity.
In next Section 4.1 and Section 4.2 we derive their IF and then their breakdown points,
respectively.

4.1. IF s for Proposed Robust Estimators. IF gives price information about how
to respond to a small amount of distortion at any point. Naturally, the estimators are
very sensitive form of the distribution F , too much affected by deterioration in small
quantities.

The statistical functionals corresponding with the mean and variance robust estimators
are given by

µRE(F ) = λRE(F )Γ(1 + 1/βRE(F ))(4.1)

σRE(F ) = λ2
RE(F )[Γ(1 + 2/βRE(F ))− Γ2(1 + 1/βRE(F ))].(4.2)
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The IF of the functional µRE at the Weibull distribution Fλ,β in (4.1) is given by

IF (x0;µRE, Fλ,β) =
∂

∂ε
(µRE(Fε))|ε=0

= Γ(1 + 1/β̂RE)

(
IF (x0;λRE, Fλ,β)

− λ̂RE

β̂2
RE

ψ(1 + 1/β̂RE)IF (x0;βRE, Fλ,β)

)
.(4.3)

The IF of the functional σRE at the Weibull distribution Fλ,β in (4.2) is given by

IF (x0;σRE, Fλ,β) =
∂

∂ε
(σRE(Fε))|ε=0

= 2λ̂REIF (x0;λRE, Fλ,β)[Γ(1 + 2/β̂RE)− Γ(1 + 1/β̂RE)2]

+ 2
λ̂2

RE

β̂2
RE

IF (x0;βRE, Fλ,β)

[
− ψ(1 + 2/β̂RE)Γ(1 + 2/β̂RE)

+ Γ(1 + 1/β̂RE)2ψ(1 + 1/β̂RE)

]
.(4.4)

where β̂RE and λ̂RE are the shape and scale robust Q, QLS and Rmed estimators of
Weibull parameters. For IF s IF (x0;λRE) and IF (x0;βRE) in (4.3) and (4.4), see [2].

The IF s for the classic and robust estimators of mean and variance are pictured in Figure
1. It is seen that while the IF of least square (LS) estimator is unbounded function, the
IF s for robust estimators are bounded. It should be considered that the IF s of quantile
mean and variance estimator are step functions. As a result we can say that the proposed
estimators are B-robust which means that their IF s are bounded.

4.2. Breakdown Points of Proposed Robust Estimators. The breakdown point
of an estimator is the proportion of incorrect observations an estimator can handle before
given an arbitrarily large result. The higher the breakdown point of an estimator, the
more robust it is. Instinctively, we can understand that a breakdown point can not exceed
%50 because if more than half of the observations are contaminated, it is not possible
to distinguish between the underlying distribution and the contaminating distribution.
Therefore, the maximum breakdown point is 0.5 and there are estimators which achieve
such a breakdown point.

The breakdown points of robust estimators were examined earlier in the previous studies
examined by some authors: For linear regression parameters least square estimators: α
and repeated median estimators: %50. For shape and scale estimators based on Q, QLS,
Rmedmethods : [2]. To characterize the robustness of the proposed estimators, we derive
their BP , defined as the smallest proportion of observations (for n→∞) that needs to be
replaced with arbitrary values in order for the estimation of λ or β to be arbitrarily close
to zero (implosion) or infinity (explosion). To define the breakdown point of the mean
and variance we consider the BP of shape and scale estimators of Weibull distribution.

The BP of the mean estimator for Weibull distribution is given by

(4.5) ε∗n(µ, Fn) = min{ε+n (µ, Fn), ε−n (µ, Fn)},
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Figure 1. IF of the mean and variance estimators of Weibull Distribution

In 4.5 the explosion BP is

(4.6) ε+n (µ, Fn) = min{m
n
,m ∈ 1, . . . , n| sup

F ′n

M(µ(F ′n)) =∞}.
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We get supF ′nM(µ(F ′n)) = ∞, if λ → ∞ or γ(1 + 1/β) → ∞. For λ → ∞ the
BP is ε+(λ, F ). For γ(1 + 1/β) → ∞, if β = −1,−1/2,−1/3,−1/4. In this condition
there is no BP since β is not going to infinity or zero. Therefore the explosion BP is
ε+(µ, F ) = (ε+(λ, F )).

In 4.5 the implosion BP is

(4.7) ε−n (µ, Fn) = min{m
n
,m ∈ 1, . . . , n| inf

F ′n
M(µ(F ′n)) = 0}.

We get infF ′nM(µ(F ′n)) = 0, if λ→ 0 or γ(1 + 1/β)→ 0, ε+(β, F ). For λ→ 0 the BP is
ε−(λ, F ). For γ(1 + 1/β)→ 0, ε+(β, F ): if β →∞ , γ(1 + 1/β) = 1/βγ(1/β)→ 0. So for
β →∞ the BP is ε+(β, F ). The implosion BP is ε−(µ, F ) = (ε−(λ, F ), ε+(β, F )). As a
result the BP of the mean estimator is given by

ε∗n(µ, Fn) = min{ε+n (µ, Fn), ε−n (µ, Fn)}
= min{ε+(λ, F ), ε−(λ, F ), ε+(β, F )}

The BP of variance estimator of Weibull distribution is given by

(4.8) ε∗n(σ, Fn) = min{ε+n (σ, Fn), ε−n (σ, Fn)}.

In 4.8 the explosion BP is ε+n (σ, Fn) = min{m
n
,m ∈ 1, . . . , n| supF ′nM(σ(F ′n)) =∞}We

get supF ′nM(σ(F ′n)) = ∞,if λ → ∞ or γ(1 + 2/β̂) − γ(1 + 1/β̂) > 0. For λ → ∞ can
be obtained if (ε+n (λ, F )). For γ(1 + 2/β̂) − γ(1 + 1/β̂) > 0 can be obtained if β > 0.
So the BP is ε+n (β, F ). Therefore the explosion BP of variance estimator is obtained
ε+(σ, F ) = (ε+(λ, F ), ε+(β, F )).

In 4.8 the implosion BP is ε+n (σ, Fn) = min{m
n
,m ∈ 1, . . . , n| infF ′nM(σ(F ′n)) = 0}

We get infF ′nM(σ(F ′n)) = 0, if λ → 0 or β → ∞. For λ → 0, the BP is ε−(λ, F ). For
β →∞ the BP isε+(β, F ). Therefore the implosion BP of variance estimator is obtained
ε−(σ, F ) = (ε−(λ, F ), ε+(β, F )).

As a result the BP of variance estimator is given by

ε∗n(σ, Fn) = min{ε+n (σ, Fn), ε−n (σ, Fn)}
= min{ε+(λ, F ), ε+(β, F ), ε−(λ, F )}

Asymptotic BP s for the robust estimators of mean and variance of Weibull distribution
are given by Table 1.

Table 1. Asymptotic BP for the robust estimators for mean and vari-
ance of Weibull distribution

Method ε∗(µ) ε∗(σ)

Q
min(α, 1− α, α1, α2 − α1) α 6= 1− e−1

min(α, 1− α) α = 1− e−1
min(α, 1− α, α1, α2 − α1) α 6= 1− e−1

min(α, 1− α, α2 − α1) α = 1− e−1

QLS min(α, 1− 2α) min(α, 1− 2α)
Rmed %50 %50
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5. Simulation Study
The behavior of the robust Welch test statistic is examined according to all three methods
with 10,000 repetitions. The type I errors of proposed test statistic is obtained according
to robust methods by considering various experimental designs. At the end of the simu-
lation study robust test statistic will be compared in terms of the type I errors, and the
comments will be made for experimental designs.

Since the mean and variance of Weibull distribution are functions of the shape and
scale parameters, the creation of different combinations depends only on the parameters
of the distribution. When scale parameter is one and shape parameter takes different
values, the mean and variance do not change much. However, when the scale parameter
value is changed, the mean and variance change a lot. Therefore, to generate different
experimental design a scale parameter is fixed, it takes λ = 1 with different values of
shape parameter. For example when the shape parameter β is equal to one, then this
distribution reduces to the exponential distribution. A model that results in values
of probability prob{y ≥ E(y)} substantially greater or smaller than 0.5 is hardly of
any practical interest. For the values of β less than 1.2, prob{y ≥ E(y)} < 0.4 [11].
Moreover, [4] argue that in most applications where a Weibull distribution is applicable
β is greater than one. For these reasons, we consider values of β ≥ 1.5. In the simulation
study, the value of the shape parameters are selected as in Table 2 with respect to the
different experimental designs which we want to create. In this table for equal means,
homogeneous variances A1, B1 are used for balanced sample size, C1, D1 are used for
unbalanced sample size. For unequal means, heterogenous variances A2, B2 are used for
balanced sample size and C2, D2 are used for unbalanced sample size. As we mentioned
before to generate data with equal means + homogeneous variances and unequal means
+ heterogenous variances, we just change the shape parameter of Weibull distribution.

Table 2. Experimental designs for k=3 and k=6

k = 3 k = 6

A1 ni 5 5 5 5 5 5 5 5 5
β 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5

A2 ni 5 5 5 5 5 5 5 5 5
β 1.5 2 2.5 1.5 2 2.5 1.5 2 2.5

B1 ni 10 10 10 10 10 10 10 10 10
β 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5

B2 ni 10 10 10 10 10 10 10 10 10
β 1.5 2 2.5 1.5 2 2.5 1.5 2 2.5

C1 ni 5 10 15 5 10 15 5 10 15
β 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5

C2 ni 5 10 15 5 10 15 5 10 15
β 1.5 2 2.5 1.5 2 2.5 1.5 2 2.5

D1 ni 10 20 30 10 20 30 10 20 30
β 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5

D2 ni 10 20 30 10 20 30 10 20 30
β 1.5 2 2.5 1.5 2 2.5 1.5 2 2.5
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In the simulation study the reference distribution is W (1, β) whose characteristic is men-
tioned in Table 2. By using the proposed estimators Q, QLS and Rmed, the type I errors
of the robust test statistic and classical ANOVA are obtained with 10,000 repetitions at
the significance level of 5%. For quantile methods, α = 30% is taken. Four different
models are discussed below to test the behaviors of the test statistic, when the model is
deteriorated and in the presence of outliers:

• Model 1: Clean sample ( Reference distribution W (1, β)),
• Model 2: Dixon model ( n-1 observations from W (1, β) , 1 observation from
W (2, β)),

• Model 3: Mixture model ( 0.80W (1, β) + 0.20 W (2, β/2)),
• Model 4: Contaminated model ( 0.80 W (1, β) + 0.20(100 Uniform(0,1))).

We obtain τ =
∑M
i=1 FHi>FTi

M
∗ 100 value with respect the classical ANOVA and RW

test statistics with 10,000 repetitions. In this equation FHi indicates the calculated
test statistic and FTi indicates the F table value at the significance of 5% for the ith
simulation, so desirable value of τ is to be close τ ∼= 5.
By considering combinations of the above-mentioned trial simulation study, the type I
errors of test statistic based on three methods is obtained and the results (type I error
* 100=τ ) are given. The robust test statistic will be compared in terms of type I errors
and the comments in detail for each trial will be made.

The results of τ values for experimental designs with equal means and homogeneous
variances are given in Table 3 for k = 3. While the classical ANOVA does not deteriorate
for clean model (model 1), it badly deteriorates for contaminated model especially for
unbalanced sample size. As seen from this table, the results of Q methods are not good.
The type I errors of RW test statistic based on Rmed methods are desired level especially
for experimental design C1 and D1. RW test statistic based on QLS method can be an
alternative only for experimental design C1.

Table 3. The τ values for k=3, Equal means, homogeneous variances

RE Model A1 B1 C1 D1
F RW F RW F RW F RW

Q

1 4.80 6.71 5.16 11.8 6.36 11.03 6.37 14.37
2 3.90 10.55 4.27 13.22 5.53 15.99 6.17 17.68
3 3.10 9.27 3.61 10.80 4.54 12.98 5.40 15.55
4 1.60 9.70 0.60 13.90 28.85 11.19 83.61 15.75

QLS

1 5.14 6.91 5.08 14.45 6.23 7.93 6.79 18.42
2 3.75 2.45 4.23 5.38 5.32 7.89 6.21 8.20
3 3.11 3.85 3.61 10.40 4.44 5.45 5.58 15.89
4 1.60 9.70 0.08 18.99 29.85 5.87 82.85 14.91

Rmed

1 4.53 8.96 4.86 6.07 6.64 13.91 6.19 7.00
2 3.89 7.08 4.46 5.66 5.02 6.86 5.90 7.72
3 3.26 5.90 3.63 4.43 4.76 6.22 5.37 4.93
4 0.14 4.51 0.04 4.93 30.25 3.79 82.50 4.88

The results of τ values for experimental designs with non-equal means and heterogenous
variance are given in Table 4 for k = 3. For unbalanced sample size classical ANOVA is
deteriorate for all methods. Only the RW test statistic based on Rmed has good per-
formance for contaminated model. But RW test statistic does not work for other robust
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Table 4. The τ values for k=3, unequal means, heterogenous variances

RE Model A2 B2 C2 D2
F RW F RW F RW F RW

Q

1 5.30 7.21 6.35 10.92 12.32 12.46 12.39 14.62
2 4.74 12.35 4.95 14.32 11.35 18.35 12.05 18.65
3 3.73 11.35 4.07 12.91 9.21 16.71 9.83 16.35
4 0.16 9.70 0.06 13.56 32.66 11.37 83.47 14.96

QLS

1 5.52 8.44 5.20 15.99 12.13 16.71 12.55 18.78
2 4.60 3.76 4.85 5.81 9.04 13.21 12.05 8.93
3 3.90 5.19 4.05 12.87 8.75 14.08 10.22 17.25
4 0.17 4.89 0.05 12.91 31.96 12.41 83.74 14.43

Rmed

1 5.89 8.54 5.47 6.61 12.20 9.33 12.63 7.19
2 4.74 8.23 5.38 5.95 11.25 10.17 12.08 7.98
3 4.12 6.22 4.41 4.68 8.78 7.77 9.31 8.00
4 0.15 4.04 0.04 4.29 32.09 4.20 83.37 5.11

methods. For clean, and very few corrupted samples the Type I error level of classical
ANOVA is considerably good since the variances are homogeneous for D1 experimental
design. However for contaminated model classical ANOVA is deteriorated badly.

The results of τ values for experimental designs with equal means and homogeneous
variances are given in Table 5 for k = 6. As seen from the results, the RW test statistic
based on Rmed robust method works well for mixture and contaminated model in only
A2 and B2 experimental designs, but the other robust methods do not work.

Table 5. The τ values for k=6, Equal means, homogeneous variances

RE Model A1 B1 C1 D1
F RW F RW F RW F RW

Q

1 4.70 10.61 4.92 16.91 5.89 17.73 6.13 23.98
2 3.90 10.55 4.03 24.89 4.72 27.97 5.43 23.12
3 3.20 20.47 3.74 22.02 4.07 24.93 4.60 26.45
4 0.9 22.12 0.77 24.45 61.31 24.07 86.55 28.09

QLS

1 6.03 17.21 4.74 29.80 13.00 35.22 5.65 33.07
2 3.97 5.15 4.25 9.31 4.53 34.30 5.14 13.73
3 3.28 9.22 3.28 24.20 4.13 26.12 4.17 28.91
4 0.13 11.47 0.95 14.19 60.99 28.44 85.85 30.00

Rmed

1 5.10 25.22 5.10 9.50 5.67 27.70 6.18 10.71
2 3.65 15.03 4.34 9.69 4.96 12.59 5.07 10.65
3 3.10 11.98 3.39 6.73 4.55 21.27 4.34 7.20
4 0.14 10.33 0.94 7.10 61.50 7.81 85.69 7.70

The results of τ values for experimental designs with non-equal means and heterogenous
variance are given in Table 6 for k = 6. As you see, we can conclude the results for
contaminated model for (k = 6) such as that the RW test statistic only based on Rmed
robust method gives desirable results.
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To sum up all results, we can say that in the case of contamination proposed robust
Welch test statistic can be used for (k = 3). When the number of group is small, for
contaminated models the Type I errors of RW test statistic has good performance. The
number of group is small Rmed according to the methods of RW test statistic Type
I errors is desirable. The number of group grows, RW test statistic has undergone
distortion.

Table 6. The τ values for k=6, unequal means, heterogenous variances

RE Model A2 B2 C2 D1
F RW F RW F RW F RW

Q

1 5.94 11.72 5.50 30.62 12.73 19.55 13.12 22.71
2 4.52 24.98 5.24 29.98 11.25 31.71 12.01 29.81
3 3.41 22.49 4.09 22.43 9.09 27.71 9.48 26.61
4 0.90 22.12 0.81 24.45 62.43 24.71 86.52 27.93

QLS

1 4.67 20.41 6.12 31.18 13.00 30.06 13.04 31.90
2 4.53 6.81 5.07 9.81 11.31 13.87 12.10 12.71
3 3.37 12.73 3.60 26.59 8.47 26.54 9.77 29.36
4 0.14 10.97 1.13 27.83 62.78 23.09 86.80 26.67

Rmed

1 5.24 16.41 6.07 10.22 12.61 13.52 12.96 10.31
2 4.38 16.28 4.93 9.65 10.73 15.45 11.90 11.38
3 3.62 13.25 3.55 7.71 8.97 11.64 9.27 10.28
4 0.18 9.46 0.91 6.37 62.51 8.78 86.41 6.69

6. Conclusion
The purpose of this study is to develop test statistic for one-way ANOVA by using robust
methods under Weibull distribution with outlier. For this purpose, we propose the robust
estimators for mean and variance of Weibull distribution. We also derive not only their
BP but also their IF s. The proposed estimators for mean and variance all have a high
BP and bounded IF . RW test statistic is obtained by using the estimators based on
Q, QLS and Rmed. The behavior of the modified robust test statistic is examined by
simulation study.

In the simulation study, using various experimental designs, type I errors of the improved
robust test statistic and classical ANOVA under Weibull distribution are obtained with
respect to three different robust estimators. Balanced and unbalanced sample sizes for
k=3,6 groups with homogeneous and heterogeneous variances are considered. Then the
simulation results show up: For unbalanced sample size classical ANOVA is deteriorated.
When the number of groups is small (k = 3), the RW test statistic based on Rmed and
QLS methods performance is not deteriorated badly. When the number of groups is
increasing, especially for contaminated models the proposed RW test based on Rmed
method gives desirable results. The RW test statistic based on Rmed has the best
performance for all experimental design especially in contaminated models, while the
RW test statistic based on Q does not work. QLS method can be used as an alternative
to Rmed method.
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