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Reliability analysis under constant-stress partially
accelerated life tests using hybrid censored data

from Weibull distribution

Ali A. Ismail∗ †

Abstract
This article discusses the estimation of Weibull distribution parame-
ters based on hybrid censored data under constant-stress partially ac-
celerated test model. Two estimation methods; maximum likelihood
(ML) and percentile bootstrap (PB) are used to make statistical in-
ference on the Weibull distribution parameters and the acceleration
factor. The mean square errors of the estimators are calculated to
evaluate their performances through a Monte Carlo simulation study.
Moreover, the confidence intervals lengths (CILs) and their associated
coverage probabilities (CPs) are obtained. Finally, to demonstrate the
proposed methodology, an arithmetic example is given.
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1. Introduction
The ordinary life testing methods of high reliability products usually need a long period

to gain sufficient failure data required to do inferences. So, to perform reliability analysis,
accelerated life tests (ALTs) are the most common ways to measure such products’ life.
Under such test settings, products are tested at higher-than-usual levels of stress to induce
failures rapidly and economically. Applying ALTs depends on a life-stress relationship.
The parameters of life can be estimated via this relationship by using the failure data
obtained under accelerated conditions. However, in some cases such a relationship can’t
be known or assumed. Thus, ALTs can’t be applied and the partially accelerated life
tests (PALTs) come to be a good appliance to implement the needed life tests.
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The stress can be used in different techniques, frequently applied techniques are
constant-stress and step-stress. Under step-stress PALTs, a test unit is first run at use
condition and, if it does not fail for a definite time, then it is run at accelerated condition
until failure happens or the observation is stopped. But the constant-stress PALTs run
each unit at either use condition or accelerated condition only, i.e. each unit is run at
a constant-stress level until the test is finished. Accelerated stresses include higher than
normal temperature, power, pressure, load, etc., for more details see Nelson [28].

In this article, we deal with hybrid censored constant-stress PALTs when the lifetime
of test unit follows Weibull distribution. PALTs have been considered under Type-I and
Type-II censoring schemes by numerous authors, for example, see Goel [18], DeGroot and
Goel [12], Bhattcharyya and Soejoeti [9], Bai and Chung [7], Bai et al. [8], Abdel-Ghaly
et al. [1], Abdel-Ghaly et al. [2], Abdel-Ghaly et al. [3], Abdel-Ghani [4], Abdel-Ghani
[5], Ismail [21], Aly and Ismail [6], Ismail and Sarhan [25], Ismail et al. [20] and Ismail
[23].

In general, accelerated tests are frequently ended before all items fail. The estimates
from the censored data are less precise than those from complete data. However, this is
more than offset by the reduced test time and cost. The most used censoring schemes
are Type-I and Type-II censoring. Consider n units placed on life test. In traditional
Type-I censoring, the experiment lasts up to a pre-specified time C1. Any failures that
happen after that time are not witnessed. The end point C1 of the experiment is sup-
posed to be s-independent of the failure times. But in traditional Type-II censoring, the
experimenter finishes the experiment after a pre-identified number of units R ≤ n fail.
In this situation, only the lowest lifetimes are noticed. In Type-I censoring, the num-
ber of failures witnessed is random and the endpoint of the experiment is fixed. But in
failure-censoring R is fixed and the termination time is random. Several previous works
have considered the reliability analysis using the traditional time- and failure- censoring
schemes under different life distributions, for more details one can see Cohen [11].

Concerning hybrid censoring scheme it can be applied as follows. Consider a life testing
experiment in which n units are placed on test concurrently. Failure times are noticed and
the test is finished either at a pre-specified time C1 or based on a pre-determined number
R of failures acquired by a time; say C2 whichever is happened first. Such a combination
of Type-I and Type-II censoring schemes is identified as hybrid censoring scheme. So,
sampling according to the hybrid censoring scheme is finished atmin (C1, C2). It is noted
that the traditional time- and failure- censoring schemes can be found as special cases of
hybrid censoring scheme by taking R = n and C1 =∞, respectively. The most important
benefit of applying hybrid censoring scheme is that it preserves the probable experiment
time and cost. Several authors have discussed the statistical inference problem about
the parameters for sampling schemes Type-I and Type-II censoring. In this work the
estimation of parameters is studied under constant-stress partially accelerated life tests
(CSPALTs) with hybrid censored data supposing Weibull distribution. It is also supposed
that the failed items are not exchanged.

Although the hybrid censoring scheme is applicable, most of preceding works under
PALTs were studied using the usual time- and failure- censoring schemes and no con-
sideration has been provided in examining hybrid censored data. All papers prepared
under hybrid censoring were correlated with ordinary or fully accelerated tests, see, for
example, Fairbanks et al. [17], Draper and Guttman [14], Chen and Bhattacharyya [10],
Ebrahimi [15], Gupta and Kundu [19], Kundu [26], Xie [31], Park and Balakrishnan [29]
and Zhang et al. [32]. Recently, only two papers made by Ismail [22] and Ismail [24]
have considered the hybrid censoring scheme under step-stress PALTs.

The rest of the paper is structured as follows. In Section 2 the model and the hybrid
censored data are designated. The maximum likelihood (ML) and percentile bootstrap
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(PB) estimations of the CSPALTs model parameters are considered in Section 3. Section
4 covers the simulation results. Section 5 presents an illustrative example. Conclusion is
yielded in Section 6.

2. Model description
In this study, it is assumed that the lifetime of a test unit sayX under normal condition

has Weibull distribution with probability density function (PDF) given by

f(x;β, η) =
β

η
(
x

η
)β−1e−(x/η)β , x > 0, β > 0, η > 0,(2.1)

In fact, Weibull distribution has high flexibility compared to other distributions. Its
failure rate function can be increasing, decreasing and constant according to the value of
the shape parameter. For more information, see Dimitri [13].

The survival function of this distribution is given by

R(x) = e−(x/η)β ,(2.2)

.
The matching failure rate function is

h(x) =
β

η
(
x

η
)β−1.(2.3)

Constant-stress PALTs can be processed according to the following steps and assump-
tions.

(1) n1 units randomly selected among n test units sampled are assigned to run under
normal stress and n2 (= n− n1) items are allotted to run under severe stress.

(2) Each item is tested until the censoring times C1 or C2 is realized whichever is
smaller or the item fails.

(3) The lifetimes Xi, i = 1, ..., n1 of units consigned to normal (use) stress, are i.i.d.
r.v.’s.

(4) The lifetimes Yj , j = 1, ..., n2 of units assigned to severe stress, are i.i.d r.v.’s.
Now, for a unit subjected to accelerated condition, the PDF of its lifetime say Y is

provided by

f(y;λ, β, η) =
λβ

η
(
λy

η
)β−1e−(λy/η)β , y > 0, λ > 1, β > 0, η > 0,(2.4)

where Y = λ−1X and λ is the acceleration factor.

Because the test in Type-I censoring is finished when a pre-specified time C 1 is at-
tained and in failure-censoring the test is ended based on a pre-defined number R of
failures gained by a time C 2; say. Accordingly, the failure times x(??)≤...≤ x(nu)≤ C 1

(or C 2) and y(??)≤...≤ y(na)≤ C 1 (or C 2) are ordered failure times at use and acceler-
ated conditions respectively, where nu (< n1) and na (< n2) are the numbers of items
failed at use and accelerated conditions, respectively.

Under hybrid censoring scheme, supposing that R and C 1 are predetermined, we can
observe the following data.
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If C 1 < C 2, the sample is x(??)≤...≤ x(nu)≤ C 1 and y(??)≤...≤ y(na)≤ C 1.

If not, the sample is x(??)≤...≤ x(nu)≤ C 2 and y(??)≤...≤ y(na)≤ C 2.

3. Estimation process
Here, the maximum likelihood estimates (MLEs) of the CSPALTs model parameters

under hybrid censoring as well as their confidence limits are considered.

3.1. ML point estimation. Now, let us define the indicator functions: δui ≡ I(Xi
≤ C 1 (or C 2)) and δaj ≡ I(Yj ≤ C 1 (or C 2)). Then the total likelihood function for
(x1;δu1, . . . , xn1;δun1, y1;δa1, . . . , yn2;δan2) under CSPALTs is given by

L(x, y|λ, β, η) =

n1∏
i=1

Lui(xi, δui|β, η) .

n2∏
j=1

Laj(yj , δaj |λ, β, η)

=

n1∏
i=1

[
β

η

(
xi
η

)β−1

exp{− (xi/η)β}]δui [exp{− (Cδ1R1 Cδ2R2 /η)β}]δ̄ui

×
n2∏
j=1

[
λβ

η

(
λyj
η

)β−1

exp{− (λyj/η)β}]δaj [exp{− (λ Cδ1R1 Cδ2R2 /η)β}]δ̄aj ,

(3.1)

where,
Lui and Lai denote the contributions of the items i, i = 1, . . . , n1 and j, j = 1, . . . , n2

to the total likelihood function under use and accelerated conditions, respectively; and
δ̄ui = 1− δui, δ̄aj = 1− δaj , δ1R=1 if C 2 > C 1 and 0 otherwise, and δ2R=1 if C 2 <

C 1 and 0 otherwise.

The value of η̂ can be found by

η̂ =

{
ψ

nu + na

} 1
β̂

,(3.2)

where

ψ =
∑n1
i=1 δui x

β
i +λ

β +
∑n2
j=1 δaj y

β
j + (Cδ1R1 Cδ2R2 )

β
(n1−nu)+(λ Cδ1R1 Cδ2R2 )

β
(n2−na) .

Now, we have two ML non-linear equations which can be extracted as follows.

na β̂

λ̂
− [

(nu + na) β̂ λ̂
β̂−1

ψ
] [

n2∑
j=1

δaj y
β̂
j + (Cδ1R1 Cδ2R2 )

β̂
(n2−na)] = 0,(3.3)

nu + na

β̂
+

n1∑
i=1

δui lnxi +

n2∑
j=1

δaj ln yj − (nu + na) ln

(
ψ

nu + na

)1/β̂

+na ln λ̂ + β̂

(
nu + na

ψ

)1/β̂

= 0.(3.4)
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From equation (3.3), the value of λ̂ is easily determined by the following formula.

λ̂ =

 na[
∑n1
i=1 δui x

β̂
i + (Cδ1R1 Cδ2R2 )

β̂
(n1−nu)]

nu [
∑n2
j=1 δaj y

β̂
j + (Cδ1R1 Cδ2R2 )

β̂
(n2−na) ]


1
β̂

.(3.5)

After substituting for λ̂, the equation (3.4) can be expressed by

nu +na

β̂
+

n1∑
i=1

δui lnxi +

n2∑
j=1

δaj ln yj

−nu
∑n1
i=1 δui x

β̂
i ln xi + (Cδ1R1 Cδ2R2 )

β̂
(n1−nu) ln (Cδ1R1 Cδ2R2 )∑n1

i=1 δui x
β̂
i + (Cδ1R1 Cδ2R2 )

β̂
(n1−nu)

−na
∑n2
j=1 δaj y

β̂
j ln yj + (Cδ1R1 Cδ2R2 )

β̂
(n2−na) ln (Cδ1R1 Cδ2R2 )∑n2

j=1 δaj y
β̂
j + (Cδ1R1 Cδ2R2 )

β̂
(n2−na)

= 0.(3.6)

To get the value of β̂, the Newton-Raphson method is utilized to solve the non-linear
equation (3.6), numerically. Consequently, based on the value of β̂, the values of η̂ and
λ̂ can be simply determined from (3.2) and (3.5) respectively.

3.2. ML interval estimation. In this subsection, the approximate confidence bounds
of the parameters are obtained based on the asymptotic distribution of the MLEs of
the elements of the vector of unknown parameters Ω = (β, η, λ). It is known that the
asymptotic distribution of the MLEs of Ω is given by; see Miller [27],

((β̂−β), (η̂−η), (λ̂− λ))→ N (0, I−1(β, η, λ))

where I−1(β, η, λ) is the variance-covariance matrix of the unknown parameters Ω =
(β, η, λ). The elements of the 3 × 3 matrix I−1 , Iij (β, η, λ), i, j = 1, 2, 3 ; can be
approximated by Iij(β̂, η̂, λ̂), where

Iij(Ω̂) = − ∂
2lnL(Ω)
∂Ωi∂Ωj

|Ω=Ω̂

Thus, the approximate 100(1 - γ)% two sided confidence intervals of β, η and λ are,
respectively, yielded by

±Zγ/2
√

I−1
11 (β̂, η̂, λ̂), η̂ ± Zγ/2

√
I−1
22 (β̂, η̂, λ̂) and λ̂± Zγ/2

√
I−1
33 (β̂, η̂, λ̂).

where Zγ/2 is the upper (γ/2)th percentile of a standard normal distribution.

3.3. Percentile bootstrap estimation. In this section, we use a parametric bootstrap
method to construct CIs for the unknown parameters β, η and λ. The bootstrap is a
re-sampling technique for statistical inference. It is frequently used to estimate CIs. Also,
it can be used to estimate bias and variance of an estimator. It has the advantage of
computational ease especially for large sample sizes. We present the percentile bootstrap
CIs (PBCIs) proposed by Efron [16]. The following steps can be proceeded to obtain
bootstrap samples for the proposed method.
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(1) Using the original hybrid censored sample, x(??)≤...≤ x(nu)≤ C 1 and y(??)≤...≤
y(na)≤ C 1 if C 1 < C 2 or x(??)≤...≤ x(nu)≤ C 2 and y(??)≤...≤ y(na)≤ C 2 if C 2

< C 1, obtain β̂, η̂ and λ̂.
(2) Using the values of n1 and n2, generate two independent samples of sizes n1 and n2

from Weibull distribution, x∗ = (x∗1 < x∗2 < ... < x∗n1
) and y∗ = (y∗1 < y∗2 < ... < y∗n2

).
(3) As in step 1 based on x∗ and y∗ compute the bootstrap sample estimates of β̂, η̂ and λ̂

say, β̂∗, η̂∗ and λ̂∗.
(4) Repeat the above steps 2 and 3 N (=10,000) times representing N different bootstrap

samples.
(5) Arrange all β̂∗, η̂∗ and λ̂∗in an ascending order to obtain the bootstrap sample ϕ̂∗[1]

` , ϕ̂
∗[2]
` ,

..., ϕ̂
∗[N ]
` , `= 1, 2, 3, where ϕ∗

1 = β∗, ϕ∗
2 = η∗ and ϕ∗

3 = λ∗.

To obtain PBCIs, let G(z) = P (ϕ̂∗
` ≤ z) be CDF of ϕ̂∗

` . Define ϕ̂∗
`boot = G−1(z) for

given z. The approximate bootstrap100(1− γ)%CI of ϕ̂∗
` is given by

(∗`boot(
γ
2

), ϕ̂∗
`boot(1− γ

2
)).

4. Simulation studies
In this section simulation studies are made to evaluate the performances of the MLEs

in terms of their mean square errors (MSEs) for various choices of n, R and C1 values.
Also, the 95 % asymptotic confidence bounds based on the asymptotic distribution of the
MLEs are constructed and their lengths are computed and presented with the associated
coverage probabilities (CPs). For different hybrid censored data sets, the average values
of the MSEs, confidence interval lengths (CILs) and CPs are calculated using 10,000
replications and the results are given in Tables 1-6. In each Table, the odd rows repre-
sent the results of the ML estimation for β, η and λ, respectively, while the even ones
denote the results of the percentile bootstrap estimation (between brackets) for the three
parameters respectively.

From Tables 1-6 some notes can be discovered concerning the two approaches as
follows.

(1) For fixed n and R, the MSEs decrease as C 1 increases.
(2) For fixed n and C 1, the MSEs decrease as R increases.
(3) For fixed R and C 1, the MSEs decrease as n increases.
(4) For fixed R and C 1, the CILs decrease as n increases.
(5) For fixed n and C 1, the CILs decrease as R increases.
(6) For fixed n and R, the CILs decrease as C 1 increases.

Also, we observed that the computed CPs of the confidence bounds for each parameter
are very close to the nominal level as n increases. The same pattern is noticed as R or
C 1 increases. That is, the procedure is successfully working.

Now, when we compare between the two methods of estimation, it is observed that
for relatively small and moderate sample sizes, percentile bootstrap method works better
than the ML method. It provides smaller MSEs, narrower CILs with closest CPs to the
nominal level. The method of bootstrap is recommended to use even for large samples
for computational ease and high precision.

Moreover, point and 95 % confidence interval estimations for the survival function at
mission times 3, 5, 7 and 10 are obtained using the two methods of estimation. The
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estimations of the true survival are calculated via the following expressions:

(x)=exp{− (x/η̂)β̂}, for items run under use condition,

or

(y)=exp{− (λ̂y/η̂)β̂}, for items run under accelerated condition.

As Soliman [30] shows, "estimation of the reliability function of some equipment is
one of the main problems of reliability theory. In most practical applications and life-
test experiments, the distributions with positive domain, e.g., Weibull, Burr-XII, Pareto,
Beta, and Rayleigh, are quite appropriate models".

The estimation results of the true survival function are introduced in Tables 7 and
8. It can be observed that the percentile bootstrap method gives reliability estimations
better than the ML method.
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Table 1: The results of MSEs, CILs and CPs using the methods of ML and percentile
bootstrap (between brackets), respectively, with true parameter values set at β = 1.5, η

= 2 and λ = 2.5 when C 1 = 20 and n = 25 (n1=12, n2=13).
R = 10 R = 15 R = 20
0.038, 1.235, 0.947
(0.026), (1.127), (0.948)
0.047, 1.786, 0.945
(0.031), (1.514), (0.946)
0.054, 1.911, 0.943
(0.041), (1.817), (0.944)

0.017, 0.992, 0.948
(0.014), (0.842), (0.949)
0.023, 1.415, 0.946
(0.018), (1.217), (0.947)
0.037, 1.549, 0.944
(0.031), (1.311),(0.946)

0.007, 0.851, 0.952
(0.004), (0.762), (0.951)
0.012, 1.194, 0.948
(0.009), (0.988), (0949)
0.029, 1.352, 0.946
(0.018), (1.132), (0.948)

Table 2: The results of MSEs, CILs and CPs using the methods of ML and percentile
bootstrap (between brackets), respectively, with true parameter values set at β = 1.5, η

= 2 and λ = 2.5 when C 1 = 20 and n = 35 (n1=17, n2=18).
R = 15 R = 20 R = 25
0.011, 0.715, 0.953
(0.008), (0.689), (0.951)
0.019, 1.218, 0.947
(0.015), (1.115), (0.948)
0.033, 1.355, 0.945
(0.026), (1.172), (0.947)

0.006, 0.661, 0.950
(0.004), (0.541), (0.950)
0.011, 0.907, 0.949
(0.007), (0.833), (0.950)
0.021, 1.141, 0.948
(0.013), (0.917), (0.949)

0.002, 0.526, 0.950
(0.001), (0.418), (0.950)
0.007, 0.789, 0.951
(0.003), (0.640), (0.950)
0.013, 0.911, 0.951
(0.009), (0.763), (0.950)

Table 3: The results of MSEs, CILs and CPs using the methods of ML and percentile
bootstrap (between brackets), respectively, with true parameter values set at β = 0.5, η

= 0.7 and λ = 3 when C 1 = 30 and n = 25 (n1=12, n2=13).
R = 10 R = 15 R = 20
0.021, 1.015, 0.948
(0.016), (0.985), (0.949)
0.032, 1.487, 0.946
(0.024), (1.311), (0.948)
0.041, 1.802, 0.945
(0.036), (1.587), (0.947)

0.015, 0.910, 0.949
(0.011), (0.852), (0.950)
0.019, 1.321, 0.947
(0.0014), (1.103), (0.949)
0.027, 1.463, 0.945
(0.021), (1.298), (0.947)

0.005, 0.754, 0.951
(0.003), (0.669), (0.950)
0.011, 0.988, 0.952
(0.005), (0.901), (0.951)
0.018, 1.076, 0.954
(0.0012), (0.992), (0.952)
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Table 4: The results of MSEs, CILs and CPs using the methods of ML and percentile
bootstrap (between brackets), respectively, with true parameter values set at β = 0.5, η

= 0.7 and λ = 3 when C 1 = 30 and n = 35 (n1=17, n2=18).
R = 15 R = 20 R = 25
0.006, 0.411, 0.950
(0.004), (0.392), (0.950)
0.010, 0.762, 0.949
(0.007), (0.611), (0.949)
0.024, 1.117, 0.948
(0.019), (0.996), (0.949)

0.004, 0.286, 0.950
(0.002), (0.203), (0.950)
0.007, 0.531, 0.951
(0.004), (0.498), (0.950)
0.012, 0.820, 0.952
(0.008), (0.758), (0.951)

0.001, 0.197, 0.950
(0.002), (0.163), (0.950) 0.003,
0.312, 0.951
(0.002), (0.277), (0.950)
0.008, 0.524, 0.951
(0.005), (0.469), (0.950)

Table 5: The results of MSEs, CILs and CPs using the methods of ML and percentile
bootstrap (between brackets), respectively, with true parameter values set at β = 1.5, η

= 0.7 and λ = 3 when C 1 = 35 and n = 50 (n1=20, n2=30).
R = 15 R = 20 R = 25
0.003, 0.397, 0.950
(0.002), (0.364), (0.950)
0.007, 0.748, 0.949
(0.006), (0.711), (0.950)
0.019, 1.001, 0.949
(0.014), (0.964), (0.950)

0.002, 0.254, 0.950
(0.001), (0.226), (0.950)
0.005, 0.503, 0.950
(0.003), (0.489), (0.950) 0.007,
0.611, 0.950
(0.004), (0.522), (0.950)

0.001, 0.182, 0.950
(0.001), (0.165), (0.950) 0.002,
0.292, 0.950
(0.001), (0.203), (0.950) 0.003,
0.479, 0.950
(0.002), (0.445), (0.950)

Table 6: The results of MSEs, CILs and CPs using the methods of ML and percentile
bootstrap (between brackets), respectively, with true parameter values set at β = 0.5, η

= 0.7 and λ = 3 when C 1 = 35 and n = 50 (n1=20, n2=30).
R = 15 R = 20 R = 25
0.004, 0.402, 0.950
(0.003), (0.387), (0.950)
0.008, 0.751, 0.949
(0.006), (0.620), (0.950)
0.020, 1.004, 0.949
(0.016), (0.981), (0.950)

0.003, 0.261, 0.950
(0.002), (0.207), (0.950)
0.006, 0.508, 0.950
(0.004), (0.433), (0.950) 0.009,
0.627, 0.951
(0.004), (0.489), (0.950)

0.001, 0.182, 0.950
(0.001), (0.147), (0.950) 0.003,
0.304, 0.950
(0.002), (0.287), (0.950) 0.004,
0.481, 0.950
(0.003), (0.423), (0.950)
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Table 7: Average values of point and interval estimations for the survival function at
different mission times 3, 5, 7 and 10 according to the methods of ML and percentile

bootstrap (between brackets), respectively, with true parameter values set at β = 1.5, η
= 0.7 and λ = 3 when C 1 = 35 and n = 50 (n1=20, n2=30).

R = 15 R = 20 R = 25
0.746, 0.688, 0.879
(0.797), (0.708, 0.893)
0.731, 0.678, 0.864
(0.782), (0.711, 0.883)
0.694, 0.647, 0.822
(0.741), (0.683, 0.852)
0.658, 0.625, 0.794
(0.719), (0.667, 0.814)

0.767, 0.722, 0.896
(0.812), (0.742, 0.898)
0.752, 0. 694, 0.887
(0.801), (0.734, 0.883)
0.746, 0.688, 0.873
(0.789), (0.723, 0.876)
0.728, 0.671, 0.868
(0.763), (0.692, 0.871)

0.782, 0.744, 0.920
(0.831), (0.758, 0.932)
0.771, 0.721, 0.895
(0.822), (0.744, 0.912)
0.766, 0.706, 0.889
(0.804), (0.723, 0.896)
0.748, 0.697, 0.874
(0.781), (0.711, 0.883)

Table 8: Average values of point and interval estimations for the survival function at
different mission times 3, 5, 7 and 10 according to the methods of ML and percentile

bootstrap (between brackets), respectively, with true parameter values set at β = 0.5, η
= 0.7 and λ = 3 when C 1 = 35 and n = 50 (n1=20, n2=30).

R = 15 R = 20 R = 25
0.741, 0.682, 0.873
(0.789), (0.702, 0.882)
0.728, 0.673, 0.859
(0.776), (0.694, 0.871)
0.685, 0.638, 0.804
(0.733), (0.675, 0.838)
0.643, 0.611, 0.781
(0.692), (0.642, 0.798)

0.760, 0.704, 0.882
(0.802), (0.728, 0.891)
0.747, 0. 694, 0.870
(0.788), (0.709, 0.879)
0.738, 0.676, 0.856
(0.778), (0.687, 0.864)
0.713, 0.664, 0.843
(0.748), (0.663, 0.832)

0.773, 0.728, 0.887
(0.825), (0.746, 0.904)
0.762, 0.694, 0.877
(0.815), (0.738, 0.894)
0.743, 0.682, 0.863
(0.791), (0.692, 0.871)
0.728, 0.672, 0.841
(0.767), (0.687, 0.849)

5. A demonstrative example
To demonstrate the proposed methodology, a demonstrative example via hybrid cen-

sored data set from Weibull distribution is considered. We use n = 75 (n1=25, n2=50),
β = 2, η = 2.5 and λ = 3 when C 1 = 40 and R = 20. The number of failures observed at
use and accelerated conditions are nu=11 and na=39, respectively, with censored items
nc=25. The MSEs associated with the MLEs of the parameters β, η and λ are 0.002,
0.003 and 0.005, respectively, while those associated with the percentile bootstrap esti-
mation are respectively 0.001, 0.002 and 0.004. In addition, a 95% CILs of the model
parameters β, η and λ using the two approaches ML and PB are 0.241, 0.462, 0.581 and
0.212, 0.409, 0.523, respectively. Moreover, the CPs associated with ML and PB are
respectively 0.948, 0.947, 0.949 and 0.950, 0.951, 0.950. Finally, the point and interval
estimations for the survival function at a mission time 6 according to the methods of
ML and PB (between brackets) are, respectively, 0.749, 0.691, 0.883 and (0.795), (0.734,
0.887).

6. Conclusion
In this article, the likelihood and percentile bootstrap estimation methods has been

applied to the CSPALTS model parameters assuming Weibull distribution under hybrid
censoring. The performance of the estimators has been examined in terms of their MSEs
via simulation studies for the two methods of estimation. Also, the CILs of the model
parameters have been obtained as well as their CPs. It is observed that for small and
moderate sample sizes, percentile bootstrap method works better than the approximate
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method. It provides smaller MSEs, narrower CILs with closest CPs to the nominal level.
The method of bootstrap is recommended to use even for large samples for computational
ease and high precision. Finally, an illustrative example has been given.
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