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Abstract

Signi�cant progress has been made towards the generalization of some
well�known lifetime models, which have been successfully applied to
problems arising in several areas of research. In this paper, some prop-
erties of the new Kumaraswamy exponential-Weibull (KwEW) distribu-
tion are provided. This distribution generalizes a number of well-known
special lifetime models such as the Weibull, exponential, Rayleigh, mod-
i�ed Rayleigh, modi�ed exponential and exponentiated Weibull dis-
tributions, among others. The beauty and importance of the new
distribution lies in its ability to model monotone and non-monotone
failure rate functions, which are quite common in environmental stud-
ies. We derive some basic properties of the KwEW distribution in-
cluding ordinary and incomplete moments, skewness, kurtosis, quantile
and generating functions, mean deviations and Shannon entropy. The
method of maximum likelihood and a Bayesian procedure are used for
estimating the model parameters. By means of a real lifetime data
set, we prove that the new distribution provides a better �t than the
Kumaraswamy Weibull, Marshall-Olkin exponential-Weibull, extended
Weibull, exponential-Weibull and Weibull models. The application in-
dicates that the proposed model can give better �ts than other well-
known lifetime distributions.
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1. Introduction

In many applied areas like lifetime analysis, �nance, insurance and biology, there
is a clear need for extended forms of the classical distributions, i.e., new distributions
more �exible to model real data that present a high degree of skewness and kurtosis
in these areas. Recent developments focus on new techniques by adding parameters to
existing distributions for building classes of more �exible distributions. Following this
idea, Cordeiro et al. [6] introduced an interesting method by adding two new parameters
to a parent distribution to model data with a high degree of skewness and kurtosis. The
generated family can provide more �exibility to model various types of data. If G(x) is
the cumulative distribution function (cdf) of a baseline model, then the Kumaraswamy
generalized (Kw-G) family has cdf given by

F (x) = 1− {1−Gα(x)}γ .(1.1)

The probability density function (pdf) corresponding to (1.1) is given by

f(x) = αγ g(x)Gα−1(x) {1−Gα(x)}γ−1 .(1.2)

Each new Kw-G distribution can be obtained from a speci�ed G distribution. For α =
γ = 1, the G distribution is a basic exemplar of the Kw-G family with a continuous
crossover towards cases with di�erent shapes (e.g., a particular combination of skewness
and kurtosis). One major bene�t of equation (1.2) is its ability of �tting skewed data
that can not be properly �tted by existing distributions. Further, it allows for greater
�exibility of its tails and can be widely applied in many areas of reliability and biology.

The Weibull distribution is a very popular distribution for modeling lifetime data.
When modeling monotone hazard rates, it may be an initial choice because of its skewed
density shapes. However, it does not have a bathtub or upside�down bathtub shaped
hazard rate function (hrf) and can not be used to model the lifetime of certain systems.
Such bathtub hazard curves have nearly �at middle portions and the corresponding
densities have a positive anti-mode. An example of the bathtub-shaped failure rate is
the human mortality experience with a high infant mortality rate which reduces rapidly
to reach a low level. Unimodal failure rates can be observed in course of a disease whose
mortality reaches a peak after some �nite period and then declines gradually. Thus, it
cannot be used to model lifetime data with a bathtub shaped hazard function, such as
human mortality and machine life cycles. Therefore, several researchers have developed
various extensions and modi�ed forms of the Weibull distribution having a number of
parameters ranging from two to �ve parameters.

In the last few years, new classes of distributions aim to de�ne generalized Weibull
distributions to cope with bathtub shaped failure rates. Mudholkar and Srivastava [17]
and Mudholkar et al. [18] pioneered and studied the exponentiated Weibull (ExpW)
distribution to analyze bathtub failure data. A good review of some of these extended
models is presented in Pham and Lai [25]. Also, the additive Weibull distribution was
proposed by Xie and Lai [27], the modi�ed Weibull distribution by Lai et al. [12] and the
generalized modi�ed Weibull distribution by Carrasco et al. [2]. Further, Lee et al. [13]
and Silva et al. [23] de�ned two extensions of the Weibull model called the beta Weibull
(BW) and beta modi�ed Weibull (BMW) distributions, respectively.
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The exponential�Weibull (EW) distribution proposed by Cordeiro et al. [5] has cdf
and pdf given by

G(x) = 1− e−λ x−β xk 1R+(x), λ > 0, β > 0, k > 0(1.3)

and

g(x) = (λ+ β k xk−1) e−λ x−β xk 1R+(x),(1.4)

respectively, where λ > 0 and k > 0 are shape parameters, β > 0 is a scale parameter
and 1A(x) denotes the characteristic function of the set A, i.e. 1A(x) = 1 when x ∈ A
and equals 0 elsewhere.

We generalize the EW model by de�ning the Kumaraswamy exponential�Weibull
(KwEW) distribution. The cdf and pdf of the KwEW distribution, for which the EW is
the baseline model, are given by

F (x) = 1−
{

1−
(

1− e−λ x−β xk
)α}γ

1R+(x)(1.5)

and

f(x) = αγ
(
λ+ kβxk−1

)
e−λ x−β xk

(
1− e−λ x−β xk

)−1+α

×
{

1−
(

1− e−λ x−β xk
)α}−1+γ

1R+(x),(1.6)

respectively, where λ > 0, β > 0, k > 0, α > 0 and γ > 0. Hereafter, we denote by
X ∼ KwEWα,γ(λ, β, k) a random variable having the pdf (1.6).

The density (1.6) is much more �exible than the EW density and can allow for greater
�exibility of the tails. It can exhibit di�erent behavior depending on the parameter
values. In fact, Figure 1 (a,c) and Figure 2 (d) reveal that the mode of the pdf increases
as α and λ increases, respectively. Figure 2 (e) also shows that the mode of the pdf
increases as k increases. The new parameter γ behaves somewhat as a scale parameter
as shown in Figure 1(b). The structure of the density function (1.6) can be motivated
as it provides more �exible distribution than the two-parameter Weibull and many other
extended Weibull distributions (see Table 1).

The rest of the paper is organized as follows. In Section 2, twelve widely-known special
models of the proposed distribution are presented. A useful expansion for the KwEW
density and explicit expressions for certain mathematical quantities of X are obtained in
Section 3. We demonstrate in Section 4 that the KwEW density is an in�nite mixture of
EW densities. Further, we obtain alternative expressions for the moments and generating
function. The estimation of the model parameters by maximum likelihood and a Bayesian
procedure are addressed in Section 5. We prove in Section 6 the �exibility of the new
distribution for modeling lifetime data by means of a real data set. A bivariate extension
is given in Section 7. The paper is concluded in Section 8.

2. Special Distributions

We point out some special cases of the KwEWα,γ(λ, β, k) distribution by specifying its
parameters values. Table 1 lists twelve important special models of the new distribution.
For example, the KwEWα,γ(0, β, k) model reduces to the Kw-modi�ed Weibull [12], the
KwEW1,1(λ, β, k) refers to the exponential�Weibull [5], the KwEW1,1(λ, β, 2) is the mod-
i�ed Rayleigh, the KwEW1,1(λ, β, 1) is the modi�ed exponential and the KwEW1,1(0, β, k)
becomes the classical two-parameter Weibull. If k = 1 and k = 2 in addition to
α = 1 , γ = 1 and λ = 0, it coincides with the exponential and Rayleigh distribu-
tions, respectively. Finally, the KwEW1,γ(0, β, k) model becomes the ExpW distribution
pioneered by [17, 18].
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Figure 1. Plots of the KwEW density function. (a) λ = 0.5, β =
0.6, k = 2, γ = 1.5 and α = 1.4 (dotted line), α = 3 (dashed line),
α = 5 (solid line), α = 10 (thick line). (b) λ = 3.5, β = 1.6, k = 2, α =
1.5 and γ = 1 (dotted line), γ = 1.5 (dashed line), γ = 2 (solid line),
γ = 2.5 (thick line). (c) β = 2.6, k = 1.2, α = 3.5, γ = 1.7 and λ = 1
(dotted line)λ = 2, (dashed line), λ = 3 (solid line),λ = 4 (thick line).

3. Main Properties

We derive computational sum�representations and explicit expressions for the ordinary
and central moments, skewness, kurtosis, generating and quantile functions, Shannon
entropy and mean deviations of X. These expressions can be evaluated analytically
or numerically using packages such as Mathematica, Matlab and Maple. In numerical
applications, the in�nite sums can be truncated whenever convergence is observed.
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Figure 2. Plots of the KwEW density function. (d) λ = 1.3, k =
3, α = 5, γ = 1.3 and β = 0.5 (dotted line), β = 2 (dashed line), β = 4
(solid line), β = 6 (thick line). (e) λ = 1, β = 1.5, α = 3, γ = 1.3
and k = 1 (dotted line), k = 1.5 (dashed line), k = 2 (solid line),
k = 3 (thick line).

Table 1. Some special distributions

Model λ β k α γ

Kw-Modi�ed Weibull 0 � � � �

Kw-Exponential � 0 � � �

Kw-Rayleigh 0 � 2 � �

Exponentiated Weibull 0 � � 1 �

Kw-Linear Failure Rate � � 2 � �

Exponential Weibull � � � 1 1

Two Parameter Weibull 0 � � 1 1

Exponential 0 � 1 1 1

Rayleigh 0 � 2 1 1

Modi�ed Rayleigh � � 2 1 1

Modi�ed Exponential � � 1 1 1

Linear Failure Rate � � 2 1 1

3.1. A Useful Expansion. Here, we provide a useful expansion for the KwEW pdf
(1.6). By using the power series

(1− z)β−1 =

∞∑
n=0

an z
n, |z| < 1, β > 0,(3.1)

we obtain

f(x) = αγ
(
λ+ kβxk−1

) ∞∑
m=0

Wm

(
e−λ x−β xk

)m+1

,(3.2)
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where

an =
(−1)nΓ(β)

Γ(β − n)n!
, Wm =

∞∑
n=0

(−1)n+m Γ(γ) Γ{(n+ 1)γ}
Γ(γ − n)Γ{(n+ 1)γ −m}m!n!

.

3.2. Moments. Some key features of a distribution such as skewness and kurtosis can
be studied through its moments. We derive closed-form expressions for the ordinary and
central moments, generating function, skewness and kurtosis of X.

First, we introduce the Fox-Wright function pΨq, which is an extension of the usual
generalized hypergeometric function pFq, with p ∈ N0 numerator parameters a1, · · · , ap ∈
C and q ∈ N0 denominator parameters b1, · · · , bq ∈ C \ Z−0 , de�ned by

pΨq

[ (a1, A1) , · · · , (ap, Ap)

(b1, B1) , · · · , (bq, Bq)

∣∣∣∣∣ z
]

=
∑
n≥0

Γ(a1 +A1n) · · ·Γ(ap +Apn)

Γ(b1 +B1n) · · ·Γ(bq +Bqn)

zn

n!
,

where the empty products are conventionally taken to be equal to one, and

Aj > 0, j = 1, p, Bk > 0, k = 1, q, ∆ = 1 +

q∑
j=1

Bj −
p∑
j=1

Aj ≥ 0,

(see, for instance [11, p. 56]). The convergence will occur for suitably bounded values of
|z| such that

|z| < ∇ =

(
p∏
j=1

A
−Aj
j

) (
q∏
j=1

B
Bj
j

)
.

We derive closed-form expressions for the real order moments of X. We have

E(Xr) = αγ

∞∑
m=0

Wm

∫ ∞
0

xr
(
λ+ β k xk−1

)
e−λ (m+1) x e−β (m+1) xk dx

= αγ λ

∞∑
m=0

Wm

∫ ∞
0

xr e−λ (m+1) x e−β (m+1) xk dx

+ αγβk

∞∑
m=0

Wm

∫ ∞
0

xr+k−1e−λ(m+1)xe−β(m+1)xkdx.

The rth moment is a linear combination of integrals of the type I(ω) based on a similar
approach by [19, Eq. (2.1)], where ω = (κ, µ, a, η) and all components are positive
parameters,

I(ω) =

∫ ∞
0

xκ−1 e−(µx+axη).

A representation for this integral is given by [21, p. 515, Corollary 1.1]:

I(ω) =



µ−κ 1Ψ0

[
(κ, η)

∣∣∣∣∣− a

µη

]
, 0 < η < 1,

Γ(κ)

(µ+ a)κ
, η = 1,

1

ηaκ/η
1Ψ0

[ (κ
η
,

1

η

) ∣∣∣∣∣− µ

a1/η

]
, η > 1.

(3.3)
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Thus, for all k ∈ (0, 1), we can write

E(Xr) = αγ λ

∞∑
m=0

Wm I(r + 1, λ (m+ 1), β (m+ 1), k)

+ αγβk

∞∑
m=0

Wm I(r + k − 1, λ(m+ 1), β(m+ 1), k)

=

∞∑
m=0

Wm
γ α

λr (m+ 1)r+1 1Ψ0

[
(r + 1, k)

∣∣∣∣∣− β

λk (m+ 1)k−1

]

+
∞∑
m=0

Wm
αγ β k

(λ (m+ 1))r+k
1Ψ0

[
(r + k, k)

∣∣∣∣∣− β

λk(m+ 1)k−1

]
.(3.4)

For k = 1, we have

(3.5) E(Xr) =
λαγ Γ(r + 1)

(λ+ β)r+1

∞∑
m=0

Wm

(m+ 1)r+1
.

The remaining values of the parameter k > 1 lead to

E(Xr) =

∞∑
m=0

Wm
αγ λ

k{β(m+ 1)}
r+1
k

1Ψ0

[ (r + 1

k
,

1

k

) ∣∣∣∣∣− (m+ 1)1−
1
k λ

β
1
k

]

+

∞∑
m=0

Wm
αγ β k

{β(m+ 1)}
r+k
k

1Ψ0

[ ( r
k

+ 1,
1

k

) ∣∣∣∣∣− (m+ 1)1−
1
k λ

β
1
k

]
.(3.6)

Hence, we have the following result:
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3.1. Theorem. If X ∼ KwEWα,γ (λ, β, k), then (for all r > −1) we have

E(Xr) =



∞∑
m=0

Wm
γ α

λr (m+ 1)r+1

× 1Ψ0

[
(r + 1, k)

∣∣∣∣∣− β

λk (m+ 1)k−1

]

+

∞∑
m=0

Wm
αγ β k

{λ (m+ 1)}r+k

× 1Ψ0

[
(r + k, k)

∣∣∣∣∣− β

λk(m+ 1)k−1

]
, 0 < k < 1,

∞∑
m=0

Wm
λαγ Γ(r + 1)

(λ+ β)r+1 (m+ 1)r+1
, k = 1,

∞∑
m=0

Wm
αγ λ

k{β(m+ 1)}
r+1
k

× 1Ψ0

[ (r + 1

k
,

1

k

) ∣∣∣∣∣− (m+ 1)1−
1
k λ

β
1
k

]

+

∞∑
m=0

Wm
αγ β k

{β(m+ 1)}
r+k
k

× 1Ψ0

[ ( r
k

+ 1,
1

k

) ∣∣∣∣∣− (m+ 1)1−
1
k λ

β
1
k

]
, k > 1.

(3.7)

Proof. It only remains to verify the convergence conditions of the Fox�Wright series,
which depends only on the parameter k. Note that, when k ∈ (0, 1), ∆ = 1 − k > 0, so
that both series in (3.4) converge. So, it does when k = 1. Finally, for k > 1, the value
∆ = 1− 1

k
> 0 ensures that the moment E(Xr) is �nite for any r > −1. �

3.2. Remark. For certain integer and rational values of the parameter k, we adopt a
representation of the Fox�Wright 1Ψ0 function in terms of the generalized hypergeometric

pFq functions, which is discussed in detail in [16]. By their Eq. (3.3), for all positive
rational A = m

M
, one has

1Ψ0

[
(a, m

M
)
∣∣∣∣∣z
]

= Γ(a) +

M∑
j=1

Γ(a+ m
M
j) zj

j!

× m+1FM

[
1, j

M
+ a

m
, · · · , j

M
+ a+m−1

m

∣∣∣∣∣mm zM

MM

]
,

where pFq stands for the generalized hypergeometric function which is a built�in Math-
ematica function speci�ed by

HypergeometricPFQ[{a_1,\ldots, a_p},{b_1,\ldots, b_q},z].

On the other hand, the same authors also give an insight into transforming Fox�Wright
Ψ functions into Meijer G�functions for rational arguments. Referring to [16, Eq. (5.1)],
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one has

1Ψ0

[
(a, m

M
)
∣∣∣∣∣z
]

=
2
√
Mma

Γ(a)
√
mπ

M+m−1
2

× GM,mm,M

(
mm (−z)M

MM

∣∣∣∣∣ 1− a
m
, · · · , 1− a+m−1

m

0, 1
M
, · · · , M−1

M

)
.

See, for example, the monographs [14, Ch. V] and [11] for an introduction to the G�
function. �

3.3. Remark. The nth factorial moment of order of X is given by

Φn = E[X(X − 1)(X − 2) · · · (X − n+ 1)] =
dn
[
E(tX)

]
dtn

∣∣∣∣∣
t=1

.

Based on the Viète�Girard formula for expanding the polynomialX(X−1)(X−2) · · · (X−
n+ 1), we obtain

Φn =

n∑
r=1

(−1)n−r

 ∑
1≤`1<···<`r≤n−1

`1 · · · `r

 E(Xr),

where the second sum represents elementary symmetric polynomials:

er = er(`1, · · · , `r) =
∑

1≤`1<···<`r≤n−1

`1 · · · `r, r = 0, n− 1.

This in conjunction with positive integer rth order moment expression given in equation
(3.7) provides an exact power series for the fractional order moments. �

3.4. Remark. The moment generating function (mgf) M(t) = E(et X) of X can be
obtained by setting r = 0 and replacing [λ (m+ 1)] by [λ (m+ 1)− t] in equation (3.7).�

3.5. Remark. The central moments (µn) and cumulants (κn) of X are easily obtained
from (3.7) as

µn =

n∑
k=0

(−1)k
(
n

k

)
µ′k1 µ′n−k and κn = µ′n −

n−1∑
k=1

(
n− 1

k − 1

)
κk µ

′
n−k,

respectively, where κ1 = µ′1. Thus, κ2 = µ′2 − µ′21 , κ3 = µ′3 − 3µ′2µ
′
1 + 2µ′31 , etc. Clearly,

the skewness and kurtosis measures can be calculated from the ordinary moments using
well-known relationships.�

Some numerical values for the skewness and kurtosis of X are listed in Table 2. The
�gures in this table indicate a large range for the skewness of X, although the kurtosis
does not vary much.

Next, we discuss some other structural properties of X, i.e., survival, hazard rate,
mean residual life, entropy, mean deviations and quantile function (qf).

3.3. Survival, Hazard rate, Quantile function, Skewness and Kurtosis. Central
role is playing in the reliability theory by the ratio of the pdf and survival function. The
survival function of X is given by

S(x) =
{

1−
(

1− e−λ x−β xk
)α}γ

1R+(x) .(3.8)

Then, the hrf of X reduces to

h(x) =
αγ
(
kx−1+kβ + λ

)
e−λ x−β xk

(
1− e−λ x−β xk

)−1+α

{
1−

(
1− e−λ x−β xk

)α}γ 1R+(x) .(3.9)
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Table 2. Skewness and kurtosis of the KwEW distribution for selected
parameter values.

λ β k α γ Skewness Kurtosis
1.0 2.6 1.5 10 30 -0.001 1.229
2.0 2.6 1.5 10 30 -0.001 1.229
3.0 2.6 1.5 10 30 -0.001 1.229
4.0 2.6 1.5 10 30 -0.001 1.229
� � � � � � �
1.3 0.5 2.5 25 18 -0.002 1.234
1.3 2.0 2.5 25 18 -0.002 1.234
1.3 4.0 2.5 25 18 -0.002 1.234
1.3 6.0 2.5 25 18 -0.002 1.234
� � � � � � �
0.2 3.4 1.0 2.0 3.0 0.150 1.251
0.2 3.4 1.5 2.0 3.0 0.150 1.251
0.2 3.4 2.0 2.0 3.0 0.150 1.251
0.2 3.4 3.0 2.0 3.0 0.150 1.251
� � � � � � �
0.7 0.7 2.0 0.2 5.0 0.914 5.283
0.7 0.7 2.0 1.2 5.0 0.218 1.275
0.7 0.7 2.0 1.8 5.0 0.149 1.245
0.7 0.7 2.0 10 5.0 0.049 1.238
� � � � � � �
3.5 1.6 3.0 5.0 0.5 0.190 1.306
3.5 1.6 3.0 5.0 1.0 0.146 1.277
3.5 1.6 3.0 5.0 1.5 0.123 1.263
3.5 1.6 3.0 5.0 2.0 0.108 1.254

Figures 3 (a), (b) and (c) display some plots of h(x).
The qf of X is determined by inverting (1.5) as

Q(u) = F−1(u) = − log[1− {1− (1− u)1/γ}1/α]

λ+ β
.(3.10)

Simulating KwEW random variable is straightforward. Let U be a uniform variable
on the unit interval (0, 1). Thus, by means of the inverse transformation method, the
random variable X given by

X = − log[1− {1− (1− U)1/γ}1/α]

(λ+ β)
(3.11)

follows the density (1.6). In particular, the median of X is

M = − log[1− {1− 0.51/γ}1/α]

(λ+ β)
.

Further, the mode of f(x) is obtained as

MO = −
log

{
1−

(
2−α
1−αγ

)1/α}
(λ+ β)

The shortcomings of the classical kurtosis measure are well-known. There are many
heavy tailed distributions for which this measure is in�nite. So, it becomes uninforma-
tive precisely when it needs to be. Indeed, our motivation to use quantile-based measures
stemmed from the non-existence of the classical kurtosis for many of the Kw-G distribu-
tions. The Bowley's skewness is based on quartiles

S =
Q(3/4)− 2Q(1/2) +Q(1/4)

Q(3/4)−Q(1/4)
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and the Moors' kurtosis is based on octiles

K =
{Q(7/8)−Q(5/8)}+ {Q(3/8)−Q(1/8)}

Q(6/8)−Q(2/8)
,

where Q(·) is given by (3.10).

a. (Increasing hrf) b. (Upside-down bathtub hrf)

0.0 0.5 1.0 1.5 2.0
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0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
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10

15

Figure 3. (a) α = 2.5, γ = 3, λ = 4, β = 1.2, k = 1.8 (b)
α = 2.3, γ = 1.3, λ = 1.8, β = 9, k = 0.7.

c. (Bathtub-shaped hrf)

0.0 0.2 0.4 0.6 0.8 1.0 1.2

5

10

15

Figure 4. (c) α = 0.8, γ = 0.5, λ = 2.3, β = 10, k = 2.4.

3.4. Mean residual life function. The mean residual life function (mrlf) is de�ned
by

K(x) =
1

S(x)
[E(X)−m1(x)]− x,
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where f(x), E(X) and S(x) are given in (1.6), (3.7) and (3.8), respectively, and

m1(x) =

∫ x

0

y f(y) dy = αγ

∞∑
m=0

Wm

×
∫ x

0

y
(
λ+ β k yk−1

)
e−λ (m+1) y e−β (m+1) yk

dy

is the �rst incomplete moment of X. By expanding the exponential in the last expression,
we obtain

m1(x) = αγ

∞∑
m=0

Wm

∞∑
j=0

(−1)j [λ (m+ 1)]j

j!

×
∫ x

0

yj+1
(
λ+ β k yk−1

)
e−β (m+1) yk dy

= αγ

∞∑
m=0

Wm

∞∑
j=0

(−1)j [λ (m+ 1)]j

j!

×

(
λ

∫ x

0

yj+1G1,0
0,1

(
β (m+ 1)yp/q

∣∣∣∣∣ −0
)

dy

+ β
p

q

∫ x

0

yj+p/q G1,0
0,1

(
β (m+ 1) yp/q

∣∣∣∣∣ −0
)

dy

)
,(3.12)

where e−g(x) = G1,0
0,1

(
g(x)

∣∣∣∣∣ −0
)
, k = p/q and p ≥ 1 and q ≥ 1 are natural co-prime

numbers and

∫ x

0

ytG1,0
0,1

(
β (m+ 1) yp/q

∣∣∣∣∣ −0
)

dy

=
q xp (t+1)

p(2π)(q−1)/2
Gq,pp,p+q

(
{β (m+ 1)}q xp

qq

∣∣∣∣∣ −tp , 1−t
p
, . . . , p−t−1

p
,−

0 , −t−1
p

, t
p
, . . . , p−t−2

p

)
.(3.13)

Equation (3.13) is obtained by using (13) of [5]. So, the �rst incomplete moment of X is
easily obtained from (3.12) and (3.13).

Some applications of m1(x) refer to the Bonferroni and Lorenz curves of X de�ned,
for a given probability π, by B(π) = m1(q)/(πµ′1) and L(π) = m1(q)/µ′1, respectively,
where µ′1 = E(X) and q = Q(π) is the value of (3.10) at u = π.

3.5. Entropy. An entropy is a concept encountered in physics and engineering. It is a
measure of variation or uncertainty of a random variable X. An extension of Shannon's
entropy for the continuous case can be de�ned as follows:

H(f) = −
∫ ∞
0

log[f(x)] f(x) dx .(3.14)
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Combining (1.6) and (3.14), we can write

H(f) = −αγ
∞∑
m=0

Wm log

(
αγ

∞∑
m=0

Wm

)

×
∫ ∞
0

(
λ+ β k xk−1

)
e−λ (m+1) x e−β (m+1) xk dx

− αγ

∞∑
m=0

Wm

×
∫ ∞
0

(
λ+ β k xk−1

)
log
(
λ+ β k xk−1

)
e−λ (m+1) x e−β (m+1) xkdx

+ λαγ

∞∑
m=0

(m+ 1)Wm

×
∫ ∞
0

x
(
λ+ β k xk−1

)
e−λ (m+1) x e−β (m+1) xk dx

+ β αγ

∞∑
m=0

(m+ 1)Wm

×
∫ ∞
0

xk
(
λ+ β k xk−1

)
e−λ (m+1) x e−β (m+1) xk dx.(3.15)

Note that the �rst, third and fourth integrals on the right�hand side of (3.15) can be
determined by using (3.7) for r = 0, 1 and k, respectively. The second one can be
evaluated by numerical integration.

3.6. Order statistics. Let X1, X2, . . . , Xn be a random sample from the KwEW dis-
tribution and X1:n ≤ X2:n ≤ . . . ≤ Xn:n denote the corresponding order statistics. Let
fi:n (x) and Fi:n (x) denote, respectively, the pdf and the cdf of the ith order statistic
Xi:n. We can write

fi:n (x) =
n!f (x)

(i− 1)! (n− i)!

n−i∑
l=0

(
n− i
l

)
(−1)l F (x)i−1+l ,

and

Fi:n (x) =
n!

(i− 1)! (n− i)!

n−i∑
l=0

(−1)l

i+ l

(
n− i
l

)
F (x)i+l ,

where F (x) and f (x) are given by equations (1.5) and (1.6), respectively. Using (3.1)
and after some algebra, we obtain

fi:n (x) =
n!αγ

(
λ+ β k xk−1

)
(i− 1)! (n− i)!

n−i∑
l=0

∞∑
u=0

(
n− i
l

)
Wu e−λ(u+1) x e−β(u+1) xk

and

Fi:n (x) =
n!

(i− 1)! (n− i)!

n−i∑
l=0

∞∑
s=0

(
n− i
l

)
Γ(i+ l) (−1)l+s

Γ(i+ l − s)s! (i+ l)

×
{

1−
(

1− e−λ x−β xk
)α}γ s

,

where

Wu =

∞∑
t=0

∞∑
s=0

(−1)l+s+t+u Γ(i+ l) Γ{(s+ 1)γ}Γ{(t+ 1)α}
Γ(i+ l − s) Γ{(s+ 1)γ − t}Γ{(t+ 1)α− u}s! t!u!

.
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The sth moment of Xi:n is given by

E (Xs
i:n) =

∫ ∞
0

xs fi:n (x) dx.

By using fi:n (x) and equation (3.3), the moments of Xi:n can be easily obtained.

3.7. Mean deviations. The mean deviations provide important information about
characteristics of a population and they can be calculated from the �rst incomplete
moment. Indeed, the amount of dispersion in a population may be measured to some
extent by the deviations from the mean and median. The mean deviations of X about the
mean µ′1 = E(X) and about the median M can be expressed as δ1 = 2µF (µ′1)−2m1(µ′1)
and δ2 = µ′1 − 2m1(M), where F (µ′1) is calculated from (1.5) and m1(z) =

∫ z
0
x f(x)dx

can be determined from (3.12) and (3.13).

4. Alternative Properties

In this section, we provide an alternative mixture representation for the pdf of X. By
combining (1.4) and (3.2), we can write

f(x) =

∞∑
m=0

Vm gm+1(x),(4.1)

where (for m ≥ 0) Vm = αγWm/(m+ 1) and gm+1(x) is the pdf of the EW model with
parameters λ? = (m + 1)λ, β? = (m + 1)β and k. So, the KwEW density function is a
mixture of EW densities.

Based on equation (4.1) and the results by Cordeiro et al. [5], we can obtain the
following properties of X.

4.1. Moments. The calculations in this section involve some special functions. In par-
ticular, the gamma function Γ(r) =

∫∞
0
wr−1e−wdw (r > 0), and other functions given

in Appendices A and B. In order to obtain µ′s, we require an integral of the type

(4.2) I(s;λ?, β?, k) =

∫ ∞
0

xs e−(λ?x+β?xk) dx.

We provide four representations for (4.2). First, by expanding e−λ
?x in Taylor series, we

obtain

I(s;λ?, β?, k) =

∞∑
j=0

(−λ?)j

j!

∫ ∞
0

xs+j e−β
?xkdx

=
1

kβ?(s+1)/k

∞∑
j=0

(−1)j

j!

(
λ?

β?1/k

)j
Γ

(
s+ 1 + j

k

)
.

The above sum can be expressed in a simple form for k > 1 using the Fox�Wright
generalized hypergeometric function de�ned in Appendix A. We have

(4.3) I(s;λ?, β?, k) =
1

kβ?(s+1)/k 1Ψ0

[ (
s+1
k
, 1
k

)
− ;− λ?

β?1/k

]
.

Applying (4.3) to (4.1), we can write

(4.4) µ′s = E(Xs) =

∞∑
m=0

Vm [λ? I(s;λ?, β?, k) + β? k I(s+ λ? − 1;λ?, β?, k)] .

Secondly, we o�er two formulae for the integral (4.2) provided that k = p/q, where
p ≥ 1 and q ≥ 1 are relatively natural co-prime numbers. We use equation (2.3.2.13) in
[26, p. 321] to obtain formulae for I(s;λ?, β?, k) when 0 < k < 1 and k > 1. We exclude
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the case k = 1 since the model is non-identi�able. For irrational k, an approximation of
vanishingly small error can be made using increasingly accurate rational approximations
for k. Let z = (ppβ?q)/(qqλ?p), pFq(a1, . . . , ap; b1, . . . , bq;x) be the well-known gener-
alized hypergeometric function and ∆(τ, a) = (a/τ, (a + 1)/τ, . . . , (a + τ − 1)/τ). The
generalized hypergeometric functions are available in Mathematica. For 0 < k < 1, we
obtain

I(s;λ?, β?, k) =

q−1∑
j=0

(−β?)j Γ(s+ 1 + jp/q)

λ?(s+1+jp/q) j!

× p+1Fq (1,∆(p, s+ 1 + jp/q); ∆(q, 1 + j); (−1)qz) .

(4.5)

For γ > 1, we have

I(s;λ?, β?, k) =

p−1∑
j=0

(−1)j q Γ ([s+ 1 + j]q/p)

p β?(s+1+j)q/p j!

× q+1Fp

(
1,∆(q, [s+ 1 + j]q/p); ∆(p, 1 + j);

(−1)p

z

)
.

(4.6)

A fourth representation for the integral (4.2) also holds when k = p/q, where p ≥ 1
and q ≥ 1 are natural co-prime numbers. It follows in terms of the Meijer Gm,np,q function
de�ned in Appendix B and also available in Mathematica. For an arbitrary function g(·),
we use the result

exp{−g(x)} = G1,0
0,1

(
g(x)

∣∣ −
0

)
,(4.7)

and then equation (4.2) can be expressed in the same form of equation (2.24.3.1) given
by [26, p. 350]. Hence, we obtain

I(s;λ?, β?, k) =
ps+1/2

(2π)(p+q)/2−1 λ?s+1 Gq,pp,q

(
β?q pp

λ?p qq

∣∣∣∣ −sp , 1−s
p
, . . . , p−s−1

p

0

)
.(4.8)

Further, if q = 1, using equation (9.31.2) in [10]

Gm,np,q

(
z−1| ar

bs

)
= Gn,mq,p

(
z
∣∣ 1− bs

1− ar

)
,

we have, as a special case of (4.8), the following result [3]

I(s;λ?, β?, k) =
ps+1/2

(2π)(p−1)/2 λ?s+1 G
p,1
1,p

(
λ?p

β? pp

∣∣∣∣ 1
(s+1)
p

, (s+2)
p

, . . . , (s+p)
p

)
.

Equations (4.3), (4.4), (4.5), (4.6) and (4.8) are the main results of this section.

4.2. Incomplete Moments. For lifetime models, it is useful to obtain the sth incom-
plete moment of X given by Ts(y) =

∫ y
0
xs f(x)dx. We de�ne J(s, a) = J(s, a;β, γ) =∫ a

0
xs e−βx

γ

dx. Moreover, it is simple to verify from (1.6) that Ts(y) can be expressed as

Ts(y) =

∫ y

0

xs (λ? + β? k xk−1) e−(λ?x+β?xk)dx.

By expanding the exponential in the last expression, we have

(4.9) Ts(y) =

∞∑
j=0

(−1)jλ?j

j!
[λ? J(s+ j, y) + β?k J(s+ k − 1, y)] .
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We now provide a formula for Ts(y) in terms of the MeijerGm,np,q function (see Appendix
B) which holds only when k = p/q, where p ≥ 1 and q ≥ 1 are natural co-prime numbers.
By using (4.7), we can write

J(s, a) =

∫ a

0

xsG1,0
0,1

(
β?xp/q | −

0

)
dx.

By using equation (2.24.2.2) in [26, p. 348], we can express J(s, a) as

(4.10) J(s, a) =
q ap(s+1)

p (2π)(q−1)/2
Gq,pp,p+q

(
β?q ap

qq

∣∣∣∣ −sp , 1−s
p
, . . . , p−s−1

p
,−

0, −s−1
p

, s
p
, . . . , p−s−2

p

)
.

Combining equations (4.9) and (4.10), we obtain the incomplete moments of X.

4.3. Generating Function. For t < λ?, the mgf of X follows from (4.1) as

M(t) =

∞∑
m=0

Vm I(s;λ? − t, β?, k).

Thus, we can use the results in Section 4.1 to obtain an explicit expression for M(t)

M(t) =

∞∑
m=0

Vm

[
1

kβ?(s+1)/k

∞∑
j=0

(−1)j

j!

(
λ? − t
β?1/k

)j
Γ

(
s+ 1 + j

k

)]
.

5. Parameter Estimation

5.1. Maximum likelihood estimation. Several approaches for parameter estimation
were proposed in the literature but the maximum likelihood method is the most com-
monly employed. The maximum likelihood estimates (MLEs) enjoy desirable properties
and can be used when constructing con�dence intervals and test statistics. Large sample
theory for these estimates delivers simple approximations that work well in �nite sam-
ples. However, we can approximate quantities such as the density of test statistics that
depend on the sample size in order to obtain better approximation for the MLEs, which
can be easily handled either analytically or numerically.

Let θ = (λ, β, k, α, γ) be the parameter vector of the KwEW distribution. The log-
likelihood for θ given the data set x1, . . . , xn obtained from (1.6) is given by

`(θ) = n [log(α) + log(γ)] +

n∑
i=1

log
(

e− xki β−xiλ
)

− (1− α)

n∑
i=1

log
(

1− e−xki β−xiλ
)

+

n∑
i=1

log
(
kxk−1

i β + λ
)

− (1− γ)

n∑
i=1

log
{

1−
(

1− e−xki β−xiλ
)α}

.(5.1)
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The associated nonlinear log-likelihood equations ∂`(θ)
∂θ

= 0 are given by

∂`(θ)

∂λ
=

n∑
i=1

−xi + (α− 1)

n∑
i=1

e−λxi−βx
k
i xi

1− e−λxi−βx
k
i

+

n∑
i=1

1

λ+ kβx−1+k
i

− (γ − 1)

n∑
i=1

e−λxi−βx
k
i

(
1− e−λxi−βx

k
i

)
−1+ααxi

1−
(

1− e−λxi−βx
k
i

)α = 0,

∂`(θ)

∂β
=

n∑
i=1

−xki + (α− 1)

n∑
i=1

e−λxi−βx
k
i xk

i

1− e−λxi−βx
k
i

+

n∑
i=1

kx−1+k
i

λ+ kβx−1+k
i

− (γ − 1)

n∑
i=1

e−λxi−βx
k
i

(
1− e−λxi−βx

k
i

)
−1+ααxk

i

1−
(

1− e−λxi−βx
k
i

)
α

= 0,

∂`(θ)

∂k
=

n∑
i=1

−β log (xi)x
k
i + (α− 1)

n∑
i=1

e−λxi−βx
k
i β log (xi) xk

i

1− e−λxi−βx
k
i

− (γ − 1)

n∑
i=1

e−λxi−βx
k
i

(
1− e−λxi−βx

k
i

)−1+α

αβ log (xi) xk
i

1−
(

1− e−λxi−βx
k
i

)α
+

n∑
i=1

β x−1+k
i + k β log (xi) x

−1+k
i

λ+ k β x−1+k
i

= 0,

∂`(θ)

∂α
=
n

α
+

n∑
i=1

log
(

1− e−λxi−βx
k
i

)
− (γ − 1)

×
n∑
i=1

(
1− e−λxi−βx

k
i

)α
log
(

1− e−λxi−βx
k
i

)
1−

(
1− e−λxi−βx

k
i

)α = 0 ,

∂`(θ)

∂γ
=
n

γ
+

n∑
i=1

Log
{

1−
(

1− e−λxi−βx
k
i

)α}
= 0.(5.2)

For estimating the model parameters, numerical iterative techniques should be em-
ployed to solve these equations. We can investigate the global maximum of the log-
likelihood by setting di�erent starting values for the parameters. The information ma-
trix will be required for interval estimation. The elements of the 5 × 5 total observed
information matrix J(θ) = {Jrs(θ)} (for r, s = λ, β, k, α, γ) can be obtained from the

authors upon request. The asymptotic distribution of (θ̂ − θ) is N5(O,K(θ)−1), under
standard regularity conditions, where K(θ) = E{J(θ)} is the expected information ma-

trix and J(θ̂) is the observed information matrix evaluated at θ̂. The multivariate normal

N5(O, J(θ̂)−1) distribution can be used to construct approximate con�dence intervals for
the individual parameters.

5.2. Bayesian analysis. In the Bayesian approach, the information referring to the
model parameters is obtained through a posterior marginal distribution. Here, we use the
simulation method of Markov Chain Monte Carlo (MCMC) by the Metropolis-Hastings
algorithm. Since we have no prior information from historical data or from previous
experiment, we assign conjugate but weakly informative prior distributions to the pa-
rameters. We assume informative (but weakly) prior distribution and then the posterior
distribution is a well-de�ned proper distribution. We also assume that the elements of the



1220

parameter vector are independent and that the joint prior distribution for all unknown
parameters has a pdf given by

π(λ, β, k, α, γ) ∝ π(λ)× π(β)× π(k)× π(α)× π(γ).(5.3)

Here, λ ∼ Γ(a1, b1), β ∼ Γ(a2, b2), k ∼ Γ(a3, b3), α ∼ Γ(a4, b4) and γ ∼ Γ(a5, b5),
where Γ(ai, bi) denotes a gamma distribution with mean ai/bi, variance ai/b

2
i and density

function given by

f(υ; ai, bi) =
baii υ

ai−1 exp(−υbi)
Γ(ai)

,

where υ > 0, ai > 0 and bi > 0. All hyper-parameters are speci�ed. Combining the
likelihood function (5.1) and the prior distribution (5.3), the joint posterior distribution
for λ, β, k, α and γ reduces to

π(λ, β, k, α, γ|x) ∝ (αγ)n e−λ
∑n

i=1 xi−β
∑n

i=1 xki

n∏
i=1

{(
λ+ kβxk−1

i

)
×
(

1− e−λxi−βx
k
i

)−1+α {
1−

(
1− e−λxi−βx

k
i

)α}−1+γ
}

× π(λ, β, k, α, γ).(5.4)

The joint posterior density above is analytically intractable because the integration of
the joint posterior density is not easy to perform. In this direction, we �rst obtain the
full conditional distributions of the unknown parameters given by

π(λ|x, β, k, α, γ) ∝ e−λ
∑n

i=1 xi

n∏
i=1

{(
λ+ kβxk−1

)(
1− e−λxi−βx

k
i

)−1+α

×
{

1−
(

1− e−λxi−βx
k
i

)α}−1+γ
}
× π(λ),

π(β|x, λ, k, α, γ) ∝ e−β
∑n

i=1 xki

n∏
i=1

{(
λ+ kβxk−1

i

)(
1− e−λxi−βx

k
i

)−1+α

×
{

1−
(

1− e−λxi−βx
k
i

)α}−1+γ
}
× π(β),

π(k|x, λ, β, α, γ) ∝ e−β
∑n

i=1 xki

n∏
i=1

{(
λ+ kβxk−1

i

)(
1− e−λxi−βx

k
i

)−1+α

×
{

1−
(

1− e−λxi−βx
k
i

)α}−1+γ
}
× π(k),

π(α|x, λ, β, k, γ) ∝ αn
n∏
i=1

{(
1− e−λxi−βx

k
i

)α
×
{

1−
(

1− e−λxi−βx
k
i

)α}−1+γ
}
× π(α)

and

π(γ|x, λ, β, k, α) ∝ γn
n∏
i=1

{
1−

(
1− e−λxi−βx

k
i

)α}γ
× π(γ).

Since the full conditional distributions for λ, β, k, α and γ do not have explicit
expressions, we require the use of the Metropolis-Hastings algorithm.
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Table 3. Empirical means and the RMSEs in parentheses for β = 1

n λ̂ β̂ k̂ α̂ γ̂

λ = 2.3 k = 1.6 α = 1.5 γ = 1

250 1.218 1.689 1.467 1.702 1.346
(0.954) (0.517) (0.978) (1.597) (1.510)

350 1.214 1.574 1.428 1.503 1.335
(0.897) (0.501) (0.834) (1.453) (1.478)

450 1.213 1.572 1.346 1.548 1.217
(0.895) (0.498) (0.740) (1.404) (1.156)

λ = 3.4 k = 1.8 α = 2 γ = 2.3

250 1.414 1.023 1.101 2.471 2.601
(1.221) (0.742) (0.456) (2.102) (2.102)

350 1.367 1.367 1.084 2.495 2.495
(0.918) (0.904) (0.285) (2.104) (2.104)

450 1.278 1.278 1.053 2.348 2.348
(1.012) (0.843) (0.324) (1.945) (1.945)

λ = 0.4 k = 2 α = 2.5 γ = 1.4

250 2.203 1.146 2.142 2.104 1.925
(0.962) (0.765) (0.978) (1.231) (1.024)

350 2.458 1.107 2.154 2.116 1.823
(0.784) (0.452) (0.450) (1.114) (0.978)

450 1.067 1.047 2.045 2.123 1.450
(0.452) (0.596) (0.258) (1.080) (0.856)

λ = 3.2 k = 2.5 α = 1.5 γ = 3

250 1.854 1.256 1.478 1.149 1.853
(0.927) (0.451) (0.301) (0.856) (1.420)

350 1.745 1.024 1.201 1.131 1.741
(0.847) (0.237) (0.214) (0.723) (1.204)

450 1.680 1.345 1.635 1.085 1.658
(0.784) (0.478) (0.481) (0.456) (1.004)

5.3. Simulation study. We also assess the performance of the MLEs in terms of the
sample size n. The simulation is performed using the Ox matrix programming language.
The number of Monte Carlo replications is 10, 000. For maximizing the log-likelihood
function, we use the MaxBFGS subroutine with analytical derivatives. The evaluation
of the estimates is performed based on the following quantities for each sample size: the
empirical mean squared errors (MSEs) and the root MSEs (RMSEs) using the R package
from the Monte Carlo replications. The inversion method is used to generate samples,
i.e., the variates having the KwEW distribution are generated using (3.10). The MLEs

are evaluated for each simulated data, say (λ̂i, β̂i, k̂i, α̂i, γ̂i) (for i = 1, . . . , 10, 000) and
the biases and MSEs are computed by

biash(n) =
1

10000

10000∑
i=1

(ĥi − h) and MSEh(n) =
1

10000

10000∑
i=1

(ĥi − h)2

for h = λ, β, k, α, γ.
Let the sample size be n = 250, 350 and 450 and consider di�erent values for the shape
parameters λ, k,α and γ, whereas the scale parameter β is �xed at one. The empirical
results are given in Table 3.
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Table 4. MLEs of the parameters (standard errors in parentheses) for
the Aarset data

Distributions Estimates
Weibull(k , λ) 3.441197 47.05054

(0.000248) (0.036047)
E-W(λ, β, k) 0.018620 0.040483 0.373635

(0.003771) (0.031143) (0.188693)
ExtW( a , b , c) 0.027836 0.942137 0.020278

(0.033196) (0.285026) (0.319463)
MO-EW(a , b , c , α) 0.027083 0.161829 0.328829 3.599999

(0.006184) (0.124196) (0.143844) (1.87102)
Kw-W(a , b , c , λ) 0.340211 0.145696 1.209999 0.089756

(0.201699) (0.106772) (0.294355) (0.079873)
KwEW(λ , β , k , α , γ) 0.004366 0.209999 0.116764 3.516432 18.99999

(0.001879) (0.175644) (0.057365) (1.61287) (15.3596)

The �gures in this table indicate that the estimates are quite stable and, more impor-
tantly, are close to the true values for these sample sizes. Additionally, as the sample size
increases, the RMSEs decrease as expected. We can conclude that the MLEs are robust.

6. Application

Here, we prove the potentiality of the KwEW distribution by means of a real data set
using both MLEs and Bayesian approaches.

6.1. The MLEs approach. By using MLEs method, we �t the two-parameter Weibull
(Weibull), exponential-Weibull (EW) [5], extended Weibull (ExtW) [20], Marshall-Olkin
exponential-Weibull (MO-EW) [22], Kumaraswamy Weibull (Kw-W) [4] and KwEW dis-
tributions to the Aarset data [1] on lifetimes of 50 components, which possess a bathtub-
shaped failure rate property. The density functions of these models are given below (for
x > 0):

• The Weibull density function

f(x) =
k

λ

(x
λ

)k−1

e−(x/λ)k , k > 0, λ > 0;

• The EW density function

f(x) =
(
λ+ β k xk−1

)
e−λ x−β xk , λ, β, k > 0;

• The ExtW density function

f(x) = a (c+ b x)x−2+b e−c/x−axbe−c/x

, a, b > 0, c ≥ 0;

• The MO-EW density function

f(x) =
α
(
a+ b c x−1+c

)
e−(ax+bxc)

[1− (1− α) e−(ax+bxc)]
2 , λ, β, k, α > 0;

• The Kw-W density function

f(x) = a b c λc xc−1 e−(xλ)c
{

1− e−(xλ)c
}a−1 [

1−
{

1− e−(xλ)c
}a]b−1

,

a, b, c, λ > 0.

The parameters of the above distributions are estimated by maximizing the log-
likelihoods using the NMaximize command in the symbolic computational packageMath-
ematica. Table 4 lists the MLEs (and the corresponding standard errors in parentheses)

of the parameters. Table 5 gives the values of minus the maximized log-likelihood (−ˆ̀),
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Table 5. Goodness-of-�t statistics for the Aarset data

Distributions −ˆ̀ AIC BIC A∗ W∗

Weibull(k, λ) 240.98 485.959 489.783 3.53566 0.532984
E-W(λ, β, k) 239.463 484.927 490.663 2.92873 0.513036
ExtW(a, b, c) 240.957 487.914 493.65 3.5425 0.53549
MO-EW(a, b, c, α) 235.515 479.03 486.678 2.21706 0.34524
Kw-W(a, b, c, λ) 235.925 479.851 487.499 2.48043 0.424629
KwEW(λ, β, k, α, γ) 233.087 476.175 485.735 2.11894 0.32768

(f) (g)
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Figure 5. (f) The estimated KwEW density superimposed on the his-
togram for the Aarset data with other models. (g) The empirical cdf
and the estimated cdf's of other models, where Kw-Ew is represented
by (Thick line), Kw-W by (Thin line), MO-EW by (Long and short
dashed line), ExtW by (Long dashed line), E-W by (dashed line) and
Weibull by (Dotted line)

Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), Anderson-
Darling (A∗) and Cramér-von Mises (W ∗) goodness-of-�t statistics for some �tted mod-
els. Since the values of these statistics are smaller for the KwEW distribution compared
to those values of the Weibull, EW, ExtW, MO-EW and Kw-W distributions, the pro-
posed distribution is a very competitive model for lifetime data analysis. Plots of the
�tted KwEW, Weibull, E-W, ExtW, Mo-EW and Kw-W densities and the histogram of
the data are displayed in Figure 5(f). In Figure 5(g), we plot the empirical cumulative
function and the estimated cdf's for the KwEW and other distributions, which shows a
satisfactory �t of the new model.

6.2. Bayesian approach. The following independent priors are considered to perform
the Metropolis-Hastings algorithm: λ∼ Γ(0.01, 0.01), β ∼ Γ(0.01, 0.01), k ∼ Γ(0.01, 0.01),
α ∼ Γ(0.01, 0.01) and γ ∼ Γ(0.01, 0.01), so that we have vague prior distributions. Con-
sidering these prior density functions, we generate two parallel independent runs of the
Metropolis-Hastings with size 150,000 for each parameter, disregarding the �rst 15.000
iterations to eliminate the e�ect of the initial values and, to avoid correlation problems,
we consider a spacing of size 10, obtaining a sample of size 13,500 from each chain. To
monitor the convergence of the Metropolis-Hastings, we perform the methods suggested
by Cowles and Carlin [7]. To monitor the convergence of the Metropolis-Hastings, we use
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Figure 6. Approximate posterior marginal densities for the parame-
ters from the KwEW model for the Aarset data.

the between and within sequence information, following the approach developed in Gel-

man and Rubin [9], to obtain the potential scale reduction, R̂. In all cases, these values
were close to one, indicating the convergence of the chain. The approximate posterior
marginal density functions for the parameters are presented in Figure 6. In Table 6, we
report posterior summaries for the parameters of the new model. We note that the values
for the means a posteriori (Table 6) are quite close (as expected) to the MLEs given in
Table 5. Here, SD represents the standard deviation from the posterior distributions of
the parameters and HPD represents the 95% highest posterior density (HPD) intervals.

Table 6. Posterior summaries for the parameters from the KwEW
model for the Aarset data.

Parameter Mean SD HPD (95%) R̂

λ 0.0044 0.0007 (0.0031; 0.0057) 1.0052
β 0.2102 0.0050 (0.2005; 0.2200) 1.0002
k 0.1175 0.0227 (0.0740; 0.1630) 1.0018
α 3.5188 0.0934 (3.3338; 3.7012) 0.9999
γ 19.0003 0.2027 (18.6049; 19.3974) 1.0008

7. Bivariate KwEW Distribution

Suppose U1 ∼ KwEW(γ1, α, λ, β, k), U2 ∼ KwEW(γ2, α, λ, β, k) and
U3 ∼ KwEW(γ3, α, λ, β, k) are independently distributed. De�ne X1 = max(U1, U3) and
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X2 = max(U2, U3). Then the bivariate vector (X1, X2) ∼ KwEW
(γ1, γ2, γ3, α, λ, β, k).

Now, we construct the joint CDF of X1 and X2. Since

F (x1, x2) = P (X1 ≤ x1, X2 ≤ x2) ,

we have

F (x1, x2) = P (max(U1, U3) ≤ x1, (max(U2, U3) ≤ x2)

= P (U1 ≤ x1, U3 ≤ x1, U2 ≤ x2, U3 ≤ x2)

= P (U1 ≤ x1, U2 ≤ x2, U3 ≤ min(x1, x2) .

Since Ui, i = 1, 2, 3 are independent, one gets

F (x1, x2) = P (U1 ≤ x1, U2 ≤ x2, U3 ≤ min(x1, x2)

= F (x1, γ1, α, λ, β, k)F (x2, γ2, α, λ, β, k)F (z, γ3, α, λ, β, k)

=
[
1−

{
1−

(
1− e−λ x1−β xk1

)α}γ1]
[
1−

{
1−

(
1− e−λ x2−β xk2

)α}γ2]
× 1−

{
1−

(
1− e−λ z−β zk

)α}γ3
,(7.1)

where z = min(x1, x2) .
Combining (1.5) and (7.1), we obtain the joint cdf of the bivariate KwEW distribution

as:

F (x1, x2) =



[
1−

{
1−

(
1− e−λ x1−β xk1

)α}γ1+γ3]

×
[
1−

{
1−

(
1− e−λ x2−β xk2

)α}γ2]
, x1 ≤ x2

[
1−

{
1−

(
1− e−λ x1−β xk1

)α}γ1]

×
[
1−

{
1−

(
1− e−λ x2−β xk2

)α}γ2+γ3]
, x2 ≤ x1

1−
{

1−
(

1− e−λ x1−β xk1

)α}γ1+γ2+γ3
, x1 = x2 = x

.(7.2)

The joint pdf of (X1, X2) is given by

f(x1, x2) =



f1(x1, x2) , x1 ≤ x2

f2(x1, x2) , x2 ≤ x1

f3(x1, x2) , x1 = x2 = x

.

Now, f1(x1, x2) and f2(x1, x2) can easily be obtained by taking second order partial

di�erentiation (i.e f(x1, x2) = ∂2F (x1,x2)
∂x1∂x2

) of the bivariate KwEW cdf given in (7.2) and

obtain the following forms:
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f1(x1, x2) = α2γ2(γ1 + γ3)
(
β(−k)xk−1

1 − λ
)(

β(−k)xk−1
2 − λ

)
×
(

1− e−λx1−βx
k
1

)α−1

e−λ(x1+x2)−β(xk1+xk2)
(

1− e−λx2−βx
k
2

)α−1

×
(

1−
(

1− e−λx2−βx
k
2

)α)γ2−1 (
1−

(
1− e−λx1−βx

k
1

)α)γ1+γ3−1

(7.3)

and

f2(x1, x2) = α2γ1(γ2 + γ3)
(
β(−k)xk−1

1 − λ
)(

β(−k)xk−1
2 − λ

)
×
(

1− e−λx1−βx
k
1

)α−1

e−λ(x1+x2)−β(xk1+xk2)
(

1− e−λx2−βx
k
2

)α−1

×
(

1−
(

1− e−λx2−βx
k
2

)α)γ1−1 (
1−

(
1− e−λx1−βx

k
1

)α)γ2+γ3−1

.(7.4)

But f3(x1, x2) can not be derived in the similar way. For this, we use the following
identity ∫ ∞

0

∫ x2

0

f1(x1, x2) dx1dx2 +

∫ ∞
0

∫ x1

0

f2(x1, x2) dx1dx2

+

∫ ∞
0

f3(x, x) dx = 1

= I1 + I2 +

∫ ∞
0

f3(x, x) dx = 1 .

Let

I1 = αγ2

∫ ∞
0

(
β(−k)xk−1

2 − λ
)

e−λ x2−β xk2

(
1− e−λ x2−β xk2

)α−1

×
(

1−
(

1− e−λ x2−β xk2

)α)γ2−1

dx2

× α (γ1 + γ3)

∫ x2

0

(
β(−k)xk−1

1 − λ
)

e−λ x1−β xk1

(
1− e−λ x1−β xk1

)α−1

×
(

1−
(

1− e−λ x1−β xk1

)α)γ1+γ3−1

dx1 ,

then

I1 = αγ2

∫ ∞
0

(
β(−k)xk−1

2 − λ
)

e−λ x2−β xk2

(
1− e−λ x2−β xk2

)α−1

×
(

1−
(

1− e−λ x2−β xk2

)α)γ1+γ2+γ3−1

dx2 .(7.5)

Similarly,

I2 = αγ1

∫ ∞
0

(
β(−k)xk−1

1 − λ
)

e−λ x1−β xk1

(
1− e−λ x1−β xk1

)α−1

×
(

1−
(

1− e−λ x1−β xk1

)α)γ1−1

dx2

× α (γ2 + γ3)

∫ x1

0

(
β(−k)xk−1

2 − λ
)

e−λ x2−β xk2

(
1− e−λ x2−β xk2

)α−1

×
(

1−
(

1− e−λ x2−β xk2

)α)γ2+γ3−1

dx2 ,
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then

I2 = αγ1

∫ ∞
0

(
β(−k)xk−1 − λ

)
e−λ x1−β xk1

(
1− e−λ x1−β xk1

)α−1

×
(

1−
(

1− e−λ x1−β xk1

)α)γ1+γ2+γ3−1

dx2 .(7.6)

From (7.5) and (7.6), one obtains∫ ∞
0

f3(x, x) dx = αγ3

∫ ∞
0

(
β(−k) xk−1 − λ

)
e−λ x−β xk

×
(

1− e−λ x−β xk
)α−1 (

1−
(

1− e−λ x−β xk
)α)γ1+γ2+γ3−1

dx .

Thus,

f3(x, x) = αγ3

∫ ∞
0

(
β(−k)xk−1 − λ

)
e−λ x−β xk

(
1− e−λ x−β xk

)α−1

×
(

1−
(

1− e−λ x−β xk
)α)γ1+γ2+γ3−1

.(7.7)

8. Conclusions

In the last two decades, several authors have been interested in developing methods for
generating distributions with more �exibility in applications and data modeling. There
has been a growing interest among statisticians and applied researchers in constructing
�exible lifetime models in order to improve the modeling of survival data. In particular,
some authors proposed new extensions of the classical Weibull model. In this paper, we
introduce a �ve�parameter distribution obtained by applying the Kumaraswamy gener-
ator de�ned by Cordeiro et al. [6] to the exponential-Weibull model given by Cordeiro
et al. [5]. Interestingly, the proposed model has increasing, upside-down bathtub and
bathtub shaped hazard rate functions. We study some of its mathematical properties.
We discuss the maximum likelihood method and a Bayesian approach to make inference
on the model parameters. In the Bayesian approach, the selection of proper priors is
di�cult to examine and it is left to the interested readers for further study. Also, the
monitoring the rate of convergence of the associated MCMC method will be an impor-
tant issue to look after. An application proves its �exibility to analysis of real data. We
also discuss a bivariate extension of the KwEW distribution. The distributional results
developed in this paper can have numerous applications in the physical and biological
sciences, reliability theory, hydrology, medicine, meteorology, engineering and survival
analysis.

Appendix A. The uni�ed Fox�Wright generalized hypergeometric

function

Here,

(8.1) pΨ
∗
q

[ (a,A)p
(b,B)q

∣∣∣ z ] =

∞∑
n=0

∏p
j=1(aj)Ajn∏q
j=1(bj)Bjn

zn

n!

stands for the uni�ed variant of the Fox�Wright generalized hypergeometric function with
p upper and q lower parameters; (a,A)p denotes the parameter p�tuple (a1, A1), · · · , (ap, Ap)
and aj ∈ C, bi ∈ C \ Z−0 , Ai, Bj > 0 for all j = 1, p, i = 1, q. The power series converges
for suitably bounded values of |z| when

∆p,q = 1−
p∑
j=1

Aj +

q∑
j=1

Bj > 0 .
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In the case ∆ = 0, the convergence holds in the open disc |z| < β =
∏q
j=1B

Bj
j ·∏p

j=1A
−Aj
j .

The function 1Ψ∗0 is called con�uent. The convergence condition ∆1,0 = 1−A1 > 0 is
of special interest for us.

We point out that the original de�nition of the Fox�Wright function pΨq[z] (consult
formula collection [8] and the monographs [11], [15]) contains gamma functions instead
of the generalized Pochhammer symbols used here. However, these two functions di�er
only up to constant multiplying factor, that is

pΨq

[ (a,A)p
(b,B)q

∣∣∣ z ] =

∏p
j=1 Γ(aj)∏q
j=1 Γ(bj)

pΨ
∗
q

[ (a,A)p
(b,B)q

∣∣∣ z ] .
The uni�cation's motivation is clear - for A1 = · · · = Ap = B1 = · · · = Bq = 1, the
fucntion pΨ

∗
q [z] reduces exactly to the well-known generalized hypergeometric function

pFq[z].

Appendix B. Meijer G�function

The symbol Gm,np,q (·| ·) denotes Meijer's G−function [24] de�ned in terms of the Mellin�
Barnes integral as

(8.2) Gm,np,q

(
z
∣∣∣ a1, · · · , ap
b1, · · · , bq

)
=

1

2πi

∮
C

∏m
j=1 Γ(bj − s)

∏n
j=1 Γ(1− aj + s) zs∏q

j=m+1 Γ(1− bj + s)
∏p
j=n+1 Γ(aj − s)

ds,

where 0 ≤ m ≤ q, 0 ≤ n ≤ p and the poles aj , bj are such that no pole of Γ(bj−s), j = 1,m
coincides with any pole of Γ(1 − aj + s), j = 1, n; i.e. ak − bj 6∈ N, while z 6= 0. C is a
suitable integration contour which startes at −i∞ and goes to i∞ separating the poles of
Γ(bj−s), j = 1,m which lie to the right of the contour, from all poles of Γ(1−aj +s), j =
1, n, which lie to the left of C. The integral converges if δ = m + n − 1

2
(p + q) > 0 and

|arg(z)| < δπ, see [14, p. 143] and [24].

The G function's Mathematica code reads

MeijerG[{{a1, ..., an}, {an+1, ..., ap}}, {{b1, ..., bm}, {bm+1, ..., bq}}, z].
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