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Probability for transition of business cycle and
pricing of options with correlated credit risk
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Abstract
In this paper we propose the transition probability of business cycle
for the pricing of options with credit risk. In order to describe busi-
ness cycles of markets, the regime switching model is considered. We
provide the probability density functions of the occupation time of the
high volatility regime via Laplace transforms. Using these functions we
derive the analytic valuation formulae for options with correlated credit
risk and business cycle. We also illustrate the important properties of
options with numerical graphs.
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1. Introduction
In this paper we study the business cycle model for valuing options with credit risk.

It is assumed that the financial event occurs at some time in the market. This should
lead to the transition of volatilities of both the underlying stock and the option issuer’s
asset. The financial events are often modeled by the regime switching model to capture
the changes of the market environment by the unanticipated events (see, e.g., Hamilton
[8], Bollen [2], Buffington and Ellott [4], Boyle and Draviam [3], Zhang et al. [15], Zhu
et al. [16], Elliott et al. [7]). Based on this approach, we model the business cycle by a
continuous-time two-state regime switching.

The traditional option pricing based on Black-Scholes model [1] has been used the
assumption that options have no default risk. However, there exists the default risk of
the option writers in the over-the-counter (OTC) markets. OTC markets have grown
rapidly in size in recent years. That is, in the OTC markets, the counterparty default
risk is very important and should be considered for pricing of options.
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Johnson and Stulz [10] proposed the valuation of options with credit risk, which is
called Vulnerable option. In their model, the options depend on the liabilities of the option
issuers. If the default of the counterparty occurs at the maturity, the option holder takes
all assets of the counterparty. Their model also considers the correlation between the
option issuer’s asset and the underlying asset. Klein [11] developed the result of Johnson
and Stulz [10] by allowing for the proportional recovery of nominal claims in default.
Klein and Inglis [12] dealt with options with credit risk employing the stochastic interest
model of Vasicek [14]. Hui et al. [9] extended a vulnerable option valuation model that
incorporates a stochastic default barrier which reflects the expected leverage level of the
option issuer. Chang and Hung [5] provided analytic formulae to evaluate vulnerable
American options under the assumptions of Klein’s model. In the recent study, Shiu.
et al [13] proposed a closed-form approximation for valuing European basket warrants
with credit risk. However, none of the studies consider options with credit risk under the
varying market environment.

The rest of the paper is organized as follows. Section 2 presents the business cycle
modeling by using regime switching. In particular, we provide the probability density
function of the occupation time of high volatility in a given time period. Section 3 gives
the formulae for the arbitrage-free price of options with credit risk as integral under
our model. Finally, we provide the numerical examples with various graphs to show the
properties of option prices in section 4.

2. The model
We assume that a given filtered complete probability space (Ω,F, {Ft} ,Q) satisfies

the usual conditions, where Q presents a risk neutral measure‡ and the filtration {Ft} is
generated by Brownian motions and two independent Poisson point processes. Based on
the settings of Klein [11], we model the correlated evolutions of the option issuer’s asset
value process Vt and the underlying stock process St as the following:

dSt = rStdt+ σ1(t)StdW
1
t ,(2.1)

dVt = rVtdt+ σ2(t)VtdW
2
t ,(2.2)

where r is a riskless interest rate, σi(t), (i = 1, 2) are the time-varying volatilities of each
process and W i

t , (i = 1, 2) are standard Brownian motions under a risk neutral measure
Q with correlation ρ. Here, we model the business cycle by the volatilities with two
regimes.

We refer to two regimes as the high volatility and the low volatility. The high volatility
region presents the economic contraction period when the market is stressed by some
financial event. On the other hands, the low volatility region presents the economic
expansion period, where the market has the stable economic environment. For modeling
these, we assume that σ1(t) and σ2(t) are governed by two independent Poisson point
processes P1 and P0 with a two state continuous-time Markov chain.

Let P1 and P0 be two independent Poisson point processes with intensity λ1 and λ0,
respectively. If we are in the high regime, issuer’s asset’s volatility is σ1 + δ1. We observe
the high volatility Poisson point processes P1. If we get a signal from this high volatility
point processes, issuer’s asset’s volatility is changed from σ1 + δ1 to σ1. If we are in the
low regime, issuer’s asset’s volatility is σ1. We observe the low volatility Poisson point
processes P0. If we get a signal from this low volatility point processes, issuer’s asset’s
volatility is changed from σ1 to σ1 + δ1. Surely, the volatility σ2(t) of underlying stock is

‡Elliott et al. [6] show the existence of an equivalent martingale measure in the regime
switching model. So, we can get the risk-neutral valuation under our model.
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affected by the same Poisson point processes as well. By P0 and P1, the volatility σ2(t)
moves between σ2 and σ2 + δ2.

Let Ut be the occupation time in the high regime from 0 to option’s maturity T . Then
it is defined by

Ut :=

∫ t

0

ε(s)ds(2.3)

with ε(t) =

{
0 Economic expansion regime (σi(t) = σi),
1 Economic contraction regime (σi(t) = σi + δi),

i = 1, 2,

where ε(t) is the random variable with two regimes 0 (= Low volatility) and 1 (=
High volatility). The following Proposition gives the probability density function of Ut
conditioned on ε(0).

2.1. Proposition. For a given time T , the probability density functions of Ut conditioned
on ε(0) are given by

P (Ut = u|ε(0) = 1) := f1(u;T ) = e−λ1T δ0(T − u) + λ1e
−(λ1−λ0)u−λ0T

×[0F1(2;λ0λ1u(T − u))λ0u+ 0F1(1;λ0λ1u(T − u))], 0 < u < T(2.4)

P (Ut = u|ε(0) = 0) := f0(u;T ) = e−λ0T δ0(u) + λ0e
−(λ1−λ0)u−λ0T

×[0F1(1;λ0λ1u(T − u)) + 0F1(1;λ0λ1u(T − u))λ1 − λ1], 0 < u < T(2.5)

where 0F1(a; z) is the generalized hypergeometric function defined by

0F1(a; z) =

∞∑
n=0

1

(a)n

zn

n!
,

with the rising factorial (a)0 = 1 and (a)n = a(a+ 1) · · · (a+ n− 1). And

δx(y) :=

{
1, if x = y,
0, if x 6= y.

Proof. Let fj(u;T ) be the probability density function of Ut over [0, T ]. Then, by the
Laplace transform,

mj(r;T ) := E[e−rUT |ε(0) = j] = Lr(fj(·;T )).(2.6)

We also consider the two cases τj > T and τj < T , where τj is the random time of the
leaving state j satisfying P (τj > t) = e−λjt for each state j ∈ {0, 1}. We then have

m1(r;T ) = e−rT e−λ1T +

∫ T

0

e−λ1uλ1m0(r;T − u)e−rudu,(2.7)

m0(r;T ) = e−λ0T +

∫ T

0

e−λ0uλ0m1(r;T − u)du.(2.8)

Taking the Laplace transform of the above equations gives

m̂j(r; s) := Ls(mj(r; ·)) = Ls[Lr(fj(·;T ))(r; ·)].(2.9)

Then we have

m̂1(r; s) =
s+ λ0 + λ1

rs+ rλ0 + s2 + sλ1 + sλ0
,(2.10)

m̂0(r; s) =
r + s+ λ0 + λ1

rs+ rλ0 + s2 + sλ1 + sλ0
.(2.11)
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The equation (2.10) is equal to∫ ∞
0

e−rx
s+ λ0 + λ1

s+ λ0
e
− s(s+λ0+λ1)

s+λ0
x
dx

=

∫ ∞
0

e−rxe−(s+λ1)x

(
1 +

λ1

s+ λ0

) ∞∑
n=0

(
λ0λ1x

s+ λ0

)n
1

n!
dx

=

∫ ∞
0

e−rx
∫ ∞
0

e−sye−λ1x

×

(
δx(y) +

∞∑
n=1

(xλ0λ1)ne−λ0(y−x)(y − x)n−1

n!(n− 1)!
1{x<y}

)
dydx

+

∫ ∞
0

e−rx
∫ ∞
0

e−sye−λ1x
∞∑
n=0

λ1(xλ0λ1)ne−λ0(y−x)(y − x)n

n!n!
1{x<y}dydx

=

∫ ∞
0

e−rx
∫ ∞
0

e−sy
(
e−λ1xδx(y) + λ1e

−(λ1−λ0)x−λ0y

× [0F1(2;λ0λ1x(y − x))λ0x+ 0F1(1;λ0λ1x(y − x))]1{x<y}
)
dydx.

Substituting (u, T ) for (x, y) yields the equation (2.4). Similarly, from the equation
(2.11), we have∫ ∞

0

e−rx
(
δ0(x)

s+ λ0
+
λ0(s+ λ0 + λ1)

(s+ λ0)2
e
− s(s+λ0+λ1)

s+λ0
x
dx

)
dx

=

∫ ∞
0

e−rxδ0(x)

∫ ∞
0

e−sye−λ0ydydx

+

∫ ∞
0

e−rx
∫ ∞
0

e−sye−λ1x
∞∑
n=0

λ0(xλ0λ1)ne−λ0(y−x)(y − x)n

n!n!
1{x<y}dydx

+

∫ ∞
0

e−rx
∫ ∞
0

e−sye−λ1x

×

(
∞∑
n=0

λ0λ1(xλ0λ1)ne−λ0(y−x)(y − x)n

n!n!
− λ0λ1e

−λ0(y−x)

)
1{x<y}dydx

=

∫ ∞
0

e−rx
∫ ∞
0

e−sy
(
e−λ0yδ0(x) + λ0e

−(λ1−λ0)x−λ0y[0F1(1;λ0λ1x(y − x))

+0F1(1;λ0λ1x(y − x))λ1 − λ1]1{x<y}
)
dydx.

In a same way, substituting (u, T ) for (x, y) in above equation completes the proof. �

For given Ut = u we also can obtain the following solutions of equation (2.1) and
equation (2.2), respectively,

St = S0e
(rt− 1

2
η1(u,t)+

∫ t
0 σ1(s)dW

1
s ), Vt = V0e

(rt− 1
2
η2(u,t)+

∫ t
0 σ2(s)dW

2
s ),(2.12)

where ηi(u, t) = σ2
i t+ (2σiδi + δ2i )u, i = 1, 2.

In order to handle the above processes, we need to verify the properties of

J1(t) :=

∫ t

0

σ1(s)dW 1
s , J2(t) :=

∫ t

0

σi(s)dW
2
s .

If Ut is known, we can find the properties of Ji(t), (i = 1, 2). The results are presented
by the following lemmas.

2.2. Lemma. Conditioned on Ut = u ≤ t, Ji(t) has the normal distribution with mean
0 and variance ηi(u, t), for each i ∈ {1, 2}.
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Proof. Let us consider the decomposition of J1(t) as

J1(t) = δ1

∫ t

0

ε(s)dW 1
s + σ1W

1
t := δ1X1(t) + σ1W

1
t .

For some k, kε(t) is a bounded simple function. So, the Novikov condition ofE[e
1
2

∫ t
0 (kε(s))2ds]

is satisfied and e
∫ t
0 kε(s)dW

1
s−

u2

2

∫ t
0 ε(s)

2ds is a martingale for given Ut = u. Therefore,

E[e
∫ t
0 kε(s)dW

1
s−

k2

2

∫ t
0 ε(s)

2ds|Ut = u] = E[e
∫ t
0 kε(s)dW

1
s−

k2

2
u|Ut = u]

= E[ekX1(t)− k
2

2
u|Ut = u] = 1.

For given Ut = u, since E[ekX1(t)] = e
k2

2
u, X1(t) has the normal distribution with mean

0 and variance u. We also can calculate the covariance of X1(t) and W 1
t as following:

E[X1(t)W 1
t

∣∣∣Ut = u]

= E

[
lim
n→∞

n∑
k=1

∫ kt/n

(k−1)t/n

1{ε(s)=1,
(k−1)t
n
≤s≤ kt

n
}dW

1
sW

1
t

∣∣∣Ut = u

]

= lim
n→∞

E


 ∑
ε(s)=1,

(k−1)t
n
≤s≤ kt

n

W 1
kt
n
−W 1

(k−1)t
n

W 1
t

∣∣∣Ut = u


= lim

n→∞
E


 ∑
ε(s)=1,

(k−1)t
n
≤s≤ kt

n

W 1
kt
n
W 1
t


−

 ∑
ε(s)=1,

(k−1)t
n
≤s≤ kt

n

W 1
(k−1)t
n

W 1
t

∣∣∣Ut = u


= lim

n→∞
E

 ∑
ε(s)=1,

(k−1)t
n
≤s≤ kt

n

t

n

∣∣∣Ut = u


= E

[
lim
n→∞

n∑
k=1

t

n
1{ε(s)=1,

(k−1)t
n
≤s≤ kt

n
}

∣∣∣Ut = u

]
= u.

Hence, for given Ut = u, J1(t) has the normal distribution with mean 0 and variance
σ2
1t + (2σ1δ1 + δ21)u. In a same way, J2(t) has the the normal distribution with mean 0

and variance σ2
2t+ (2σ2δ2 + δ22)u as well. �

2.3. Lemma. Conditioned on Ut = u ≤ t, the correlation of J1(t) and J2(t) is given by

ρ12(u, t) =
[(σ1δ2 + σ2δ1 + δ1δ2)u+ σ1σ2t]ρ√

η1(u, t)η2(u, t)
.

Proof. From the decomposition in Lemma 2.2 and dW 1
t dW

2
t = ρdt, the covariance J1(t)

and J2(t) is given by

Cov(J1(t), J2(t)) = E[(δ1X1(t) + σ1W
1
t )(δ2X2(t) + σ2W

2
t )
∣∣Ut = u]

= δ1δ2E[X1(t)X2(t)
∣∣Ut = u] + σ1δ2E[W 1

t X2(t)
∣∣Ut = u]

+δ1σ2E[X1(t)W 2
t

∣∣Ut = u] + σ1σ2E[W 1
tW

2
t

∣∣Ut = u]

= δ1δ2ρu+ σ1δ2ρu+ δ1σ2ρu+ σ1σ2ρt.
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Therefore, the correlation of J1(t) and J2(t) is obtained by Lemma 2.2. �

3. Valuation of options with correlated credit risk
In this section we provide the formula of the European call option with credit risk in

a business cycle environment. As in Klein [11], we assume that if default or bankruptcy
of the option issuer occurs, the option issuer’s asset is immediately liquidated and the
scrap value at T is (1− α)VTD

−1(ST −K)+, where D is a constant value of the option
issuer’s liabilities and α is a constant showing the ratio of bankruptcy costs of the issuer’s
asset. We also assume that the option issuer declare default only if VT < D. Then, from
the equation (2.12), the discounted expected value of the call option with maturity T is
given by

C(T ) = e−rTEQ[(ST −K)+1{VT≥D} + (1− α)VTD
−1(ST −K)+1{VT<D}],(3.1)

where K is the strike price and 0 ≤ α ≤ 1. From this equation, we now provide the valu-
ation formula for a option with credit risk and business cycle by applying the Girsanov’s
theorem repeatedly.

For notational simplicity, we rewrite notations as

η1(u) := η1(u, T ), η2(u) := η2(u, T ), ρ̂(u) := ρ12(u, T ), δT := (1− α)VTD
−1.

3.1. Proposition. Let Cj be the arbitrage free price of a call option with credit risk and
initial state j (j = 0, 1). Then, the value Cj(T ) at time 0 of the option with maturity T
is given by

Cj(T ) =

∫ T

0

v(u)fj(u;T )du+ δ0(j)e−λ0T v(0) + δ1(j)e−λ1T v(T ),(3.2)

where fj(u;T ) (j = 0, 1) is defined in Proposition 1. And

v(u) = S0Φ2(a1(u), a2(u), ρ̂(u))−Ke−rTΦ2(b1(u), b2(u), ρ̂(u))

+S0δ0e
rT+ρ̂(u)

√
η1(u)η2(u)Φ2(c1(u), c2(u),−ρ̂(u))−Kδ0Φ2(d1(u), d2(u),−ρ̂(u)),

where Φ2 is the bivariate standard normal cumulative density function and

a1(u) =
ln(S0/K) + rT + 1

2
η1(u)√

η1(u)
,

a2(u) =
ln(V0/D) + rT − 1

2
η2(u) + ρ̂(u)

√
η1(u)η2(u)√

η2(u)
,

b1(u) =
ln(S0/K) + rT − 1

2
η1(u)√

η1(u)
,

b2(u) =
ln(V0/D) + rT − 1

2
η2(u)√

η2(u)
,

c1(u) =
ln(S0/K) + rT + 1

2
η1(u) + ρ̂(u)

√
η1(u)η2(u)√

η1(u)
,

c2(u) = −
ln(V0/D) + rT + 1

2
η2(u) + ρ̂(u)

√
η1(u)η2(u)√

η2(u)
,

d1(u) =
ln(S0/K) + rT − 1

2
η1(u) + ρ̂(u)

√
η1(u)η2(u)√

η1(u)
,

d2(u) = −
ln(V0/D) + rT + 1

2
η2(u)√

η2(u)
.
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Proof. From equation (3.1), the credit-risky call option value Cj(T ) at time 0 with ma-
turity T and an initial state j is given by

Cj(T ) = e−rTEQ[EQ[(ST −K)+1{VT≥D} + δT (ST −K)+1{VT<D}|Ut = u]]

= e−rT
∫ T

0

EQ[(ST −K)+(1{VT≥D} + δT 1{VT<D})|Ut = u]fj(u;T )du

+δ0(j)e−(r+λ0)TEQ[(ST −K)+(1{VT≥D} + δT 1{VT<D})|Ut = 0]

+δ1(j)e−(r+λ1)TEQ[(ST −K)+(1{VT≥D} + δT 1{VT<D})|Ut = T ].(3.3)

Let us consider the first term of the equation (3.3). For a fixed u, the conditional
expectation in the integral is divided into four terms as

e−rTEQ[(ST −K)+(1{VT≥D} + δT 1{VT<D})|Ut = u]

= e−rTEQ[ST 1{ST>K,VT≥D}|UT = u]− e−rTEQ[K1{ST>K,VT≥D}
∣∣UT = u]

+e−rTEQ[ST δT 1{ST>K}1{VT<D}|UT = u]− e−rTEQ[KδT 1{ST>K,VT<D}|UT = u]

:= I1 − I2 + I3 − I4.

Under the measure Q, the first term I1 can be expressed as

I1 =

∫ ∞
−∞

∫ ∞
−∞

S0e
− 1

2
η1(u)+

√
η1(u)z11{ST>K}1{VT≥D}

× 1

2π
√

1− ρ̂(u)
e
− 1

2(1−ρ̂(u)) (z
2
1−2ρ̂(u)z1z2+z

2
2)dz1dz2,(3.4)

where z1 = J1
T /
√
η1(u) and z2 = J2

T /
√
η2(u) are the standard normal variables with

correlation ρ̂(u). Then, by the change of variables with z̃1 = z1 −
√
η1(u), z̃2 = z2 −

ρ̂(u)
√
η1(u), we have

I1 =

∫ ∞
−∞

∫ ∞
−∞

S01{ST>K}1{VT≥D}(3.5)

× 1

2π
√

1− ρ̂(u)
e
− 1

2(1−ρ̂(u)) (z̃
2
1−2ρ̂(u)z̃1z̃2+z̃

2
2)dz̃1dz̃2.

Let Q̃ be the new equivalent probability measure defined by

dQ̃

dQ
= exp

(∫ T

0

θ(s)dWs −
1

2

∫ T

0

|θ(s)|2ds
)
,(3.6)

where W is vector in R2 and θ(s) = (σ1(s), ρ̂(u)σ1(s)). Then, by Girsanov’s theorem,

(
dW̃ 1

t

dW̃ 2
t

)
=

(
dW 1

t

dW 2
t

)
− θ(t)dt

is a R2-valued standard Brownian motion under the equivalent measure Q̃.
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We consider the equation (3.5) under the measure Q̃. Then, by applying Lemma 2.2
and Lemma 2.3, we have

I1 = EQ̃[S01{ST>K,VT>D}
∣∣UT = u]

= S0P̃
(
S0e

(rT− 1
2
η1(u)+

∫ T
0 σ1(s)dW

1
s ) > K,V0e

(rT− 1
2
η2(u)+

∫ T
0 σ2(s)dW

2
s ) > D

)
= S0P̃

(
J̃1
T > −

(
ln
S0

K
+ rT +

1

2
η1(u)

)
,

J̃2
T > −

(
ln
V0

D
+ rT − 1

2
η2(u) + ρ̂(u)

√
η1(u)η2(u)

))
= S0Φ2(a1(u), a2(u), ρ̂(u)).(3.7)

where J̃1
T =

∫ T
0
σ1(s)dW̃ 1

s and J̃2
T =

∫ T
0
σ1(s)dW̃ 2

s .
In a similar way, without the change of measure, I2 can be found.
For the evaluation I3, we change the variables as z̃1 = z1 −

√
η1(u) − ρ̂(u)

√
η2(u),

z̃2 = z2 −
√
η2(u)− ρ̂(u)

√
η1(u). And, define the equivalent measure by

dQ̃
dQ

= exp
(∫ T

0
θ(s)dWs − 1

2

∫ T
0
|θ(s)|2ds

)
, where θ(s) = (σ1(s) + ρ̂(u)σ2(s), σ2(s) +

ρ̂(u)σ1(s)). Then, by Girsanov’s theorem, we have

I3 = EQ̃[erTS0δ0e
ρ̂(u)
√
η1(u)η2(u)1{ST>K,VT<D}

∣∣UT = u]

= erTS0δ0e
ρ̂(u)
√
η1(u)η2(u)

×P̃
(
J̃T1 > −

(
ln
S0

K
+ rT +

1

2
η1(u) + ρ̂(u)

√
η1(u)η2(u)

)
,

J̃T2 >

(
ln
V0

D
+ rT +

1

2
η2(u) + ρ̂(u)

√
η1(u)η2(u)

))
= S0δ0e

rT+ρ̂(u)
√
η1(u)η2(u)Φ2(c1(u), c2(u),−ρ̂(u)).(3.8)

Again from the Radon-Nikodym derivative (3.6) that allows the change of probabil-
ity measure, we change the measure with θ(s) = (ρ̂(u)σ2(s), σ2(s))T . Then, under an
equivalent measure Q̃, I4 is evaluated as

I4 = Kδ0E
Q̃[1{ST>K,VT<D}

∣∣UT = u]

= Kδ0Φ2(d1(u), d2(u),−ρ̂(u)).(3.9)

Also one can obtain the second term and the third term of the equation (3.3) from above
results. This completes the proof. �

In a similar way, the following Proposition provides the price of the put option with
credit risk.

3.2. Proposition. Let Pj be the arbitrage free price of a put option with credit risk and
initial state j (j = 0, 1). Then, the value Pj(T ) at time 0 of the option with maturity T
is given by

Pj(T ) =

∫ T

0

v(u)fj(u;T )du+ δ0(j)e−λ0T v(0) + δ1(j)e−λ1T v(T ),(3.10)

where

v(u) = −S0Φ2(−a1(u), a2(u),−ρ̂(u)) +Ke−rTΦ2(−b1(u), b2(u),−ρ̂(u))

−S0δ0e
rT+ρ̂(u)

√
η1(u)η2(u)Φ2(−c1(u), c2(u), ρ̂(u)) +Kδ0Φ2(−d1(u), d2(u), ρ̂(u)).

Here, all parameters are given in Proposition 3.1.
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4. Numerical example
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Figure 1. Vulnerable call value for different moneyness (S0/K) and ε(0)
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Figure 2. Vulnerable call value for different debt ratio (D/V0) and ε(0)

In the previous section, we provide the option formulae represented as a integral form
under our model. In order to calculate these option formulae, we employ the Gauss-
Legendre quadrature as a numerical approximation method. Based on the values reported
by Boyle and Draviam [3] and Klein and Inglis [12], we use the following parameters unless
stated otherwise: S0 = K = 40, V0 = 100, D = 90, r = 0.05, T = 1, α = 0.25, ρ = 0, σ1 =
σ2 = 0.15, δ1 = δ2 = 0.1, , λ0 = λ1 = 1 and ε(0) = 0.

Fig. 1 illustrates how the prices of vulnerable call option for two initial states change
with the moneyness (S0/K). We can observe that the option with ε(0) = 0 procedure
higher prices than the option with ε(0) = 1 in high moneyness region as expected.
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Figure 3. Vulnerable call value for different debt ratio (D/V0) and ρ
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Figure 4. Vulnerable call value for different δ1 and ρ

Fig. 2 and Fig. 3 illustrate how the prices change when the debt ratio (D/V0) vary.
Fig. 2 shows decreasing trends of prices for different initial states. Here, the option with
ε(0) = 0 has always lower prices than the option with ε(0) = 1. We also can see that the
negative correlation ρ between underlying asset and firm value processes leads to lower
option prices in Fig. 3.

Fig. 4 and Fig. 5 illustrate the the sensitivities of the options with respect to the
shock sizes δi, (i = 1, 2) of the volatilities and the correlation. Both Fig. 4 and Fig. 5
show increasing trends of the option prices with respect to the correlation ρ. In Fig. 4,
the shock size δ1 of the underlying asset also leads to an increasing trend. In contrast, an
decreasing trend of the option values with respect to the shock size δ2 of the firm value
process is found in Fig. 5. In addition, for a negative ρ, we can see a sharp decreasing of
the option values.
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Figure 5. Vulnerable call value for different δ2 and ρ
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Figure 6. Vulnerable call value for different λ1 and λ2

Finally, Fig. 6 illustrates how the option values have the contrary trends with respect
to intensities. Consequently, these results show the changes of the option values when
the intensities vary by business cycle.
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