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Kaplan-Meier estimator in competing risk contexts

Pablo Martínez-Camblor∗ †‡

Abstract

Survival analysis has become in a common procedure in biomedical re-
searches. Conventionally, the well-known nonparametric Kaplan-Meier
(KM) estimator is used in order to approximate the real survivor curve.
However, in competing risk contexts where more than one failure cause
compete to occur and only one of them is of interest, the direct use
of the Kaplan-Meier statistic does not perform correctly and, in or-
der to obtain a good estimation, it must be adapted. In this work,
via Monte Carlo simulations, the author explores the behavior of the
Kaplan-Meier estimator in a competing risk context. In addition, dif-
ferences between KM and multiple decrement methods are pointed out.
Finally, a real-data problem is used in order to illustrate the situation.

Keywords: Competing risks, Kaplan-Meier estimator, Multiple decrement, Sur-

vival Analysis.

2000 AMS Classi�cation: 62N01

Received : 11.02.2015 Accepted : 13.06.2015 Doi : 10.15672/HJMS.20157111086

1. Introduction

Conventionally, survival analysis is devoted to the study of data where the response
of interest is the time required for certain (studied) event, which inevitably happens,
to occur. Main particularities of these studies are: i) on one hand, the distribution of
time is often strongly asymmetric and usual parametric models based on the normal law
do not perform adequately and, ii) the researcher frequently does not have a complete
knowledge on the time to event for each subject included in the study; he/she knows
that the event does not occur in a period of time but he/she does not know how long
the event is needing to occur. These situations are frequently repeated in the nature;
perhaps the bio-sanitary (the study of time to death in patients with some particular
disease) is one of the most known �elds. Of course, there exists a vast literature about
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statistical survival methods, among all, we want to remark the indispensable monograph
of Kalb�eish and Prentice (2002).

Let T be the non-negative random variable representing the failure time of interest,
as is well-known, in survival analysis, there are mainly three di�erent ways to specify
its distribution (see, for instance, Kalb�eish and Prentice (2002)): the survivor function,
the probability density function, and the hazard function. The survivor function stands
for the probability that the event occurs after a �xed value of time, t, that is,

(1.1) S(t) = P{T > t}, 0 ≤ t <∞.
Note that if F denotes the standard cumulative distribution function (CDF) for the
random variable T , S(t) = 1 − F (t) (0 ≤ t < ∞). Directly, when T is an absolutely
continuous variable, the probability density function (PDF) is de�ned in the standard
form,

(1.2) f(t) = d[1− S(t)]/dt = dF (t)/dt, 0 ≤ t <∞.
Obviously, it holds S(t) =

∫∞
t
f(u)du. Finally, the hazard function stands for the rate

of that the event occurs instantaneously after the time t when it is known that it does
not happen before t; that is,

λ(t) = lim
h→0+

P{T < t+ h|T ≥ t}/h

= f(t)/S(t) = −d log(S(t))/dt, 0 ≤ t <∞.(1.3)

Integrating with respect to t and taking into account that S(0) = 1, it holds the equality

(1.4) S(t) = exp

{
−
∫ t

0

λ(u)du

}
= exp{−Λ(t)}, 0 ≤ t <∞.

where Λ(t) =
∫ t
0
λ(u)du is known as the cumulative hazard function. Standard analysis of

survival data usually includes the non-parametric Kaplan-Meier (KM) estimator (Kaplan
and Meier (1958) for the survivor curve estimation and the semi-parametric proportional
hazard Cox regression (Cox (1972)) in order to explore possible covariate e�ects.

Under the usual assumption of independence between time to event and censoring
time, the KM estimator has really good properties (in the Section 2, some properties of
the KM estimator are pointed out); in addition, it has a direct and simple probabilistic
interpretation. However, when the studied event not necessarily happens; i.e., there ex-
ists one (or more) event which is incompatible with the studied one, the KM estimator
overestimated the probability that the event happens. In practice, these situations are
really frequent; for instance, when the studied variable is the time to recurrence of some
disease; obviously, death without recurrence makes not possible the disease relapses or,
when the researcher is interested in the time to death by a particular cause; the death
for other cause is, logically, not compatible with the considered event. In this work, the
author explores the survival curve estimation in the competing risk setting. Particularly,
the advantages of using the multiple decrement (MD) estimator (Aalen (1978)) are inves-
tigated via Monte Carlo simulations (Section 4). From a real problem dataset, in Section
5, the di�erences between the KM and the MD estimators are pointed out; particularly,
the distribution of the time-free of leukemia in patients with myelodysplasia is analyzed.
Finally, in Section 6, the author presents his conclusions.

2. The Kaplan-Meier estimator

The well-known Kaplan-Meier or product-limit estimator was proposed in 1958 in
one of the most (or the most, depending on the consulted source) cited and popular
statistical paper (Kaplan and Meier (1958)). In that work, the authors proposed a
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non-parametric method for the estimation of the cumulative distribution function from
incomplete observations. The standard mathematical formulation is as follows: let T =
{T1, . . . , TN} be the times to event and let C = {C1, . . . , CN} be the censor times, let F
and G be the CDFs for the time to event and the censor time, respectively. The observed
times are Z = {Z1, . . . , ZN} where Zj = min{Tj , Cj} (1 ≤ i ≤ N). In addition, it is
also known what time is really observed; i.e., the �nal available information are the pairs
{(Z1, δ1), . . . , (ZN , δN )}, where δj = ITj (Zj) (takes the value 1 if the time to event is
observed and 0 otherwise). Then, the KM estimator for the survivor function is de�ned
by

(2.1) ŜN (t) =

N∏
j=1

{
1−

δ(j) · I(−∞,t](Z(j))

N − j + 1

}
,

where for j ∈ 1 . . . , N , the pairs (Z(j), δ(j)) satisfy that Z(1) ≤ Z(2) ≤ · · · ≤ Z(N). In
this context, the Kaplan-Meier is the maximum-likelihood estimator. In addition, their
properties have been deeply studied; asymptotic normality can be derived from the work
of Csörg® (1996) in which, under usual and mild assumptions, the so-called Hungarian
embeddings (Komlós, Major and Tusnády (1975)) and the law of the iterated logarithm
are generalized to the random right censorship case. Although some alternative methods
have been proposed (see, for instance Peto et al. (1975) or Simon and Lee (1982)), the
variance of the KM estimator is usually approximated from the Greenwood's formula
(Greenwood (1926)),

V[ŜN (t)] =

N∑
j=1

δ(j) · I(−∞,t](Z(j))

N −
∑N
j=1 I(−∞,t](Z(j))

.

On the other hand, Bitouzé et al. (1999) provided a Dvoretzky-Kiefer-Wolfowitz type
inequality for the Kaplan-Meier estimator; in particular, they established that there exists
an absolute constant K such that,

P

{
sup
t∈R
|(1−G(t)) · (ŜN (t)− S(t))| > λ/

√
n

}
≤ 2.5 · e−2λ2+Kλ,

for any positive value λ. Figure 1 depicts the Kaplan-Meier estimation joint with a 95%
con�dence band (computed using the Greenwood's formula), for the time to death (at
left) and the time-free of leukemia (right) for the Myelodysplastic dataset. This dataset
is from a retrospective study that included high-risk patients reported to the Spanish
Group of Myelodysplastic Syndromes Registry (RESMD) between years 2000 and 2013.
This data will be used in order to illustrate the considered problem (see Section 6).
Anyway, interested readers are referred to Bernal et al. (2015) for additional information
about this study. The dataset includes a total of 968 patients (1,273.7 persons-year), 616
of them died during the follow-up. Two-hundred sixty eight patients (27.7%) developed
leukemia during the follow-up and 403 died without leukemia. In spite that, of course,
these 403 patients are not going to develop leukemia anymore, they are considered as
censored for the KM estimator; i.e., their weights are spread among the subjects who are
still at risk.

The Kaplan-Meier estimator, like the traditional empirical estimator for the CDF,
initially assigns to each sample point a weight of 1/N (N stands for the sample size).
The main particularity is that, at the time that one subject is censored, KM assumes
that its (future) behavior will be similar to the behavior of subjects who are still at risk;
therefore, these subjects inherit the weight of the censored subject. Suppose that the
minimum time Z(1) corresponds with an event, at this time KM produces a jump of
1/N , the second time Z(2) is a censored subject; then, subjects who are still in the study
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Figure 1. For the Myelodysplastic dataset: at left, Kaplan-Meier esti-
mation for the time to death, at right, Kaplan-Meier estimation for the
leukemia-free time. In both panels, 95% con�dence bands are included
(in gray).
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Table 1. Kaplan-Meier contruction for the case de-
scribed in the manuscript: considered sorted sample is:
{(Z(1), 1), (Z(2), 0), (Z(3), 1), · · · , (Z(N), δ(N))}.

Time at risk δ survival

0 N 1
Z(1) N 1 1− [1/N ]
Z(2) N − 1 0 1− [1/N ]
Z(3) N − 2 1 1− [1/N ]− [(1/N) + 1/N(N − 2)]

.................................

(N − 2) inherit its weight (1/N); therefore the new weight of these N − 2 subjects will
be 1/N + 1/N(N − 2). Hence, if the third observed time, Z(3), is again an event, KM
will produce, at time Z(3), a jump of 1/N + 1/N(N − 2). Table 1 depicts schematically
the KM construction.

3. The competing risk context

There are many real situations in which the event of interest does not always occur;
i.e., there exist other events, incompatible with the studied one, which can happen before.
The study of the time to death for some particular cause; death for other causes makes
not possible the studied event (see, for instance, Verduijn et al. (2011)), the study of the
time-free of one particular disease; death for other causes makes impossible the relapse
of the considered disease (Boo et al. (2015)), or the study of the transplanted organ
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Figure 2. Usual competing risk schema. Transitions from the state
0Start to k the di�erent events are the quantities of interest.
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survivor; death of patient does not permit the study of the organ failure (Martínez-
Camblor et al. (2015)) are just a few examples of the so-called competing risk context.
Of course, there exists a vast literature on this topic; see, for instance, Tiatsis (1998)
and references therein and Andersen et al. (2002) for the multi-state models approach
to competing risk, but our purpose is not to make a revision. Rather, we discuss the
problem of the Kaplan-Meier estimator on this context. Figure 2 depicts the standard
schema for the competing risk setting; P0,i = P0,i(t) = P{Ti ≤ t} where Ti is the time
required to achieve the jth event, with j ∈ 1, . . . , k are the main quantities of interest.

In the competing risk contests, the sample must provide information about the ob-
served time and on what event has been really observed. Therefore,
Zj = min{Cj , T1,j , . . . , Tk,j} (Ti,j (1 ≤ j ≤ N) is the time that the subject j would need
to achieve the event (state) i) and δj = i with i ∈ 0, 1, . . . , k stands for the observed event
for the subject j (0 when no event has still happened, i.e., at the �nal of the study, the
subject is still at risk; censored subjects). In order to study the distribution of the time
to one particular event (for instance, the ith one, with i taking any value in 1, . . . , k), a
frequent -and wrong- practice is to consider the rest of the events as censored and then, to
estimate the distribution of interest from the Kaplan-Meier estimator. The main issues
of this procedure are:

i) Although the independence assumption between the times to event and the time
to censoring is plausible, usually, the times to the di�erent events involved in
a competing risk setting are strongly dependent. Notice that a patient died
before having a relapse, is not going to relapse anymore; the censorship provides
information about the considered even. This e�ect is known as informative
censorship.

ii) Due to patients which experiencing a competing event, di�erent to the studied
one, are not going to achieve, directly, the event of interest anymore (they are
not going to do the transition from 0Start to the studied event), subjects which
are still at risk; i.e., those which can still experimenting the event of interest,
must not inherit their weights.

iii) In the standard survival analysis, the probability of survival and the probability
of event are equivalent quantities (1 = P{T > t}+P{T ≤ t}). In the competing
risk context, there are more involved events and the fact that a subject does not
su�er the studied event does not imply that this subject is free of events.
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In this context, it holds the equality,

1 =P{T > t}+ P{T ≤ t}
=P{T > t}+ P{T ≤ t ∧ δ = 1}+ · · ·+ P{T ≤ t ∧ δ = k}.(3.1)

The quantities P{T ≤ t ∧ δ = i} (1 ≤ i ≤ k) are the cumulative incidence functions.
However, Andersen, Abildstrom and Rosthoj (2002) claimed that: 'this is, in fact, a
rather unfortunate name for this quantity as it may give the incorrect impression that
it is a cumulative intensity'. Alternative proposed names are marginal or crude failure
probabilities.

4. Multiple decrements method

The nonparametric Kaplan-Meier estimator can be adapted for the competing risk
setting in the so-called multiple decrement (MD) method. The considered estimator for
the general transition probabilities was proposed by Aalen (1978). However, and in spite
that di�erent papers have tried to popularize this procedure (see, for instance, Martínez-
Camblor et al. (2009) and references therein) it is still little used by practitioners and
it is unknown by the physicians. The MD procedure assumes that the probability that
two di�erent events occur simultaneously is zero (i.e., P{Ti = Tl} = 0 for 1 ≤ i 6= l ≤ k).
From this proviso, P0,l = P{T ≤ t, δ = l} (transition probability between the states 0
and l, 1 ≤ l ≤ k) is equivalent to the probability that all the involved times were greater
or equal to t and the studied one was exactly t, that is

(4.1) P0,l =

∫ t

0

S(u)λl(u)dt =

∫ t

0

S(u)dΛl(u),

where λl(u) is the hazard function referred to event l. A direct plug-in method using
the KM estimator for estimate S(u), and the Nelson-Aalen estimator to estimate the
cumulative incidence function, let us to obtain the MD estimator by

(4.2) MDl(t) =
∑
tj≤t

rl,j
Nj

∏
ti≤t

(
1−

∑k
l=1 rl,i

Ni

)
,

where rl,j (1 ≤ l ≤ N) and Nj are the number of subjects which have su�ered the event
l and which were at risk just before of moment tj (1 ≤ j ≤ N), respectively. Of course,
theoretical properties of the MDl(·) estimator have been deeply studied. In Aalen (1978)

is proved its uniform consistency (with rate log(N) ·N−1/2) and its weak convergence to

an adequate Gaussian process (with the usual rate N−1/2). Recently, Njamen-Njomen
and Ngatchou-Wandji (2014) developed adapted stochastic processes to the Nelson-Aalen
and Kaplan-Meier estimators.

In order to illustrate the problem we simulate a three independent times from an
exponential law (with mean 1): T1,j , T2,j and Cj , in ten subjects (1 ≤ j ≤ 10). We
compute Zj = min{T1,j , T2,j , Cj} and de�ne δj = i, where i = 1 if Zj = T1,j , i = 2 if
Zj = T2,j and δj = 0 if Zj = Cj (1 ≤ j ≤ 10). Table 2 depicts the computed estimations
by using the KM and the MD methods for the events 1 and 2. Real values (for both
events, they are the CDF of an exponential distribution with mean 1) are also reported.
Note that in this case, all involved subdistributions are the same. Figure 3 depicts the
curves. Since the KM considers censored all events di�erent to the studied one, its 'jumps'
are frequently bigger than the MD ones. Obviously, for a �xed point of time t, the MD
estimator considers at risk only those subjects which at this time, have not su�er any
event.
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Table 2. Results for one simulation example of competing risk setting.
Sample size was 10 and two di�erent events were simulated (δ = 1, 2;
δ = 0 stands for censored data). Direct Kaplan-Meier (KM) and its
modi�cation for the multiple decrement (MD). Real values are the same
for both considered events.

Subjects KM MD

Time at risk δ Real 1 2 1 2

0.021 10 2 0.010 0.000 0.100 0.000 0.090
0.091 9 0 0.043 0.000 0.100 0.000 0.090
0.164 8 0 0.076 0.000 0.100 0.000 0.090
0.171 7 1 0.079 0.143 0.100 0.110 0.090
0.235 6 0 0.105 0.143 0.100 0.110 0.090
0.476 5 0 0.189 0.143 0.100 0.110 0.090
0.516 4 2 0.202 0.143 0.325 0.110 0.234
0.779 3 0 0.271 0.143 0.325 0.110 0.234
0.828 2 2 0.281 0.143 0.662 0.110 0.379
1.492 1 0 0.388 0.143 0.662 0.110 0.379

Figure 3. Referred to the data shown in Table 2. At left, real (gray),
KM and MD estimations for the event 1. At right, real (gray), KM
and MD estimations for the event 2.
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5. Monte Carlo simulation study

In order to study the behavior of the direct Kaplan-Meier (KM) and the Multiple
decrement (MD) estimators on the competing risk setting, a Monte Carlo simulation
study was carried out. The time of studied event, T1 = exp{D1}, where D1 was drawn
from a normal distribution with mean µ (values of −1/2 and 1/2 were considered) and
variance one; the time to the competing risk event, T2 = exp{D2}, with D2 generated
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Table 3. Mean ± standard deviation of the 1,000 Monte Carlo itera-
tions for the quantity 100 · τ−1 ·

∫ τ
0
|Ŝ(t)−S(t)|dt where S(t) is the real

subdistribution function and Ŝ(t) its estimation based on KM and on
MD estimators and τ is the maximum observed time for µ = −1/2.

ρ = 0.0 ρ = 0.25
N c KM MD KM MD

50 10 7.05 ± 2.39 2.10 ± 1.39 5.90 ± 2.26 1.79 ± 1.19
-1/4 7.88 ± 3.72 3.85 ± 2.20 6.85 ± 3.40 3.55 ± 1.99
-1/2 7.99 ± 3.87 4.19 ± 2.37 7.15 ± 3.67 4.11 ± 2.28

250 10 5.55 ± 1.09 0.62 ± 0.41 4.35 ± 0.96 0.48 ± 0.33
-1/4 6.67 ± 1.52 1.23 ± 0.74 5.67 ± 1.42 1.15 ± 0.65
-1/2 6.86 ± 1.85 1.46 ± 0.90 5.76 ± 1.73 1.37 ± 0.79

1000 10 4.60 ± 0.81 0.23 ± 0.17 3.47 ± 0.72 0.16 ± 0.11
-1/4 6.12 ± 0.91 0.48 ± 0.29 5.01 ± 0.81 0.45 ± 0.26
-1/2 6.27 ± 0.97 0.57 ± 0.33 5.24 ± 0.90 0.54 ± 0.31

ρ = 0.75 ρ = −0.50
50 10 3.17 ± 1.44 1.17 ± 0.81 9.84 ± 2.90 3.12 ± 1.85

-1/4 4.69 ± 2.67 3.17 ± 1.81 10.03 ± 3.99 4.43 ± 2.48
-1/2 5.44 ± 3.17 3.72 ± 1.98 10.16 ± 4.47 5.03 ± 2.71

250 10 2.11 ± 0.62 0.29 ± 0.21 8.79 ± 1.14 1.05 ± 0.68
-1/4 3.24 ± 1.08 1.00 ± 0.59 9.23 ± 1.70 1.53 ± 0.91
-1/2 3.52 ± 1.31 1.24 ± 0.66 9.36 ± 2.04 1.82 ± 1.03

1000 10 1.55 ± 0.38 0.10 ± 0.07 8.12 ± 0.78 0.42 ± 0.27
-1/4 2.91 ± 0.59 0.39 ± 0.22 8.99 ± 0.94 0.66 ± 0.38
-1/2 2.96 ± 0.69 0.49 ± 0.26 8.98 ± 0.99 0.76 ± 0.44

from a standard normal distribution and E[D1 · D2] = ρ (values of 0, 1/4, 1/2 and
3/4 were considered). Finally, the censoring time, C = exp{N}, where N was drawn,
independently, from a normal distribution with mean c (values of 10, -1/4 and -1/2
were considered) and variance one. The (simulated) observed data were the pairs (Z, δ)
where Z = min{C, T1, T2} and δ = i (i = 0 if Z = C, i = 1 if Z = T1, and i = 2 if

Z = T2). Mean ± standard deviation of the average error, 100 · τ−1
∫ τ
0
|Ŝ(t) − S(t)|dt

with τ = max1≤j≤N Zj based on 1,000 Monte Carlo iterations are reported (N stands for

the sample size, S(t) denotes the real subdistribution function and Ŝ(t) its estimation).

Table 3 depicts the observed results when µ = −1/2. In this case, the probability
that the considered event happens is: P{T1 < T2} = 0.638, 0.658, 0.761 and 0.611 for
ρ = 0, 1/4, 3/4 and −1/2, respectively. The expected censorship percentages were 0%
(c = 10); 32.6%, 34.5%, 40.1% and 28.3% (c = −1/4) for ρ = 0, 1/4, 3/4 and −1/2,
respectively; and 39.7%, 41.9%, 47.2% and 37.5% (c = −1/2) for ρ = 0, 1/4, 3/4 and
−1/2, respectively. The MD method clearly obtained better results than KM.

Table 4 shows the coverage percentages and mean±sd (standard deviations below 0.00
were denoted by 0.01) of the length of the 95% symmetric con�dence intervals (computed
by using the naive bootstrap method) for the subdistribution function at times t = 1/2
and t = 1 using the KM and MD estimators. Observed results endorses the previous
obstained ones: KM is not an estimator for the subdistribution function, especially, for
larger censorship percentages. The DM estimator works adequately although it shows
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Table 4. Coverage percentages and mean±sd (standard deviations be-
low 0.00 were denoted by 0.01) of the length of the 95% symmetric
con�dence intervals (computed by using the naive bootstrap method
with 200 iterations) for the subdistribution function at times t = 1/2
and t = 1 using the KM and MD estimators when µ = −1/2.

ρ = 0.0 t = 1/2 t = 1

N c KM MD KM MD

50 10 87.3% 0.289 ± 0.02 91.6% 0.237 ± 0.02 55.0% 0.312 ± 0.04 87.3% 0.234 ± 0.02
-1/2 90.8% 0.348 ± 0.04 91.4% 0.265 ± 0.02 75.4% 0.452 ± 0.10 85.1% 0.266 ± 0.02

1000 10 20.0% 0.065 ± 0.01 92.9% 0.059 ± 0.01 5.1% 0.070 ± 0.01 93.6% 0.061 ± 0.01
-1/2 37.1% 0.077 ± 0.01 96.0% 0.069 ± 0.01 3.2% 0.105 ± 0.01 94.9% 0.080 ± 0.01

ρ = 0.75 t = 1/2 t = 1

50 10 92.4% 0.275 ± 0.02 92.8% 0.238 ± 0.02 77.4% 0.285 ± 0.03 91.2% 0.233 ± 0.02
-1/2 91.9% 0.325 ± 0.03 92.3% 0.266 ± 0.02 83.3% 0.426 ± 0.08 89.5% 0.869 ± 0.03

1000 10 71.2% 0.062 ± 0.01 93.9% 0.059 ± 0.01 1.4% 0.065 ± 0.01 93.0% 0.961 ± 0.01
-1/2 76.6% 0.073 ± 0.01 95.1% 0.069 ± 0.01 1.7% 0.095 ± 0.01 93.5% 0.083 ± 0.01

itself a little bit unconservative for the largest censorship percentage (c = −1/2 and
t = 1).

Table 5 is similar to Table 3 for µ = 1/2. In this case, the probability that the con-
sidered event happens is: P{T1 < T2} = 0.361, 0.341, 0.239 and 0.387 for ρ = 0, 1/4, 3/4
and −1/2, respectively. The expected censorship percentages were 0% (for c = 10); for
c = −1/4, approximately 47.2%, 49.3%, 54.3% and 43.5% for ρ = 0, 1/4, 3/4 and −1/2,
respectively; and for c = −1/2, 54.8%, 56.7%, 61.2% and 51.5% for ρ = 0, 1/4, 3/4
and −1/2, respectively. The observed results were similar to the ones observed in the
Table 3. Notice that, due to, in this case, the e�ect of the competing event was higher
(P{T1 < T2} < 1/2), the di�erence between the MD and the KM methods was bigger.

Finally, Table 6 is similar to Table 4 when µ = 1/2. Although the KM estimator
obtained better results, observed results are in the same way to the previous one and
endorse the conclusions.

6. Real-world problem: the Myelodysplastic data

As has been claimed above, competing risk appears frequently in biomedicine re-
searches, in fact, it is more a rule than an exception. The study of a speci�c cause
of death and the time-free of disease are, probably, the most repeated examples. The
main objectives of this section are the estimation of the time-free of leukemia and the
time to death without leukemia in a cohort of patients with Myelodysplastic syndromes.
The Myelodysplastic data was used with this goal. This dataset has been previously
introduced in the Section 2 and were collected by the Spanish Group of Myelodysplastic
Syndromes Registry (RESMD). Remember that a total of 968 patients (1,273.7 persons-
year) were �nally included in the study. There were 603 males (62.3%) and 365 females
(37.7%); the median age at diagnosis was of 72.8 (ranged between 63.5 and 79.1) years.
Two-hundred sixty eight patients (27.7%) developed leukemia during the follow-up and
403 died without leukemia. Figure 4 depicts a �owchart for the Myelodysplastic data.
Interested readers are referred to Bernal et al. (2015) for complete information about
the cohort and the problem.

By using the KM estimator and assuming as censored those events di�erent to the
studied one, the median time for developing leukemia was 3.37 years and, during the
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Table 5. Mean ± standard deviation of the 1,000 Monte Carlo itera-
tions for the quantity 100 · τ−1 ·

∫ τ
0
|Ŝ(t)−S(t)|dt where S(t) is the real

subdistribution function and Ŝ(t) its estimation based on KM and on
MD estimators and τ is the maximum observed time for µ = 1/2.

ρ = 0.0 ρ = 0.25
N c KM DM KM MD

50 10 6.03 ± 1.96 1.16 ± 0.81 5.12 ± 1.82 0.96 ± 0.70
-1/4 6.30 ± 3.57 2.67 ± 1.72 5.93 ± 3.18 2.21 ± 1.34
-1/2 6.38 ± 3.68 2.78 ± 1.75 5.80 ± 3.48 2.52 ± 1.41

250 10 5.29 ± 0.99 0.34 ± 0.24 4.34 ± 0.88 0.28 ± 0.20
-1/4 5.99 ± 1.77 0.92 ± 0.55 5.06 ± 1.67 0.83 ± 0.48
-1/2 5.86 ± 2.08 1.06 ± 0.61 5.01 ± 2.01 1.02 ± 0.61

1000 10 4.58 ± 0.71 0.13 ± 0.09 3.60 ± 0.66 0.09 ± 0.07
-1/4 5.92 ± 0.99 0.38 ± 0.23 5.04 ± 0.94 0.35 ± 0.21
-1/2 5.77 ± 1.14 0.48 ± 0.27 5.07 ± 1.11 0.42 ± 0.25

ρ = 0.75 ρ = −0.50
50 10 3.41 ± 1.49 0.56 ± 0.43 8.38 ± 2.19 1.68 ± 1.08

-1/4 4.05 ± 2.59 1.71 ± 1.00 7.76 ± 3.55 2.80 ± 1.59
-1/2 4.20 ± 2.90 1.99 ± 1.23 7.78 ± 3.79 3.08 ± 1.70

250 10 2.76 ± 0.72 0.16 ± 0.12 6.43 ± 1.01 0.45 ± 0.32
-1/4 3.35 ± 1.59 0.63 ± 0.38 7.93 ± 1.03 0.59 ± 0.40
-1/2 3.30 ± 1.80 0.80 ± 0.47 7.82 ± 2.13 1.25 ± 0.71

1000 10 2.25 ± 0.51 0.05 ± 0.04 7.43 ± 0.73 0.23 ± 0.15
-1/4 3.27 ± 0.94 0.26 ± 0.15 8.07 ± 0.92 0.48 ± 0.29
-1/2 3.26 ± 1.07 0.34 ± 0.20 7.98 ± 1.04 0.54 ± 0.30

Table 6. Coverage percentages and mean±sd (standard deviations be-
low 0.00 were denoted by 0.01) of the length of the 95% symmetric
con�dence intervals (computed by using the naive bootstrap method
with 200 iterations) for the subdistribution function at times t = 1/2
and t = 1 using the KM and MD estimators when µ = 1/2.

ρ = 0.0 t = 1/2 t = 1

N c KM MD KM MD

50 10 92.0% 0.188 ± 0.04 92.3% 0.150 ± 0.03 76.2% 0.315 ± 0.04 91.8% 0.203 ± 0.02
-1/2 91.2% 0.223 ± 0.07 90.6% 0.168 ± 0.05 87.3% 0.490 ± 0.14 89.4% 0.243 ± 0.04

1000 10 64.7% 0.043 ± 0.01 94.2% 0.037 ± 0.01 0.2% 0.070 ± 0.01 94.0% 0.051 ± 0.01
-1/2 79.1% 0.051 ± 0.01 95.2% 0.044 ± 0.01 5.5% 0.107 ± 0.01 95.1% 0.071 ± 0.01

ρ = 0.75 t = 1/2 t = 1

50 10 92.7% 0.137 ± 0.05 92.6% 0.110 ± 0.04 88.9% 0.240 ± 0.05 91.6% 0.159 ± 0.03
-1/2 87.1% 0.149 ± 0.08 89.6% 0.116 ± 0.06 91.2% 0.344 ± 0.16 90.1% 0.189 ± 0.07

1000 10 81.9% 0.031 ± 0.01 92.6% 0.027 ± 0.01 11.4% 0.053 ± 0.01 95.1% 0.039 ± 0.01
-1/2 85.5% 0.037 ± 0.01 94.9% 0.032 ± 0.01 39.6% 0.080 ± 2.26 94.0% 0.055 ± 0.01

follow-up, the estimated percentage of leukemia was 60.4%, while this estimation was
only the 34.9% with the MD method (because this percentage does not lead the 50%, it
is not possible to estimate the median time). In the same way, the median time to direct
death (without developing leukemia) was 1.67 years when it was estimated by using the
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Figure 4. Flowchart for the Myelodysplastic data.

 

 

 
0Diagnostic 

N=968 

 
2Death (without leukemia) 

N=403 
 

1Leukemia 

N=268 

Figure 5. Crude failure probabilities computed by the KM and MD
estimators for the time-free of leukemia, at left, and the time to direct
death (without a previous leukemia), at right for the Myelodysplastic
data.
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KM estimator and 2.93 years when the MD method is employed. Figure 5 depicts the
crude failure probabilities computed by the KM and MD estimators for the time-free of
leukemia, at left, and the time to direct death (without a previous leukemia), at right;
also called transition probabilities from the state 0 to 1 and 0 to 2, respectively.

It is worth to make note that the sum of the two KM estimations can take values
larger than 1. In the considered problem, for t ≥ 3, it does.

7. Main conclusions

Even when there exists a number of papers (see, for instance, the works of Putter et
al. (2007) or Martínez-Camblor et al. (2015) among many others) trying to avoid the
existing gap between theoretical and practical backgrounds, the advances in the statistical
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methodology are still far from the methods commonly used by practitioners. In addition
physicians and basic investigators are usually reluctant to apply in their studies new
statistical techniques even when they may be more appropriate to deal with the problem
at hand. Multi-state and, particularity, competing risk methods are examples of this
situation; in spite of these techniques are the appropriate ones in order to study complex
survival schemes, direct Kaplan-Meier and Cox regression are still the used methodologies
even when some of the necessary assumptions are violated.

This paper considered the Kaplan-Meier estimator behavior in the competing risk
setting. Monte Carlo simulations show that the direct use of the KM estimator produces
serious mistakes in those scenarios where the probability of the competing event is high.
However, in this context, the MD procedure works �ne. In particular, under usual
and mild conditions, it is an asymptotically unbiased estimator for the subdistribution
functions (see, Kalb �eisch and Prentice (2002)). In addition, and in spite of MD is
not include in most popular software, this procedure is easy to implement from the
KM outcomes. In addition, several speci�c and friendly R packages [18] which are
freely available in the CRAN (http://cran.r-project.org/web/package) have been
developed with this goal; for example, Meira-Machado and Roca-Pardiñas (2011) describe
the p3state.msm package and give a complete revision about previously existing software.

Finally, it is worth to remark that friendly statistical packages make easy the data
analysis process. Particularly, most of the commercial software includes routines which
perform Kaplan-Meier estimations and proportional hazard Cox models. However, using
these techniques without checking (and, of course, knowing) conditions required for their
correct performing, can produce erroneous conclusions. Remark that, in the practical
problem considered, di�erences between the estimations provided by the KM and the
MD methods were beyond ten percent.
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