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An Improved Bar - Lev, Bobovitch and Boukai
randomized response model using moments ratios

of scrambling variable
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Abstract
In this paper, we have suggested a new randomized response model
and its properties have been studied. The proposed model is found
to be more efficient than the randomized response models studied by
Bar – Lev et al. (2004) and Eichhorn and Hayre (1983). The relative
efficiency of the proposed model has been studied with respect to the
Bar – Lev et al.’s (2004) and Eichhorn and Hayre’s (1983) models.
Numerical illustrations are also given to support the present study.
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1. Introduction

Warner (1965) introduced a randomized response (RR) model to estimate a population
proportion for sensitive attribute such as homosexuality, drug addiction or induced abor-
tion. Greenberg et al. (1971) further made an extension of RR technique for quantitative
variables. The RR technique has spawned a vast literature which has been reviewed by
Fox and Tracy (1986), Chaudhuri and Mukerjee (1988) and scheers (1992). Some more
developments are: Kerkvliet (1994), Gupta and Thornton (2002), Singh and Mathur
(2005), Bar – Lev et al. (2005), Odumade and Singh (2009), Chaudhuri and Christofides
(2013), Singh and Tarray (2013, 2014, 2015), Hussain et al (2015), Tarray and Singh
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(2015) and Tarray et al. (2015) etc. Eichhorn and Hayre (1983) suggested a multi-
plicative model to collect information on sensitive quantitative variables like income, tax
evasion, amount of drug used etc. For more examples, the reader is referred to Ahsan-
ullah and Eichhorn (1988). According to Eichhorn and Hayre (1983), each respondent
in the sample is requested to report the scrambled response Zi = SYi, where Yi is the
real value of the sensitive quantitative variable, and S is the scrambling variable whose
distribution is assumed to be known. In other words E(S) = θ andV (S) = γ2 are as-
sumed to be known and positive, where E and V denote the expected value and variance
over the randomization device. Then an estimator of the population mean µy under the
simple random sampling with replacement (SRSWR) due to Eichhorn and Hayre (1983)
is given by:

(1.1) µ̂Y (EH) =
1

n

n∑
i=1

Zi
θ

with variance

(1.2) V (µ̂Y (EH)) =
µ2
Y

n
[C2
y + C2

γ(1 + C2
y)],

where C2
γ =

γ2

θ2
and Cy =

σy
µY

.We shall now discuss a randomized response model studied

by Bar – Lev et al. (2004), say the BBB model. The distribution of the responses is
given by:

(1.3) Zi = YiS with probability (1− P )
Yi with probability P .

In other words, each respondent is requested to rotate a spinner unobserved by the
interviewer, and if the spinner stops in the shaded area, then he/she is requested to
report the real response on the sensitive variable, say Yi; and if the spinner stops in the
non shaded area, then the respondent is required to report the scrambled response, say
YiS, where S is the scrambled variable. Let P be the radial non shaded area of the
spinner as shown in Figure 1.
An unbiased estimator of the population mean Y is given by:

(1.4) µ̂Y (BBB) =
1

n[(1− P )θ + P ]

n∑
i=1

Zi

with variance under SRSWR sampling given by

(1.5) V [µ̂Y (BBB)] =
µ2
Y

n
[C2
y + (1 + C2

y)C2
P ],

where

(1.6) C2
P =

(1− P )θ2(1 + C2
γ) + P

[(1− P )θ + P ]2
− 1.

When the coefficient of variation Cy of the study variable is known, Searls (1964) was
the first to consider the problem of estimating the population mean µy in the absence of
scrambled responses. Later on, with known coefficient of variation CY of the study vari-
able Y various authors including Khan (1967), Govindarajulu and Sahai (1972), Gleser
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Figure 1. Bar - lev, Bobovitch and Boukai (2004; BBB) ran-
domized response device

and Healy (1976), Sen (1979), Tripathi et al. (1983) and Singh and Katiyar (1988) have
considered the problem of estimating the population mean µY of the study variable Y .
Sen (1978) was first to use the moments ratios of the study variable Y in estimating
the population mean µY . Upadhyaya and Singh (1984) have considered the problem
of estimating the population mean µY using moments ratios. Singh and Mathur (2005)
and Hussain et al. (2013) have used the coefficient of variation CY of the study variable
Y at the estimation stage in presence of scrambled responses. Singh and Chen (2009)
have used the higher order moments of the scrambling variable at the estimation stage
for estimating the proportion of a potentially sensitive attribute in survey sampling.
In this paper we have suggested a new randomized response model and its properties
are studied. It has been shown that the resulting (optimum) randomized response model
depends on the moments ratios such as Cγ (coefficient of variation), β1(S) (coefficient
of skewness) and β2(S) (coefficient of kurtosis) of the scrambling variable S. We have
proved the superiority of the proposed randomized response model over Eichhorn and
Hayre (1983) and Bar – Lev et al. (2004) randomized response models both theoretically
and empirically.

2. Suggested Randomized Response model

In the proposed randomized response model, we request an individual to rotate a spinner
as shown in Figure 2.
In the proposed randomized response model, the distribution of the response is given by

Zi = Yi[(1− k)S +Kθ(
S − θ
γ

)2] with probability (1− P )

Yi with probability P
.

The reported response Zi can also be expressed as
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(2.1) Zi = Yi[(1− k)S +KθS∗2] with probability (1− P )
Yi with probability P .

Figure 2. Spinner of the proposed randomized response model

where k is assumed known constant [see Odumade and Singh (2009)] and S∗ =
(S − θ)
γ

is the standardized scrambling variable.
In other words, each respondent is requested to rotate a spinner unobserved by the in-
terviewer, and if the spinner stops in the shaded area, then the respondent is requested
to report the real response on the sensitive variable, say Yi; and if the spinner stops in
the non shaded area, then the respondent is required to report the scrambled response,
say Yi[(1− k)S+KθS∗2]. Let P be the proportion of the shaded area of the spinner and
(1− P ) be the non shaded area of the spinner as shown in Figure 2.
For estimating the population mean µY of the real response on the sensitive quantitative
variable Y , a simple random and with replacement sample (SRSWR) of n respondents
is selected from the population. Then , we have the following theorem.
Theorem 2.1 An unbiased estimator of the population mean µY is given by

(2.2) µ̂Y =
Z̄

[(1− P )θ + P ]

Proof- We have from (2.1),
E(Zi) = µY [(1− P )θ + P ]
Hence, the proposed estimator for µY , based on a random sample of the randomized

response; Z1, Z2, ..., Zn is µ̂Y (HT ) =
Z̄

[(1− P )θ + P ]
is unbiased estimator of the popula-

tion mean µY . Thus the theorem is proved.
The variance of the proposed estimator µ̂Y (HT ) is given in the following theorem.
Theorem 2.2 The variance of µ̂Y (HT ) is given by

V (µ̂Y (HT )) =
µ2
Y

n

[
C2
y + (1 + C2

y)

{
C2
P+

(1− P )θ2[k2(∆(S) + (
√
β1(S)− Cγ)2)− 2kCγ(Cγ −

√
β1(S)]

[P + θ(1− P )]2

}]
(2.3)

where ∆(S) = [β2(S)− β1(S)− 1], β2(S) =
µ4(S)

γ4
, β1(S) =

µ2
3(S)

γ6
,

µ3(S) = E(S − θ)3 and µ4(S) = E(S − θ)4.
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Proof-

(2.4) V (µ̂Y (HT )) = V (Z̄) =
V (Zi)

n[P + θ(1− P )]2

The variance of Zi is obtained as follows:
V (Zi)=E(Z2

i )− (E(Zi))
2

=(1− p)E[(1− k)2S2 + θ2k2S∗4 + 2k(1− k)θSS∗2]

E(Y 2
i ) + PE(Y 2

i )− (E(Zi))
2

=µ2
Y [(1 + C2

y)[P + (1− P )θ2(1 + C2
γ)] + (1 + C2

y)θ2(1− P )

[k2(β2(S)− 2Cγ
√
β1(S) + C2

γ − 1)− 2kCγ(Cγ −
√
β1(S))

− (P + θ(1− P ))2]


Thus, the variance of µ̂Y (HT )is given by

V (µ̂Y (HT )) =
µ2
Y

n
[C2
y + (1 + C2

y)[C2
P

+
(1− P )θ2[k2[∆(S) + (Cγ −

√
β1(S))2]− 2kCγ(Cγ −

√
β1(S))]

[P + θ(1− P )]2
]

which proves the theorem.
Theorem 2.3 The optimum value of k and the minimum variance of µ̂Y (HT ) are respec-
tively given by

(2.5) kopt =
Cγ(Cγ −

√
β1(S))

[∆(S) + (Cγ −
√
β1(S))2]

and

min.V (µ̂Y (HT )) =
µ2
Y

n
[C2
y + (1 + C2

y)C2
P−

(1 + C2
y)θ2(1− P )C2

γ(Cγ −
√
β1(S))2

[∆(S) + (Cγ −
√
β1(S))2](P + θ(1− P ))2

](2.6)

(2.7) min.V (µ̂Y (HT )) = V (µ̂Y (BBB))−
µ2
Y (1 + C2

y)θ2(1− P )C2
γ(Cγ −

√
β1(S))2

n[∆(S) + (Cγ −
√
β1(S))2](P + θ(1− P ))2

where V (µ̂Y (BBB)) is given by (1.5).
proof - Differentiating (2.3) with respect to k and equating to zero, we get the optimum
value of k as

kopt =
Cγ(Cγ −

√
β1(S))

[∆(S) + (Cγ −
√
β1(S))2]

Substitution of kopt in (2.3) yields the minimum variance of µ̂Y (HT ) as given in (2.6) (or
(2.7)).
This completes the proof of the theorem.
Now substituting the value of kopt in place of k in (2.1) we get the distribution of the
responses as

Taking expectation of(2.8), we have
E(Zoi) = µY [P + θ(1− P )].
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(2.8) Zoi = Yi[(1− kopt)S +KoptθS
∗2] with probability (1− P )

Yi with probability P .

Thus the unbiased estimator of the population mean µy based on Zoi is given by

(2.9) µ̂Y (HTO) =
Z̄o

[(1− P )θ + P ]
=

n∑
i=1

Z̄oi
n

[(1− P )θ + P ]

it can be easily shown that the variance of µ̂Y (HTO) is:

(2.10) V (µ̂Y (HTO)) = min.V (µ̂Y (HT ))

where min.V (µ̂Y (HT )) is given by (2.6) (or(2.7)).
It is well known that β2(S) > β1(S) + 1 [Kendal and Stuart (1969)]. Hence the optimum
estimator µ̂Y (HTO) is always more efficient than the Bar – Lev et al.’s (2004) estimator
µ̂Y (BBB) except for population with

√
β1(S) = Cγ for which µ̂Y (HTO) is as efficient as

µ̂Y (BBB) .

3. Efficiency Comparison

(i) Comparison of the proposed optimum estimator µ̂Y (HTO) (i.e. when the
scalar ‘k′ coincides exactly with that of optimum value kopt of the scalar k)
with Bar – Lev et al.’s (2004) estimatorµ̂Y (BBB) .
From (1.5) and (2.7), we have

V (µ̂Y (BBB))−min.V (µ̂Y (HT ))[= V (µ̂Y (HTO))] =

µ2
Y (1 + C2

y)θ2(1− P )C2
γ(Cγ −

√
β1(S))2

n[∆(S) + (Cγ −
√
β1(S))2](P + θ(1− P ))2

> 0(3.1)

which clearly shows that the proposed optimum estimator µ̂Y (HTO) is better than the
estimatorµ̂Y (BBB) due to Bar – Lev et al. (2004).
Bar – Lev et al. (2004) have proved that for all Pε(0, 1):

(3.2) V (µ̂Y = Ȳ ) < V (µ̂Y (BBB)) < V (µ̂Y (EH)).

If the distribution of scrambling variables S satisfies

(3.3) 0 < θ <
2θ2(1 + C2

γ)

[1 + θ2(1 + C2
γ)]

where

µ̂Y = Ȳ =

n∑
i=1

Yi

n
.

Thus, under the condition (3.3) and (3.1) we have the following inequality:

(3.4) V (µ̂Y (HTO)) < V (µ̂Y (BBB)) < V (µ̂Y (EH)).
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It follows from (3.4) that the proposed optimum estimator µ̂Y (HTO) is more efficient
than the Eichhorn and Hayre (1983) estimator µ̂Y (EH) as long as the condition (3.3) is
satisfied.
(ii) Comparison of the proposed estimator µ̂Y (HT ) with Bar – Lev et al.’s
(2004) estimatorµ̂Y (BBB) when the value of k does not coincide exactly with
its optimum value kopt in (2.5).
From (1.5) and (2.3), we have

(3.5) V (µ̂Y (HT )) = V (µ̂Y (BBB)) +
µ2
Y (1 + C2

y)θ2(1− P )

n(P + θ(1− P ))2
[k2A− 2kB],

where
A = [∆(S) + (

√
β1(S)− Cγ)2] and B = Cγ(Cγ −

√
β1(S))

We note that

V (µ̂Y (HT ))− V (µ̂Y (BBB)) =
µ2
Y (1 + C2

y)θ2(1− P )

n(P + θ(1− P ))2
[k2A− 2kB]

which is negative if

k2A− 2kB < 0

i.e. if

(3.6) |k − kopt| < |kopt|

i.e. if

(3.7) either0 < k < 2koptor2kopt < k < 0

or equivalently,

(3.8) min.(0, 2kopt) < k < max.(0, 2kopt),

where kopt =
B

A
Thus, the proposed estimator proposed estimator (µ̂Y (HT )) is more efficient than Bar –
Lev et al.’s (2004) estimator (µ̂Y (BBB)) as long as the condition (3.8) is satisfied.
Now, in the following sections we shall discuss our general results in the context of normal
and waiting time distributions.

4. Normal Distribution

Let the scrambling variable S have a normal distribution with mean θ and variance γ2

i.e.S ∼ N(θ, γ2) . For this distribution
√
β1(S) = 0 and

√
β2(S) = 3 ⇒ ∆(S) = 2.Thus

the optimum value of kopt in (2.5) and the minimum variance (or the variance of the
optimum estimator µ̂Y (HTO) in (2.6)(or(2.7)) respectively reduce to:

(4.1) kopt =
C2
γ

(2 + C2
γ)

and

(4.2) min.V (µ̂Y (HT )) =
µ2
y

n
[C2
y+(1+C2

y)C2
P−

(1 + C2
y)θ2(1− P )C4

γ

(2 + C2
γ)(P + θ(1− P ))2

] = V (µ̂Y (HTO))
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Here µ̂Y (HTO) is defined by

(4.3) µ̂Y (HTO) =

n∑
i=1

Z∗oi

n

where Z∗oi is defined by

(4.4) Z∗oi = Yi[
2S

(2 + C2
γ)

+
θC2

γS
∗2

(2 + C2
γ)

] with probability (1− P )

Yi with probability P .

It is interesting to note that the optimum µ̂Y (HTO) in (4.3) can be used in practice as
the coefficient of variation Cγ is known without error.

5. Numerical Illustration using Normal Distribution

To judge the merit of the suggested optimum estimator over Eichhorn and Hayre (1983)
estimator µ̂Y (EH) and the Bar – Lev et al. (2004) estimator µ̂Y (BBB) , we have computed
the percent relative efficiency (PRE) of the optimum estimator µ̂Y (HTO) with respect to
the estimators µ̂Y (BBB) and µ̂Y (EH) by using the formulae:

(5.1) PRE(µ̂Y (HTO), µ̂Y (EH)) =
[C2
y + C2

γ(1 + C2
y)]

[C2
y + C2

P (1 + C2
y)−A1]

× 100.

(5.2) PRE(µ̂Y (HTO), µ̂Y (BBB)) =
[C2
y + C2

P (1 + C2
y)]

[C2
y + C2

P (1 + C2
y)−A1]

× 100.

for different values of Cy, Cγ , P, θ,
where

(5.3) A1 =
[(1 + C2

y)θ2(1− P )C4
γ ]

[2 + C2
γ [P + θ(1− P )]2]

× 100.

Findings are displayed in Tables 1 and 2; and the graphical representation is also given
in Figure 3.
The values of PRE(µ̂Y (HTO), µ̂Y (EH)) and PRE(µ̂Y (HTO), µ̂Y (BBB)) are much greater
than 100 as shown by Tables 1 and 2. It follows that the proposed optimum estimator
µ̂Y (HTO) is more efficient than Eichhorn and Hayre’s (1983) estimator µ̂Y (EH) and Bar
– Lev et al.’s (2004) estimator µ̂Y (BBB) with considerable gain in efficiency. These facts
can be also seen from Figure 3. Thus, based on our numerical results, the use of the
proposed estimator µ̂Y (HTO) is recommended for its use in practice.
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Figure 3. Graphical representation of the suggested optimum
estimator over Eichhorn and Hayre (1983) estimator µ̂Y (EH)

and the Bar – Lev et al. (2004) estimator µ̂Y (BBB).

6. Waiting Time Distribution

We consider the population, where scrambling variable S follows the waiting time distri-
bution (or distribution of intervals between events in a Poisson process) for which

(6.1) f(s) = 1− exp(− s
θ

), 0 ≤ s ≤∝, θ > 0

so that

(6.2) dF (s) = exp(− s
θ

)
ds

θ

and E(S) = θ, V (S) = θ2, µ3(S) = 2θ3 and µ4(S) = 9θ4

where Cγ = 1,
√
β1(S) = 2, β2(S) = 9,∆(S) = 4. Hence, substituting the values of Cγ ,√

β1(S), β2(S)and∆(S)in(2.5)and(2.6), we have

(6.3) kopt = −1

5
,

and

(6.4) min.V (µ̂Y (HT )) =
µ2
y

n
[C2
y + (1 + C2

y)C2
P −

(1 + C2
y)θ2(1− P )

5(P + θ(1− P ))2
] = V (µ̂Y (HTO))

Here the optimum estimator µ̂Y (HTO) is defined by

(6.5) µ̂Y (HTO) =

n∑
i=1

Z∗∗oi

n
where Z∗∗oi is defined by

with S∗ =
(S − θ)

θ
.
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(6.6) Z∗∗oi = Yi[
6

5
S − 1

5
θS∗2] with probability (1− P )

Yi with probability P .

Thus in this case we note that the optimum estimatorµ̂Y (HTO) in (6.5) depends on the
known quantity θ only.

7. Numerical Illustration using Waiting Time Distribution

To have the tangible idea about the performance of the envisaged optimum estimator
µ̂Y (HTO) over Eichhorn and Hayre (1983) estimator µ̂Y (EH) and the Bar – Lev et al.
(2004) estimator µ̂Y (BBB) , we have computed the percent relative efficiency (PRE) of
the optimum estimator µ̂Y (HTO) with respect to the estimators µ̂Y (BBB) and µ̂Y (EH) by
using the formulae:

(7.1) PRE(µ̂Y (HTO), µ̂Y (EH)) =
[C2
y + C2

γ(1 + C2
y)]

[C2
y + C2

P (1 + C2
y)−A2]

× 100.

(7.2) PRE(µ̂Y (HTO), µ̂Y (BBB)) =
[C2
y + C2

P (1 + C2
y)]

[C2
y + C2

P (1 + C2
y)−A2]

× 100.

for different values of Cy, Cγ , P, θ,
where

(7.3) A2 =
[(1 + C2

y)θ2(1− P )

[5[P + θ(1− P )]2]
× 100.

Findings are displayed in Tables 3 and 4; and the graphical representation is also given
in Figure 4.
Tables 3 and 4 demonstrate that the values of the percent relative efficiency are greater
than 100 for all parameter values tabled. This shows the superiority of the optimum
estimator µ̂Y (HTO) over than Eichhorn and Hayre’s (1983) estimator µ̂Y (EH) and Bar –
Lev et al.’s (2004) estimator µ̂Y (BBB) . Graphical representation in Figure 4 also depicts
the similar inference. Thus, based on our numerical illustrations, our recommendation is
to prefer the proposed estimator µ̂Y (HTO) in practice.

8. Discussion

In this article, we have suggested a new randomized response model and its properties
are studied. It has been shown that the resulting (optimum) randomized response model
depends on the moments ratios of the scrambling variable S. We have proved the supe-
riority of the proposed randomized response model over Eichhorn and Hayre (1983) and
Bar – Lev et al.’s (2004) randomized response models both theoretically and empirically.
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Figure 4. Graphical representation of the suggested optimum
estimator over Eichhorn and Hayre (1983) estimator µ̂Y (EH)

and the Bar – Lev et al. (2004) estimator µ̂Y (BBB).
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Table 1. The PRE(µ̂Y (HTO), µ̂Y (EH))

θ P Cγ Cy PRE

20.00 0.10 5.00 0.10 1166.50
40.00 0.10 5.55 0.25 1378.32
60.00 0.10 6.00 0.50 1505.49
80.00 0.10 6.50 0.75 1649.02
20.00 0.20 5.00 0.10 1005.22
40.00 0.20 5.55 0.25 1181.50
60.00 0.20 6.00 0.50 1298.17
80.00 0.20 6.50 0.75 1432.54
20.00 0.30 5.00 0.10 857.59
40.00 0.30 5.55 0.25 1000.69
60.00 0.30 6.00 0.50 1104.65
80.00 0.30 6.50 0.75 1227.07
20.00 0.40 5.00 0.10 722.02
40.00 0.40 5.55 0.25 834.03
60.00 0.40 6.00 0.50 923.61
80.00 0.40 6.50 0.75 1031.80
20.00 0.50 5.00 0.10 597.20
40.00 0.50 5.55 0.25 679.95
60.00 0.50 6.00 0.50 753.89
80.00 0.50 6.50 0.75 845.99
20.00 0.60 5.00 0.10 482.12
40.00 0.60 5.55 0.25 537.15
60.00 0.60 6.00 0.50 594.50
80.00 0.60 6.50 0.75 668.99
20.00 0.70 5.00 0.10 376.14
40.00 0.70 5.55 0.25 404.56
60.00 0.70 6.00 0.50 444.59
80.00 0.70 6.50 0.75 500.24
20.00 0.80 5.00 0.10 279.54
40.00 0.80 5.55 0.25 281.53
60.00 0.80 6.00 0.50 303.54
80.00 0.80 6.50 0.75 339.30
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Table 2. The PRE(µ̂Y (HTO), µ̂Y (BBB))

θ P Cγ Cy PRE

20.00 0.10 5.00 0.10 1286.41
40.00 0.10 5.55 0.25 1527.41
60.00 0.10 6.00 0.50 1670.15
80.00 0.10 6.50 0.75 1829.85
20.00 0.20 5.00 0.10 1234.45
40.00 0.20 5.55 0.25 1467.05
60.00 0.20 6.00 0.50 1616.15
80.00 0.20 6.50 0.75 1784.75
20.00 0.30 5.00 0.10 1186.85
40.00 0.30 5.55 0.25 1411.58
60.00 0.30 6.00 0.50 1565.74
80.00 0.30 6.50 0.75 1714.95
20.00 0.40 5.00 0.10 11.43.09
40.00 0.40 5.55 0.25 1360.44
60.00 0.40 6.00 0.50 1518.57
80.00 0.40 6.50 0.75 1701.27
20.00 0.50 5.00 0.10 1102.71
40.00 0.50 5.55 0.25 1313.14
60.00 0.50 6.00 0.50 1474.34
80.00 0.50 6.50 0.75 1662.55
20.00 0.60 5.00 0.10 1065.34
40.00 0.60 5.55 0.25 1269.25
60.00 0.60 6.00 0.50 1432.78
80.00 0.60 6.50 0.75 1625.65
20.00 0.70 5.00 0.10 1030.65
40.00 0.70 5.55 0.25 1228.42
60.00 0.70 6.00 0.50 1393.65
80.00 0.70 6.50 0.75 1590.44
20.00 0.80 5.00 0.10 998.36
40.00 0.80 5.55 0.25 1190.34
60.00 0.80 6.00 0.50 1356.73
80.00 0.80 6.50 0.75 1556.80
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Table 3. The PRE(µ̂Y (HTO), µ̂Y (EH))

θ P Cγ Cy PRE

20.00 0.05 0.40 0.10 1112.83
40.00 0.05 0.50 0.25 191.56
60.00 0.05 0.60 0.50 133.67
80.00 0.05 0.70 0.75 118.70
20.00 0.06 0.40 0.10 683.47
40.00 0.06 0.50 0.25 179.20
60.00 0.06 0.60 0.50 129.80
80.00 0.06 0.70 0.75 116.41
20.00 0.07 0.40 0.10 490.56
40.00 0.07 0.50 0.25 168.14
60.00 0.07 0.60 0.50 126.07
80.00 0.07 0.70 0.75 114.17
20.00 0.08 0.40 0.10 380.96
40.00 0.08 0.50 0.25 158.18
60.00 0.08 0.60 0.50 122.47
80.00 0.08 0.70 0.75 111.97
20.00 0.09 0.40 0.10 310.27
40.00 0.09 0.50 0.25 149.15
60.00 0.09 0.60 0.50 119.01
80.00 0.09 0.70 0.75 109.80
20.00 0.10 0.40 0.10 260.91
40.00 0.10 0.50 0.25 140.94
60.00 0.10 0.60 0.50 115.66
80.00 0.10 0.70 0.75 107.68
20.00 0.11 0.40 0.10 224.48
40.00 0.11 0.50 0.25 133.44
60.00 0.11 0.60 0.50 112.44
80.00 0.11 0.70 0.75 105.59
20.00 0.12 0.40 0.10 196.49
40.00 0.12 0.50 0.25 126.56
60.00 0.12 0.60 0.50 109.32
80.00 0.12 0.70 0.75 103.54
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Table 4. The PRE(µ̂Y (HTO), µ̂Y (BBB))

θ P Cγ Cy PRE

20.00 0.05 0.40 0.10 1471.69
40.00 0.05 0.50 0.25 230.24
60.00 0.05 0.60 0.50 150.17
80.00 0.05 0.70 0.75 129.36
20.00 0.06 0.40 0.10 950.47
40.00 0.06 0.50 0.25 223.07
60.00 0.06 0.60 0.50 149.21
80.00 0.06 0.70 0.75 129.09
20.00 0.07 0.40 0.10 716.29
40.00 0.07 0.50 0.25 216.65
60.00 0.07 0.60 0.50 148.29
80.00 0.07 0.70 0.75 128.83
20.00 0.08 0.40 0.10 583.23
40.00 0.08 0.50 0.25 210.86
60.00 0.08 0.60 0.50 147.41
80.00 0.08 0.70 0.75 128.57
20.00 0.09 0.40 0.10 497.42
40.00 0.09 0.50 0.25 205.62
60.00 0.09 0.60 0.50 146.55
80.00 0.09 0.70 0.75 128.32
20.00 0.10 0.40 0.10 437.49
40.00 0.10 0.50 0.25 200.86
60.00 0.10 0.60 0.50 145.73
80.00 0.10 0.70 0.75 128.07
20.00 0.11 0.40 0.10 393.27
40.00 0.11 0.50 0.25 196.50
60.00 0.11 0.60 0.50 144.93
80.00 0.11 0.70 0.75 127.83
20.00 0.12 0.40 0.10 359.30
40.00 0.12 0.50 0.25 192.51
60.00 0.12 0.60 0.50 144.17
80.00 0.12 0.70 0.75 127.59


