
Hacettepe Journal of Mathematics and Statistics
Volume 45 (1) (2016), 267 – 278

Inference on Pr(X > Y ) Based on Record Values
from the Burr Type X Distribution

Bahman Tarvirdizade ∗† and Hossein Kazemzadeh Gharehchobogh*

Abstract
Our interest is in estimating the stress-strength reliability Pr(X > Y )
based on lower record values when X and Y are two independent but
not identically distributed Burr type X random variables. The maxi-
mum likelihood estimator, Bayes and empirical Bayes estimators using
Lindleys approximations, are obtained and their properties are stud-
ied. The exact confidence interval, as well as the Bayesian credible sets
are obtained. Two examples are presented in order to illustrate the
inferences discussed in the previous sections. A Monte Carlo simula-
tion study is conducted to investigate and compare the performance of
different types of estimators presented in this paper and to compare
them with some bootstrap intervals.
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1. Introduction
The problem of estimating R = P (X > Y ) arises in the context of mechanical relia-

bility of a system with strength X and stress Y and R is chosen as a measure of system
reliability. The system fails if and only if, at any time the applied stress is grater than
its strength. This type of reliability model is known as the stress-strength model. This
problem also arises in situations where X and Y represent lifetimes of two devices and
one wants to estimate the probability that one fails before the other. For example, in
biometrical studies, the random variable X may represent the remaining lifetime of a pa-
tient treated with a certain drug while Y represent the remaining lifetime when treated
by another drug. The estimation of stress-strength reliability is very common in the
statistical literature. The reader is referred to Kotz et al. [1] for other applications and
motivations for the study of the stress-strength reliability.
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Record values arise naturally many real life applications involving data relating to
meteorology, hydrology, sports and life-tests. In industry and reliability studies, many
products may fail under stress. For example, a wooden beam breaks when sufficient
perpendicular force is applied to it, an electronic component ceases to function in an
environment of too high temperature, and a battery dies under the stress of time. But the
precise breaking stress or failure point varies even among identical items. Hence, in such
experiments, measurements may be made sequentially and only values larger (or smaller)
than all previous ones are recorded. Data of this type are called record data. Thus, the
number of measurements made is considerably smaller than the complete sample size.
This measurement saving can be important when the measurements of these experiments
are costly if the entire sample was destroyed.

Let {Xi, i ≥ 1} be a sequence of independent and identically distributed (iid) random
variables with an absolutely continuous cumulative distribution function (cdf) F (x) and
probability density function (pdf) f(x). An observation Xj is called an upper record if
its value exceeds all previous observations, i.e. Xj is an upper record if Xj > Xi for
every i < j. An analogous definition can be given for lower records. Records were first
introduced and studied by Chandler [2]. Interested readers may refer to the book by
Arnold et al. [3] and the references contained therein.

Burr [4] introduced twelve different forms of cumulative distribution functions for
modeling lifetime data or survival data. Among those twelve distribution functions, Burr
type X and Burr type XII received the maximum attention. Several aspects of the Burr
type X distribution were studied by Sartawi and Abu-Salih [5], Jaheen [6] and Raqab [7].
The cumulative distribution function (cdf) and the probability density function (pdf) of
the Burr type X distribution with shape parameter θ, which will be denoted by Burr(θ),
are respectively as follows,

(1.1) F (x) =
(

1− e−x
2
)θ
, x > 0, θ > 0,

(1.2) f(x) = 2θxe−x
2
(

1− e−x
2
)θ−1

, x > 0, θ > 0.

The problem of estimating the stress-strength reliability in the Burr type X distribution
was considered by Ahmad et al. [8] and Surles and Padgett [9]. Kim and Chung [10]
discussed Bayesian estimation of stress-strength reliability from Burr type X model con-
taining spurious observations. We consider the problem of point and interval estimating
the stress-strength reliability in the Burr type X distribution based on lower record val-
ues. The problem of interval estimating the stress-strength reliability based on record
values was considered by Baklizi [11] for the generalized exponential distribution.

The rest of this paper is organized as follows: In Section 2, we discussed likelihood
inference for the stress-strength reliability, while in Section 3 we considered Bayesian
inference. In Section 4, we presented two numerical examples. A Monte Carlo simulation
study is described in Section 5. Finally conclusion of the paper is provided in section 6.

2. Likelihood inference
Let X and Y be independent random variables from the Burr type X distribution

with the parameters θ1 and θ2 respectively. Let R = Pr(X > Y ) be the stress-strength
reliability. then,

R =

∫ ∞
0

∫ ∞
y

2θ1xe
−x2
(

1− e−x
2
)θ1−1

2θ2ye
−y2
(

1− e−y
2
)θ2−1

dxdy =
θ1

θ1 + θ2
.

Our interest is in estimating R based on lower record values on both variables. Let
r
∼

= (r1, ..., rn) be a set of lower records from Burr(θ1) and let s
∼

= (s1, ..., sm) be an
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independent set of lower records from Burr(θ2). The likelihood functions are given by
(Ahsanullah [12]),

L(θ1| r
∼

) = f(rn)

n−1∏
i=1

(
f(ri)

F (ri)

)
, 0 < rn < ... < r1 <∞,

(2.1) L(θ2| s
∼

) = g(sm)

m−1∏
i=1

(
g(si)

G(si)

)
, 0 < sm < ... < s1 <∞.

where f and F are the pdf and cdf of X ∼ Burr(θ1) respectively and g and G are the
pdf and cdf of Y ∼ Burr(θ2) respectively. Substituting f , F , g and G in the likelihood
functions and using Equation(2.1), we obtain

L(θ1| r
∼

) = (2θ1)n
(

1− e−r
2
n

)θ1 n∏
i=1

(
rie
−r2i

1− e−r2i

)
,

(2.2) L(θ2| s
∼

) = (2θ2)m
(

1− e−s
2
m

)θ2 m∏
i=1

(
sie
−s2i

1− e−s2i

)
.

It can be shown that the maximum likelihood estimators (MLE) of θ1 and θ2 based on
the lower record values are

(2.3) θ̂1 = − n

ln(1− e−r2n)
, θ̂2 = − m

ln(1− e−s2m)
.

Therefore using the invariance properties of the maximum likelihood estimation, the MLE
of R is given by

R̂ =
θ̂1

θ̂1 + θ̂2
.

To study the distribution of R̂ we need the distributions of θ̂1 and θ̂2. Consider first
θ̂1 = − n

ln(1−e−r2n )
, the pdf of the nth lower record value Rn is given by (Ahsanullah [12]),

(2.4)
fRn(rn) = 1

(n−1)!
f(rn)[− lnF (rn)]n−1

=
2θn1

(n−1)!
rne
−r2n

(
1− e−r

2
n

)θ1−1(
− ln

(
1− e−r

2
n

))n−1

, 0 < rn <∞.

Consequently, the pdf of Z1 = θ̂1 is given by,

(2.5) fZ1(z1) =
(nθ1)n

(n− 1)!zn+1
1

exp

(
−nθ1
z1

)
, z1 > 0.

This is recognized as the inverted gamma distribution, i.e., Z1 ∼ IGamma(n, nθ1).
Similarly, the pdf of Z2 = θ̂2 is given by,

(2.6) fZ2(z2) =
(mθ2)m

(m− 1)!zm+1
2

exp

(
−mθ2

z2

)
, z2 > 0.

Thus Z2 ∼ IGamma(m,mθ2). Therefore we can find the pdf of

R̂ =
θ̂1

θ̂1 + θ̂2
=

Z1

Z1 + Z2
=

1

1 + Z2
Z1

.

Consider Z2/Z1. Note that, by the properties of the inverted gamma distribution and its
relation with the gamma distribution we have (nθ1/Z1) ∼ Gamma(n, 1) and (nθ2/Z2) ∼
Gamma(m, 1). Hence (2nθ1/Z1) ∼ χ2

2n and (2mθ2/Z2) ∼ χ2
2m. Note that, by the

independence of two random quantities we have
(2nθ1/2nZ1)

(2mθ2/2mZ2)
=
θ1Z2

θ2Z1
∼ F(2n,2m).
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Hence, (Z2/Z1) = (θ2/θ1)F(2n,2m), has a scaled F distribution. It follows that the distri-
bution of R̂ is that of 1

1+(θ2/θ1)F(2n,2m)
which can be obtained using simple transformation

techniques. This fact can be used to construct the following (1−α)% confidence interval
for R,

(2.7)

((
1 +

z2
z1Fα/2,2n,2m

)−1

,

(
1 +

z2
z1F1−α/2,2n,2m

)−1
)
.

3. Bayesian inference
Consider the likelihood functions of θ1 and θ2 based on the two sets of lower record

values from the Burr type X distribution mentioned in Equation (2.2). We have

(3.1) L(θ1| r
∼

) ∝ θn1 e−θ1ν1(rn), L(θ2| s
∼

) ∝ θm2 e−θ2ν2(sm)

where ν1(rn) = − ln(1 − e−r
2
n) and ν2(sm) = − ln(1 − e−s

2
m). These suggest that the

conjugate family of prior distributions for θ1 and θ2 is the Gamma family of probability
distributions,

(3.2) π(θ1) =
γδ11 θδ1−1

1 e−γ1θ1

Γ(δ1)
, θ1 > 0 and π(θ2) =

γδ22 θδ2−1
2 e−γ2θ2

Γ(δ2)
, θ2 > 0

where δ1, γ1, δ2 and γ2 are the parameters of the prior distributions of θ1 and θ2 re-
spectively. It can be shown that (θ1| r

∼
) ∼ Gamma (n+ δ1, γ1 + ν1(rn)) and (θ2| s

∼
) ∼

Gamma (m+ δ2, γ2 + ν2(sm)). Since the priors θ1 and θ2 are independent, then, using
standard transformation techniques and after some manipulations, the posterior pdf of
R will be

(3.3) fR(r) = C
rn+δ1−1(1− r)m+δ2−1

[r(γ1 + ν1(rn)) + (1− r)(γ2 + ν2(sm))]n+m+δ1+δ2
, 0 < r < 1

where

C =
Γ(n+m+ δ1 + δ2)

Γ(n+ δ1)Γ(m+ δ2)
(γ1 + ν1(rn))n+δ1(γ2 + ν2(sm))m+δ2 .

The Bayes estimator under squared error loss is the mean of this posterior distribution
which can not be computed analytically. Alternatively, using the approximate method of
Lindley [13], it can be seen that the approximate Bayes estimator of R, say R̃B , relative
to squared error loss function is

(3.4) R̃B = R̃

(
1 +

(1− R̃)
2

n+ δ1 − 1
− R̃(1− R̃)

m+ δ2 − 1

)

where R̃ = θ̃1
θ̃1+θ̃2

and

θ̃1 =

(
n+ δ1 − 1

γ1 + ν1(rn)

)
, θ̃2 =

(
m+ δ2 − 1

γ2 + ν2(sm)

)
are the mode of the posterior densitys θ1 and θ2 respectively. On the other hand, it
follows from the posterior density θ1 and θ2 that 2(γ1 + ν1(rn))(θ1| r

∼
) ∼ χ2

2(n+δ1)
and

2(γ2+ν2(sm))(θ2| s
∼

) ∼ χ2
2(m+δ2)

. It follows that π(R| r
∼
, s
∼

), the posterior distribution ofR

is equal to that of (1 +AW )−1, where W ∼ F2(m+δ2),2(n+δ1) and A = (m+δ2)(γ1+ν1(rn))
(n+δ1)(γ2+ν2(sm))

.
Therefore a Bayesian (1− α)% confidence interval for R is given by,

(3.5)
(
(AF1−α/2,2(m+δ2),2(n+δ1) + 1)−1, (AFα/2,2(m+δ2),2(n+δ1) + 1)−1) .
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The case of a noninformative prior can be treated similarly. We consider Jeffereys prior
that say, π(θ1) ∝

√
|I(θ1)| where I(θ1) is the Fisher information. This suggest that prior

densitys for θ1 and θ2 are proportional to 1
θ1

and 1
θ2

respectively. Using direct argu-
ments one can show that (θ1| r

∼
) ∼ Gamma (n, ν1(rn)) and (θ2| s

∼
) ∼ Gamma (m, ν2(sm)).

Therefore, it can be seen that the approximate Bayes estimator of R under the Jeffreys
prior density, say R̃JB , relative to squared error loss function is

(3.6) R̃JB = R̃

(
1 +

(1− R̃)
2

n− 1
− R̃(1− R̃)

m− 1

)

where R̃ = θ̃1
θ̃1+θ̃2

and

θ̃1 =

(
n− 1

ν1(rn)

)
, θ̃2 =

(
m− 1

ν2(sm)

)
.

Furthermore, it follows that the posterior distribution ofR is equal to that of (1 + mν1(rn)
nν2(sm)

W )−1

where W ∼ F2m,2n. Therefore a Bayesian (1−α)% confidence interval for R is given by,

(3.7)

((
mν1(rn)

nν2(sm)
F1−α/2,2m,2n + 1

)−1

,

(
mν1(rn)

nν2(sm)
Fα/2,2m,2n + 1

)−1
)
.

Now consider the case when the parameters of prior distributions are themselves un-
known. We consider the conjugate prior distributions for θ1 and θ2 above when the
parameters γ1 and γ2 are unknown. In the empirical Bayes model, we must estimate
them. In order to, we calculate the marginal distribution of lower records, with densitys

m(r
∼
|γ1) =

∫
fR
∼

(r
∼
|θ1)π(θ1|γ1)dθ1, 0 < rn < ... < r1 <∞,

m(s
∼
|γ2) =

∫
fS
∼

(s
∼
|θ2)π(θ2|γ2)dθ2, 0 < sm < ... < s1 <∞.

Using Equations (2.2) and (3.2), we obtain

m(r
∼
|γ1) =

Γ(n+ δ1)2nγδ11
Γ(δ1)(γ1 + ν1(rn))n+δ1

n∏
i=1

(
rie
−r2i

1− e−r2i

)
,

(3.8) m(s
∼
|γ2) =

Γ(m+ δ2)2mγδ22
Γ(δ2)(γ2 + ν2(sm))m+δ2

m∏
i=1

(
sie
−s2i

1− e−s2i

)
.

It can be shown that the maximum likelihood estimators (MLE) of γ1 and γ2 based on
the marginal distributions (3.8) are

(3.9) γ̂1 =
δ1ν1(rn)

n
, γ̂2 =

δ2ν2(sm)

m
.

Substituting γ̂1 and γ̂2 into Equation (3.4), the approximate empirical Bayes estimator
of R, say R̃EB , relative to squared error loss function is given by,

(3.10) R̃EB = R̃∗
(

1 +
(1− R̃∗)2

n+ δ1 − 1
− R̃∗(1− R̃∗)
m+ δ2 − 1

)

where R̃∗ =
θ̃∗1

θ̃∗1+θ̃∗2
and

θ̃∗1 =

(
n+ δ1 − 1

ν1(rn)
(
1 + δ1

n

)) , θ̃∗2 =

(
m+ δ2 − 1

ν2(sm)
(
1 + δ2

m

))
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Furthermore, it can be shown that (θ1| r
∼
, γ̂1) ∼ Gamma(n + δ1, (1 + δ1

n
)ν1(rn)) and

(θ2| s
∼
, γ̂2) ∼ Gamma(m + δ2, (1 + δ2

m
)ν2(sm)). It follows that π(R| r

∼
, γ̂1, s

∼
, γ̂2), the em-

pirical posterior distribution of R is equal to that of (1 + mν1(rn)
nν2(sm)

W )−1 where W ∼
F2(m+δ2),2(n+δ1). Therefore a Bayesian (1− α)% confidence interval for R is given by,

(3.11)

((
mν1(rn)

nν2(sm)
F1−α/2,2(m+δ2),2(n+δ1) + 1

)−1

,

(
mν1(rn)

nν2(sm)
Fα/2,2(m+δ2),2(n+δ1) + 1

)−1
)
.

The construction of highest posterior density (HPD) regions requires finding the set
I = {θ : π(θ| r

∼
, s
∼

) ≥ kα} , where kα is the largest constant such that Pr(θ ∈ I) ≥ 1− α.
This often requires numerical optimization techniques. Chen and Shao [14] presented a
simple Monte Carlo technique to approximate the HPD region.

4. Illustrative examples
In this section, two numerical examples are presented to illustrate the inferences dis-

cussed in the previous sections.

Example 4.1 (Real Data Set). We consider a data analysis for two data sets reported
by Bennett and Filliben [15]. They have reported minority electron mobility for p-type
Ga1−xAlxAs with seven different values of mole fraction. We use two data sets related
to the mole fractions 0.25 and 0.30. These data are given as follows:

Data Set 1 (belongs to mole fraction 0.25): 3.051, 2.779, 2.604, 2.371, 2.214, 2.045, 1.715,
1.525, 1.296, 1.154, 1.016, 0.7948, 0.7007, 0.6292, 0.6175, 0.6449, 0.8881, 1.115, 1.397,
1.506, 1.528.

Data Set 2 (belongs to mole fraction 0.30): 2.658, 2.434, 2.288, 2.092, 1.959, 1.814, 1.530,
1.366, 1.165, 1.041, 0.9198, 0.7241, 0.6403, 0.576, 0.5647, 0.5873, 0.8013, 1.002, 1.250,
1.347, 1.368.

We fit the Burr type X distribution to the two data sets separately. We used the
Kolmogorov-Smirnov (K-S) tests for each data set to fit the Burr type X model. It
is observed that for data sets 1 and 2, the K-S distances are 0.2453 and 0.2026 with
the corresponding p-values 0.1395 and 0.3110, respectively. Therefore, it is clear that
Burr type X model fits well to both the data sets. Moreover, we plot the empirical
distribution functions and the fitted distribution functions in Figure 1. This figure show
that the empirical and fitted models are very close for each data set.

For the above data, we observe that the first 15 values for both the data sets are the
lower record values and the smallest records, rn and sm, are equal to 0.6175 and 0.5647,
respectively. Therefore, we obtain the MLEs of θ1 and θ2 as, 13.0576 and 11.5551, re-
spectively. Thus, the MLE of R becomes R̂ = 0.5305. The corresponding 95% confidence
interval based on Equation (2.7) is equal to (0.3527,0.7009). To obtain Bayes estimates,
we assume δ1 = δ2 = 3 and γ1 = γ2 = 2 in Equation (3.4). We obtain θ̃1 = 5.3990,
θ̃2 = 5.15440 and R̃ = 0.5116. Therefore, the approximate Bayes estimator of R becomes
R̃B = 0.5113. The corresponding Bayesian 95% confidence interval based on Equation
(3.5) is equal to (0.3504,0.6704). So, the approximate Bayes estimator of R based on
Equation (3.6) becomes R̃JB = 0.5294 and the corresponding Bayesian 95% confidence
interval based on Equation (3.7) is equal to (0.3527,0.7009). Finally, using Equation
(3.10), we obtain θ̃∗1 = 12.3322, θ̃∗2 = 10.9131 and R̃∗ = 0.5305. Therefore, the ap-
proximate empirical Bayes estimator of R becomes R̃EB = 0.5269. The corresponding
Bayesian 95% confidence interval based on Equation (3.11) is equal to (0.3678,0.6869).
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Figure 1. The empirical distribution function (dashed) and fitted dis-
tribution function for Data Sets 1 and 2.

Example 4.2 (Simulated Data). We simulate 6 lower record values from Burr(1.5) and
8 lower record values from Burr(2.5). Therefore, RExact = 0.375. The data has been
truncated after four decimal places and it has been presented below. The r

∼
lower record

values are

1.2483, 1.0473, 0.6649, 0.2187, 0.1846, 0.0730,

and the corresponding s
∼
lower record values are

1.4244, 0.5154, 0.4293, 0.3531, 0.2727, 0.2266, 0.1173, 0.0942.

Based on the above data, we obtain the MLEs of θ1 and θ2 as, 1.1456 and 1.6916,
respectively. Therefore, the MLE of R becomes R̂ = 0.4037. The corresponding 95%
confidence interval based on Equation (2.7) is equal to (0.1768,0.6617). Letting δ1 =

δ2 = 2 and γ1 = γ2 = 4 in Equation (3.4), we obtain θ̃1 = 0.7578, θ̃2 = 1.0310 and
R̃ = 0.4236. Therefore, the approximate Bayes estimator of R becomes R̃B = 0.4321.
The corresponding Bayesian 95% confidence interval based on Equation (3.5) is equal
to (0.2199,0.6582). So, the approximate Bayes estimator of R based on Equation (3.6)
becomes R̃JB = 0.4077 and the corresponding Bayesian 95% confidence interval based
on Equation (3.7) is equal to (0.1768,0.6617). Finally, using Equation (3.10), we obtain
θ̃∗1 = 1.0024, θ̃∗2 = 1.5224 and R̃∗ = 0.3970. Therefore, the approximate empirical Bayes
estimator of R becomes R̃EB = 0.4070. The corresponding Bayesian 95% confidence
interval based on Equation (3.11) is equal to (0.2016,0.6329).

5. A simulation study
In this section, a simulation study is conducted to investigate the performance of

different types of estimators presented in this paper and to compare them with some
bootstrap intervals. It is important here to note that all inference procedures in this
paper depend only on the smallest records, rn and sm. In the simulation design we used
all combinations of n = 5, 10, 15 andm = 5, 10, 15. We used θ1 = 1 and R = 0.1, 0.25, 0.5.
The value of θ2 is determined by the choice of θ1 and R. In Bayesian simulation, we used
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Table 1. Simulated biases and mean squared errors (in parentheses)
of the estimators

n m R ML Bayes J.Bayes E.Bayes

5 5 0/1 0.0149(0.0050) 0.2724(0.0765) 0.0320(0.0063) 0.0247(0.0057)
5 5 0/25 0.0211(0.0162) 0.1633(0.0296) 0.0390(0.0157) 0.0313(0.0158)
5 5 0/5 0.0027(0.0234) 0.0013(0.0050) 0.0025(0.0192) 0.0026(0.0210)
5 10 0/1 0.0179(0.0040) 0.1858(0.0363) 0.0252(0.0044) 0.0234(0.0043)
5 10 0/25 0.0260(0.0129) 0.0990(0.0125) 0.0311(0.0120) 0.0303(0.0124)
5 10 0/5 0.0158(0.0191) -0.0212(0.0056) 0.0057(0.0163) 0.0103(0.0173)
5 15 0/1 0.0176(0.0039) 0.1377(0.0205) 0.0218(0.0040) 0.0212(0.0040)
5 15 0/25 0.0238(0.0115) 0.0636(0.0065) 0.0245(0.0105) 0.0253(0.0109)
5 15 0/5 0.0173(0.0166) -0.0326(0.0057) 0.0035(0.0143) 0.0094(0.0151)
10 5 0/1 0.0055(0.0025) 0.2931(0.0880) 0.0229(0.0035) 0.0156(0.0030)
10 5 0/25 0.0071(0.0104) 0.1844(0.0369) 0.0292(0.0108) 0.0201(0.0105)
10 5 0/5 -0.0076(0.0183) 0.0254(0.0056) 0.0020(0.0158) -0.0024(0.0166)
10 10 0/1 0.0071(0.0019) 0.2028(0.0429) 0.0150(0.0022) 0.0130(0.0021)
10 10 0/25 0.0120(0.0069) 0.1193(0.0169) 0.0212(0.0070) 0.0189(0.0069)
10 10 0/5 -0.0012(0.0122) -0.0007(0.0049) -0.0012(0.0111) -0.0012(0.0114)
10 15 0/1 0.0079(0.0018) 0.1531(0.0251) 0.0128(0.0019) 0.0120(0.0019)
10 15 0/25 0.0108(0.0061) 0.0831(0.0095) 0.0154(0.0060) 0.0148(0.0060)
10 15 0/5 0.0022(0.0097) -0.0118(0.0045) -0.0014(0.0090) -0.0001(0.0091)
15 5 0/1 0.0035(0.0022) 0.3020(0.0932) 0.0210(0.0031) 0.0137(0.0027)
15 5 0/25 0.0024(0.0092) 0.1944(0.0405) 0.0260(0.0098) 0.0164(0.0094)
15 5 0/5 -0.0171(0.0165) 0.0333(0.0057) -0.0033(0.0143) -0.0092(0.0150)
15 10 0/1 0.0058(0.0015) 0.2115(0.0464) 0.0139(0.0018) 0.0119(0.0017)
15 10 0/25 0.0051(0.0061) 0.1267(0.0188) 0.0157(0.0062) 0.0130(0.0062)
15 10 0/5 -0.0023(0.0101) 0.0119(0.0047) 0.0013(0.0093) 0.0001(0.0095)
15 15 0/1 0.0053(0.0012) 0.1609(0.0273) 0.0105(0.0014) 0.0096(0.0014)
15 15 0/25 0.0067(0.0046) 0.0921(0.0109) 0.0128(0.0047) 0.0117(0.0047)
15 15 0/5 -0.0005(0.0081) -0.0003(0.0042) -0.0005(0.0076) -0.0005(0.0076)

δ1 = δ2 = 3 and γ1 = γ2 = 5 where it is needed. All the results are based on 2000
replications.

First, we compare the performance of point estimators of R in terms of their biases
and mean squared errors (MSEs). In order to, we compute the average biases and mean
squared errors (MSEs) as

Bias =
1

2000

2000∑
i=1

(R̂i −R), MSE =
1

2000

2000∑
i=1

(R̂i −R)
2

where R̂ can be each of the maximum likelihood estimator and the approximate Bayes
estimators based on Equations (3.4), (3.6) and (3.10). The results are reported in Table
1.

Next, a simulation study is conducted to investigate and compare the performance of
the confidence intervals presented in this paper and some bootstrap intervals in terms
of their coverage probability and expected length. There are several bootstrap based
intervals discussed in the literature (Efron and Tibshirani [16]). Since all inferences in
this paper depend only on the smallest records, therefore we shall use the parametric
bootstrap based on the marginal distribution of Rn as given in Equation (2.4). In follows
we describe the bootstrapping procedure:
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1) Calculate θ̂1, θ̂2 and R̂, the maximum likelihood estimators of θ1, θ2 and R based
on rn and sm.

2) Generate r∗n from the distribution given in Equation (2.4) with θ1 replaced by θ̂1
and generate s∗m similarly.

3) Calculate θ̂∗1 , θ̂∗2 and R̂∗ using the r∗n and s∗m obtained in step 2.
4) Repeat steps 2 and 3, B times to obtain R̂∗1, ..., R̂∗B .
Then we can calculate the following bootstrap intervals;
Normal Interval: The simplest (1− α) bootstrap interval is the Normal interval

(R̂− z1−α/2 ˆseboot, R̂+ z1−α/2 ˆseboot)

where ˆseboot is the bootstrap estimate of the standard error based on R̂∗1, ..., R̂∗B .
Basic Pivotal Interval: The (1− α) bootstrap basic pivotal confidence interval is

(2R̂− r̂∗(1−α/2)B , 2R̂− r̂∗(α/2)B)

where r̂∗β is the β quantile of R̂∗1, ..., R̂∗B .
Percentile Interval: The (1− α) bootstrap percentile interval is defined by

(r̂∗(1−α/2)B , r̂
∗
(1−α/2)B)

that is, just use the α/2 and 1− α/2 quantiles of the bootstrap sample.
Interested readers may refer to DiCiccio and Efron [17] and the references contained

therein to observe more details.
For each generated pair of samples we calculated the following intervals;
1) ML: The interval based on the MLE given in Equation (2.7).
2) Bayes: The interval based on the Bayes estimator given in Equation (3.5).
3) J.B: The interval based on the Bayes estimator given in Equation (3.7).
4) E.B: The interval based on the empirical Bayes estimator given in Equation (3.11).
5) Norm: The normal interval.
6) Basic: The basic pivotal interval.
7) Perc: The percentile interval.
The empirical coverage probability and expected lengths of intervals are obtained by

using the 2000 replications. For bootstrap intervals we used 1000 bootstrap samples.
The results of our simulations for confidence level (1 − α) = 0.95 and 0.90 are given in
Tables 2 and 3 respectively.

6. Conclusion and discussion
Based on simulation results in Table 1, we observe that the biases and the mean

squared errors (MSEs) of the estimators are very close, especially for larger sample sizes.
It appears that the performance of the MLE and the approximate Bayes estimators
based on Equations (3.6) and (3.10) is almost the same in terms of their biases and
mean squared errors (MSEs) but the MLE has the better performance for small values
of R. Furthermore, the approximate Bayes estimators based on Equations (3.4) has the
weak performance specially for small values of R. Hence, between the point estimators
presented in this paper, we recommend to use the MLE.

Based on simulation results in Tables 2 and 3, it appears that the length of the
intervals is maximized when R = 0.5 and gets shorter and shorter as we move away
to the extremes. Increasing the sample size on either variable also results in shorter
intervals. The performance of the both basic pivotal interval and percentile interval is
similar in terms of expected length but in terms of coverage rate percentile interval has
the better performance. The percentile interval appears to be the best among bootstrap
intervals. The interval based on the MLE and the interval based on the Bayes estimator
given in Equation (3.7) appears to perform almost as well as the percentile interval. The
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interval based on the Bayes estimator given in Equation (3.5) has the low coverage rate
and the long expected length for small values of R since it is dependent on γ1 and γ2
values. Furthermore, the interval based on the empirical Bayes estimator has the shortest
expected length between the other intervals but it has the low coverage rate. It appears
that the intervals based on the MLE, the Bayes estimator given in Equation (3.7) and
percentile interval simultaneously has the short expected length and very good coverage
rate in comparison with the other intervals. Hence, we recommend to use this confidence
intervals in all.
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