A shorter proof of the Smith normal form of skew-Hadamard matrices and their designs

Ilhan Hacıoğlu* and Aytül Keman ${ }^{\dagger}$

Abstract

We provide a shorter algebraic proof for the Smith normal form of skew-hadamard matrices and the related designs.

Keywords: p-rank, Hadamard design, Smith normal form.
2000 AMS Classification: 20C08, 51E12, 05B20

1. Introduction

Smith normal forms and p-ranks of designs can help distinguish non-isomorphic designs with the same parameters. So it is interesting to know their Smith normal form explicitly. Smith normal forms of some designs were computed in [2],[3] and [5]. In this article we give a shorter proof for the Smith normal form of skewhadamard matrices and their designs.

A Hadamard matrix H of order n is an n by n matrix whose elements are ± 1 and which satisfies $H H^{T}=n I_{n}$. It is skew-Hadamard matrix if, it also satisfies $H+H^{T}=2 I_{n}$. For more information about the Hadamard matrices please see [1], [9]. Similar definitions stated below can be found in [4], [5], [6], [7], [8], [9].

The incidence matrix of a Hadamard $(4 m-1,2 m, m)$ design D is a $4 m-1$ by $4 m-1(0,1)$-matrix A that satisfies

$$
A A^{T}=A^{T} A=m I+m J .
$$

The complementary design \bar{D} is a $(4 m-1,2 m-1, m-1)$ design with incidence matrix $J-A$. A skew-hadamard $(4 m-1,2 m, m)$ design is a hadamard design that satisfies(after some row and column permutations)

$$
A+A^{T}=I+J
$$

[^0]Integral Equivalence: If A and B are matrices over the ring Z of integers, A and B are called equivalent $(A \sim B)$ if there are Z-matrices P and Q, of determinant ± 1, such that

$$
B=P A Q
$$

which means that one can be obtained from the other by a sequence of the following operations:

- Reorder the rows,
- Negate some row,
- Add an integer multiple of one row to another,
and the corresponding column operations.
Smith Normal Form: If A is any n by n, Z - matrix, then there is a unique Z-matrix

$$
S=\operatorname{diag}\left(a_{1}, a_{2}, \ldots, a_{n}\right)
$$

such that $A \sim S$ and

$$
a_{1}\left|a_{2}\right| \ldots \mid a_{r}, a_{r+1}=\ldots=a_{n}=0
$$

where the a_{i} are non-negative. The greatest common divisor of i by i subdeterminants of A is

$$
a_{1} a_{2} a_{3} \ldots a_{i}
$$

The a_{i} are called invariants factors of A and S is the Smith normal form $(S N F(A))$ of A.
p-Rank: The p-rank of an n by n, Z - matrix A is the rank of A over a field of characteristic p and is denoted by $\operatorname{rank}_{p}(A)$. The p-rank of A is related to the invariant factors $a_{1}, a_{2}, \ldots, a_{n}$ by

$$
\operatorname{rank}_{p}(A)=\max \left\{i: p \text { does not divide } a_{i}\right\}
$$

2. Proof of the main theorem

2.1. Proposition. ([6] or [8]): Let H be a Hadamard matrix of order $4 m$ with invariant factors $h_{1}, \ldots, h_{4 m}$. Then $h_{1}=1, h_{2}=2$, and $h_{i} h_{4 m+1-i}=4 m(i=$ $1, \ldots, 4 m)$.
2.2. Theorem. ([7]): Let $A, B, C=A+B$, be n by n matrices over Z, with invariant factors $h_{1}(A)|\ldots| h_{n}(A), h_{1}(B)|\ldots| h_{n}(B), h_{1}(C)|\ldots| h_{n}(C)$, respectively. Then

$$
\operatorname{gcd}\left(h_{i}(A), h_{j}(B)\right) \mid h_{i+j-1}(A+B)
$$

for any indices i, j with $1 \leq i, j \leq n, i+j-1 \leq n$, where gcd denotes greatest common divisor.
2.3. Theorem. ([4]): Let D be a skew-Hadamard $(4 m-1,2 m, m)$ design. Suppose that p divides m. Then $\operatorname{rank}_{p}(D)=2 m-1$ and $\operatorname{rank}_{p}(\bar{D})=2 m$.

The author in [5] proves the following theorem by using completely different method. Here we provide a shorter algebraic proof for this theorem and the corollary following it.
2.4. Theorem. A skew-Hadamard matrix of order $4 m$ has Smith normal form

$$
\operatorname{diag}[1, \underbrace{2, \ldots, 2}_{2 m-1}, \underbrace{2 m, \ldots, 2 m}_{2 m-1}, 4 m]
$$

Proof. Applying Theorem 2.2 with $A=H$ and $B=H^{T}$ we get $\operatorname{gcd}\left(h_{i}(H), h_{j}\left(H^{T}\right)\right) \mid 2$ which means that $\operatorname{gcd}\left(h_{i}(H), h_{j}\left(H^{T}\right)\right)=1$ or 2 where $1 \leq i, j \leq 4 m, i+j-1 \leq 4 m$. If $m=1$ then we have a skew-Hadamard matrix of order 4 and by proposition 1 the result follows. Assume that $m>1$ then by proposition 1 we know that $h_{1}(H)=1$, $h_{2}(H)=2, h_{4 m-1}(H)=2 m$ and $h_{4 m}(H)=4 m$. Since $S N F(H)=S N F\left(H^{T}\right)$ assume that $h_{2 m}(H)=2 k$ and $h_{2 m}\left(H^{T}\right)=2 k$ where $k \neq 1$ and k is a divisor of m. In this case $i=j=2 m$ and Theorem 2.2 gives us $\operatorname{gcd}\left(h_{i}(H), h_{j}\left(H^{T}\right)\right)=2 k \mid 2$. But this is a contradiction since $k \neq 1$. So $k=1$ which means that $h_{2 m}(H)=$ $h_{2 m}\left(H^{T}\right)=2$. So all the first $2 m$ elements except the first one have to be 2 . Since we found the first $2 m$ elements, using proposition 1 again we obtain the remaining elements namely $h_{2 m+1}(H)=h_{2 m+2}(H)=\ldots=h_{4 m-1}(H)=2 m$ and $h_{4 m}(H)=4 m$.
2.5. Corollary. The Smith normal form of the incidence matrix of a skew-Hadamard $(4 m-1,2 m, m)$ design is

$$
\operatorname{diag}[\underbrace{1, \ldots, 1}_{2 m-1}, \underbrace{m, \ldots, m}_{2 m-1}, 2 m]
$$

Proof. By [5] any skew-Hadamard matrix of order $4 m$ is integrally equivalent to $[1] \oplus(2 A)$. This means that all the invariant factors of A are half of the corresponding invariant factors of H except the first one. So the result follows.

Note that we know from Theorem 2.3 that $\operatorname{rank}_{p} A=2 m-1$ which agrees with our result.

By using similar techniques that we used above we get the Smith normal form of the complementary skew-Hadamard design:
2.6. Corollary. The Smith normal form of the incidence matrix of a skew-Hadamard $(4 m-1,2 m-1, m-1)$ design is

$$
\operatorname{diag}[\underbrace{1, \ldots, 1}_{2 m}, \underbrace{m, \ldots, m}_{2 m-2}, m(2 m-1)] .
$$

References

[1] Horadam, K.J. Hadamard Matrices and their Applications, Princeton University Press, Princeton, (2010).
[2] Koukouvinos, C., Mitrouli, M., Seberry, J. On the Smith Normal form of D-optimal designs, Linear Algebra Appl., 247, 277-295, (1996).
[3] Koukouvinos, C., Mitrouli, M., Seberry, J. On the Smith Normal form of weighing matrices, Bull. Inst. Combin. Appl., 19, 57-69, (1997).
[4] Michael, T.S. The p-Ranks of Skew Hadamard Designs, J. Combin. Theory, Ser.A 73, 170171, (1996).
[5] Michael, T.S., Wallis, W.D. Skew-Hadamard Matrices and the Smith Normal Form, Designs, Codes and Cryptography 13, 173-176, (1998).
[6] Newman, M. Invariant Factors of Combinatorial Matrices, Israel J. Math. 10, 126-130, (1971).
[7] Thompson, R.C. The Smith Invariants of a Matrix Sum, Proc. Amer. Math. Soc. 78, 162-164, (1980).
[8] Wallis, W.D., Wallis, J. Equivalence of Hadamard Matrices, Israel J. Math. 7, 122-128, (1969).
[9] Wallis, W.D. Combinatorial Designs, Marcel Dekker, New York, (1988).

[^0]: *Department of Mathematics, Arts and Science Faculty Çanakkale Onsekiz Mart University, 17100 Çanakkale,Turkey, Email: hacioglu@comu.edu.tr
 ${ }^{\dagger}$ Department of Mathematics, Arts and Science Faculty Çanakkale Onsekiz Mart University, 17100 Çanakkale,Turkey, Email: aytulkeman@hotmail.com

