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Convergence to common fixed points of
multi-step iteration process for generalized
asymptotically quasi-nonexpansive mappings in
convex metric spaces
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Abstract

In this paper, we study strong convergence of multi-step iterations
with errors for a finite family of generalized asymptotically quasi-
nonexpansive mappings in the framework of convex metric spaces. The
new iteration scheme includes modified Mann and Ishikawa iterations
with errors, the three-step iteration scheme of Xu and Noor as special
cases in Banach spaces. Our results extend and generalize many known
results from the current literature.
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1. Introduction and Preliminaries

Let T be a self map on a nonempty subset C of a metric space (X, d). Denote
the set of fixed points of T by F(T) = {ax € C : T(x) = x}. We say that T is:

(1) nonexpansive if

(1.1) d(Tz,Ty) < d(z,y)
for all z,y € C,

(2) quasi-nonexpansive if F(T) # () and
(1.2) d(Tz,p) < d(z,p)

for all z € C' and p € F(T);
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(3) asymptotically nonexpansive [5] if there exists a sequence {r,} C [0,00)
with lim,, ., r, = 0 such that

(1.3) d(T"z, T"y) < (14 ry)d(x,y),
for all z,y € C' and n > 1;

(4) asymptotically quasi-nonexpansive if F'(T) # () and there exists a sequence
{rn} C [0,00) with lim,_,o 7, = 0 such that

(1.4) d(T"z,p) < (1+4+r,)d(z,p),
forallz € C,p e F(T) and n > 1,

(5) generalized asymptotically quasi-nonexpansive [6] if F(T') # () and there
exist two sequences of real numbers {r,}, {s,} C [0,00) with lim, oo, =0 =
lim,, s S, such that

(1.5) d(T"z,p) < (1+7r,)d(x,p)+ sn,
forallz € C,pe€ F(T) and n > 1;

(6) uniformly L-Lipschitzian if there exists a constant L > 0 such that
(1.6) d(T"z,T"y) < L d(z,y),
forall z,y € C and n > 1;

(7) semi-compact if for any bounded sequence {z,} in C with d(z,,Tz,) = 0
as n — 0o, there is a convergent subsequence of {z,}.

Let {z,} be a sequence in a metric space (X,d), and let C be a subset of X.
We say that {x,} is:

(8) of monotone type [22] with respect to C if for each p € C, there exist two
sequences {a,} and {b,} of nonnegative real numbers such that Y - a, < oo,
> 1 by < 00 and

d(xn-‘rlap) S (1 + an)d(xnap) + bn~ (*)

1.1. Remark. (1) It is clear that the nonexpansive mappings with the nonempty
fixed point set F(T) are quasi-nonexpansive.

(2) The linear quasi-nonexpansive mappings are nonexpansive, but it is eas-
ily seen that there exist nonlinear continuous quasi-nonexpansive mappings which
are not nonexpansive; for example, define T'(x) = (z/2)sin(1/x) for all x # 0 and
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T(0) =0 in R.

(3) It is obvious that if T is nonexpansive, then it is asymptotically nonexpan-
sive with the constant sequence {1}.

(4) If T is asymptotically nonexpansive, then it is uniformly Lipschitzian with
the uniform Lipschitz constant L = sup{1+r, : n > 1}. However, the converse of
this claim is not true.

(5) If in definition (5), s, = 0 for all n > 1, then T becomes asymptoti-
cally quasi-nonexpansive, and hence the class of generalized asymptotically quasi-
nonexpansive maps includes the class of asymptotically quasi-nonexpansive maps.

In 1991, Schu [16, 17] introduced the following iterative scheme: let X be a
normed linear space, let C' be a nonempty convex subset of X, and let T: C — C
be a given mapping. Then, for arbitrary x; € C, the modified Ishikawa iterative
scheme {x,} is defined by

Yn = (1 - 6n)$n + BTy
(1.7) Tnt1 = (1 —ap)zy + T yn, n>1,

where {a, } and {8,} are some suitable sequences [0,1]. With X, C, {«,}, and
x1 as above, the modified Mann iterative scheme {z,} is defined by

x1 € C,

(1.8) Tpt1 = (1 —ap)zy, + T2, n>1

In 1998, Xu [21] introduced the following iterative scheme: let X be a normed
linear space, let C' be a nonempty convex subset of X, and let T: C — C be a
given mapping. Then, for arbitrary z; € C, the Ishikawa iterative scheme {z,}
with errors is defined by

Yn = apTp+ b;LTxn + CpUn
(1.9) Tpi1l = QpTnp + 0Ty, + Cptn, n>1,
where {un}, {v,} are bounded sequences in C' and {an}, {bn}, {cn}, {dn}, {bn},
{¢n} are sequences [0, 1] with a,, + b, + ¢, = dyy + by, + &, = 1. With X, C, {u,},
{an}, {bn}, {cn}, and z; as above, the Mann iterative scheme {x,} with errors is
defined by

:I;’1€C,

(1.10) Tpt1l = ATy +0,Tx0 + cpiy, n > 1.

Based on the iterative scheme with errors introduced by Xu [21], the follow-
ing iteration schemes have been used and studied by several authors (see [1, 3, 12]).



212

Let X be a normed linear space, let C' be a nonempty convex subset of X, and
let T: C — C be a given mapping. Then, for arbitrary z; € C, the modified
Ishikawa iteration scheme {x,} with errors is defined by

Yn = QapTp + b;lTnmn + CpUn
(1.11) Tpnal = GnTp 02T Yn + Crtin, n > 1,
where {u,}, {v,} are bounded sequences in C' and {a,}, {bn}, {cn}, {dn}, {b,},
{¢n} are sequences [0,1] with a,, + b, + ¢, = dp + by, + ¢, = 1. With X, C| {u,},
{an}, {bn}, {cn}, and z; as above, the modified Mann iteration scheme {z,} with
errors is defined by

xr1 € C,

(1.12) Tpntl = GpZp + 0,T"xy + cruy, n > 1

Recently, Imnang and Suantai [6] studied multi-step Noor iterations with errors
for a finite family of generalized asymptotically quasi-nonexpansive mappings and
established some strong convergence theorems in the framework of uniformly con-
vex Banach spaces. The scheme of [6] is as follows: Let T;: C — C (1 =1,2,...,k)
be mappings and F = ﬂle F(T;). For a given z1 € C, and a fixed k € N (N de-
note the set of all positive integers), compute the iterative sequences {x,} and
{yin} by

Tpt1 = Ykn = Un TR Yx—1)n + BknTn + VenUkn,
Yr—1)n = Cr-1)nTr—1Yk—2)n T Bk—1)nTn + Yk-1)nU(k—1)n;
Ysn = 315 Yon + BanTn + Y3nUsn,
Yo = 215"Y1n + BonTn + Yonton,
(1.13) Yin = @1nT{"Yon + BinTn + Yinlin, 1> 1.
where yo, = z, and {u1n}, {uzn},...,{urs} are bounded sequences in C' with

{ain}, {Bin}, and {7;n} are appropriate real sequences in [0, 1] such that a;, +
Bin + Vin = 1 for all i = 1,2,...,k and all n. This iteration scheme includes the
modified Mann iteration scheme (1.12), the modified Ishikawa iteration scheme
(1.11) and extends the three-step iteration by Xu and Noor [20].

One of the most interesting aspects of metric fixed point theory is to extend a
linear version of a known result to the nonlinear case in metric spaces. To achieve
this, Takahashi [18] introduced a convex structure in a metric space (X,d) and
the properties of the space.

1.2. Definition. Let (X,d) be a metric space and I = [0,1]. A mapping W: X3 x
I3 — X is said to be a convex structure on X if it satisfies the following condition:

d(u, W(z,y, 2, 8,7)) < ad(u, ) + fd(u, y) +7d(u, 2),
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for any u,x,y,z € X and for any «, 3,7 € I with a+ 8+~ =1.

If (X,d) is a metric space with a convex structure W, then (X,d) is called a
convex metric space and denotes it by (X, d, W).

1.3. Remark. It is easy to prove that every linear normed space is a convex
metric space with a convex structure W(z,y, z; a, 5,7v) = ax + By + vz, for all
z,y,z € X and «, B,v € I with a+ 5+~ = 1. But there exist some convex metric
spaces which can not be embedded into any linear normed spaces (see, Takahashi

[18]).

1.4. Example. Let X = {(z1,22,23) € R® : 1 > 0,29 > 0,23 > 0}. For
T = (l‘l,l‘g,xg),y = (ylay27y3) € X and aaﬂ7’y € I with Oé+ﬁ+’}/ =1, we define
a mapping W: X3 x I3 — X by

W(z,y, 250, 8,7) = (az1 + By1 + y21, 022 + By2 + y22, 023 + Bys + 723)
and define a metric d: X x X — [0,00) by

d(z,y) = |T1y1 + T2y2 + 23Yy3].

Then we can show that (X, d, W) is a convex metric space, but it is not a normed
space.

Denote the indexing set {1,2,...,k} by I. We now translate the scheme (1.13)
from the normed space setting to the more general setup of convex metric space
as follows:

(1.14) 1 €C,  Tpy1=Uppytn, n=>1,
where
Uny = I, the identity map,
Upyr = W(TT'Up0)2, T, Un1); Un(1)s Br(1) Yn(1))s
Unyr = W(T3Up)Z, T, Un2); Qn(2)s Bn(2)s Tn(2))
Une—1yx = W(TR 1 Unr—2)T, T, Un(k=1); On(k—1)s Bn(k—1)s Yn(k—1))s
Uiyt = W(THUpe—1)T, T, Un(k); Un(k)s Bnk)s k), 1 =1,

where {un(1)}, {tn(2)}, - - - {tn()} are bounded sequences in C with {an )}, {Bn) )}
and {,(;)} are appropriate real sequences in [0, 1] such that v, ;) + B (i) +n@) = 1
for all ¢ € I and all n.



214
In a convex metric space, the scheme (1.14) provides analogues of:
(i) the scheme (1.12) if k =1 and T3 =T}
(ii) the scheme (1.11) if k=2 and T3 =15 =T.

This scheme becomes the scheme (1.13) if we choose a special convex metric
space, namely, a normed space.

In this paper, we establish strong convergence theorem for the iteration scheme
(1.14) to converge to common fixed point of a finite family of generalized asymp-
totically quasi-nonexpansive mappings in the framework of convex metric spaces.
Our result extends and as well as refines the corresponding results of [2], [4], [6]-
[17], [20] and many others.

We need the following useful lemma to prove our convergence results.

1.5. Lemma. (see [19]) Let {p,}, {qn}, {rn} be three sequences of nonnegative
real numbers satisfying the following conditions:

o0 oo
Pt S (L4 qu)pn+7ms 020, Y gn <00, Y rp <00

n=0 n=0

Then
(1) lim,, o0 pr, exists.

(2) In addition, if iminf,,_, p, = 0, then lim, o p, = 0.

2. Main Results

In this section, we prove strong convergence theorems of multi-step iteration
scheme (1.14) for a finite family of generalized asymptotically quasi-nonexpansive
mappings in convex metric spaces.

2.1. Lemma. Let (X,d) be a complete convexr metric space, and let C' be a
nonempty closed convex subset of X. Let {T; : i € I} be a finite family of general-
ized asymptotically quasi-nonexpansive self-maps on C' with sequences {Ty iy}, {5n(i)} C
[0, 00) for each i € I, respectively, such thaty -, Tn(i) < o0 and > Sp(i) < 00.
Assume that F = NF_, F(T}) is a nonempty set. Let {x,} be the multi-step itera-
tion scheme defined by (1.14) with 3" | Yn() < oo for each i € I. Then

(1)
d(xn-‘rhp) < (1 + Bn(k))d(xnvp) + An(k:)a
with 307, By k) < o and > Ay < 00.
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n+m—1

d(xn-‘rmap) < Qd(xnap) + Q Z Aj(k:)a

Jj=n

form>1,n>1,pe€F and for some @ > 0.

Proof. (i) For any p € F, from (1.14), we have

d(Un(l)xnvp)

(2.1)

INIACIA

IN

AW (T T, Ty Un(1); Qn(1)s Bn(1)s Yn(1))s P)

(1) A(T{' T, ) + Br(1yd(2n; ) + Yn(1)d(Un(1), D)

) [(1 + 11))d(@n, P) + Sp(1)] + Bu)d(Tn, D) + V(1) d(Un(1), P)
[an) + Br@)l (1 + 1n1))d(Tn, D) + @n1)Sn(1) + Yn(1)d(Un(1), )
1= Ym)](A 4+ 70))d(@n, p) + Apey

(1 +7n)d(n, p) + Anq),

where Ay, (1) = Qp1)8n(1) + Yn(1)d(Un(1), P), since by assumption > Sp(1) < 00
and Y007 Yn(1) < 00, it follows that 7 A,y < oo.

Again from (1.14) and using (2.1), we have

d(Un(2)Tn; D)

(2.2)

VAN VANV

IN

IN

dW(T5' Up(1)Tns Tns Un(2); On(2), Bn(2)> Tn(2)): D)

U (2)A(T5' Up (1) s D) + Br(2)d(Zn, D) + Yn(2)d(Un(2), P)

@) [(1 4 7n(2))d(Un(1)Tn, 0) + 8n(2)] + Br2)d(2n; ) + Yn(2)d(tUn(2), D)
an(2)(1 4 7n@)[(1 4+ 7)) d(@n, p) + An)] + an@)Sn(2) + Bu)d(zn, p)
F¥n(2)d(Un(2), P)

[an@2) + Bu@)] (1 + @) (1 + n2))d(@n, p) + an) (1 + T(2)) A
T(2)5n(2) + Br(@)d(Tn; P) + Yn(2)d(Un(2), P)

1= @]+ 70y + ra@) + o)) d(@n, P) + an@) (14 702)) An ()
F0n(2)5n(2) T Vn(2)d(Un(2), D)

(1 + Bn2))d(Tn, p) + An2)s

where Br2) = Tn@) T Tne) T Ta)Ta) and An(2) = an(2)(1 + Tn(2))An(1) +
Wn(2)5n(2) + Tn(2)d(Un(2), p), since by assumptions > 0" | (1) < 00, Yo" Tn(2)
<00, Do Sp2) < 00, oo i Ay < 00 and Yo7 p(2) < 00, it follows that
27010:1 Bn(2) < oo and Zzozl An(Z) < 00.
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Further using (1.14) and (2.2), we have

AW (T3 Up(2)Zn, Ty Un(3); Cn(3)s Bn(3)> Tn(3))s D)
U (3) (T3 Un(2) T, P) 4 Br(3)d(Tns P) + Yn(3)d(Un(3), )
n(3) [(1 4 70(3))A(Un(2)Tn, D) + Sn(3)] + Bn(z)d(Tn, D) + Yn(3)d(un(s), p)
n3) (1 + 7n3) (1 4 Bu(2))d(Tn, ) + An2)] + n(3)8n(3) + Bnz)d(@n, p)
FVn(3)d(Un(3), P)
[an3) + Br@)| (1 + 703)) (1 + Bp2))d(@n, p) + anz) (1 + ma(3)) Anc2)
+n3)Sn(3) + Bn3)d(Tn,P) + Tn 3)d(un(3),p)

= [1 = @)1+ 703) + Bnz) + 7n(3) Br(2))d(Tn, p) + a3y (1 + 75(3)) An(2)

+00(3)5n(3) + Tn(3)d(Un(3), D)

(2.3)< (14 Byz))d(@n, p) + Anea),

d(Un(g)Z'n,p)

INIACIA

IN

where Bn(g) = Tp3) + B n(2) T Tn(g)Bn(Q and An(g) = an(g)(l + ’]"n(g))An(Q) +
U (3)Sn(3) + Vn(3)d(Un(3), p), since by assumptions Y7 | 7,3 < 00, Yo" By
< 0o, Yoo Sp(3) < 00, S A n(2) < oo and > Yn(z) < 00, it follows that

Zf;l B,,(3) < o0 and 27010:1 Ay (3) < oo. Continuing in this process, we get

(2.4) d(Tny1,p) < (14 Bug))d(@n, p) + Any,
where B, (k) = Tn(k) + Brk—1) t7nk) Bnk—1) and A, i) = an )(1+7“n( ) Ank—1)+
W (k) Sn(k) T Yn(k)d(Un (), P) With 307 By < 00 and p (k) < 00.

The conclusion (i) holds.

(ii) Note that when > 0, 1 + 2 < e®. It follows from conclusion (i) that for
m>1,n>1and pe€ F, we have



217

d(*xn+mvp) < (]- + Bn—i—m—l(k))d(xn—i-m—lap) + An+m—1(k)
< eB"+mil(k)d(xn+m—17p) + An+m71(k:)
< eBntm—1(k) [eBn+m—2(k)d(xn+m727p) + An+m—2(k)]
+AAn-l-nL—l(k:)
S e{Bn#»nzfl(k:)+B71+77172(k)}d(xn+m_2,p)
teBntm—1m [An+m—2(k:) + An+m—1(k)]
<
T n+m—1
< {621 n BW“)}d(xn,p) =+ {621 e J(k>}( Z A](k))
ntm—1 n+ —1 ntm -l
< {ezﬂ o Baw }d(wmp) + { Xim' By }( > Aj(k>)~
j=n
(2.5)

Let Q = X520 Bit | Then 0 < Q@ < oo and

n+m—1
(2.6) Animp) < Q) +Q( Y Ajw):
j=n

Thus, the conclusion (ii) holds.
We now state and prove the main theorem of this section.

2.2. Theorem. Let (X,d) be a complete convexr metric space, and let C be
a nonempty closed convexr subset of X. Let {T; : i € I} be a finite family
of generalized asymptotically quasi-nonexpansive self-maps on C with sequences
{rn@ b {sn@} C [0,00) for each i € I, respectively, such that Y )" | T,y < 00
and 307, Sp(iy < 00. Assume that F' = NE_,F(T;) is a nonempty set Let {zn}
be the multi-step iteration scheme defined by (1.14) with Y " Yn@y < 00 for each
i € 1. Then the iterative sequence {x,} converges strongly to a point in F if and
only if liminf,,_, o d(z,, F) =0, where d(x, F) = infpep{d(z,p)}.

Proof. If {x,} converges to p € F, then liminf, , d(z,,p) = 0. Since 0 <
d(zn, F) < d(xn,p), we have liminf,,_, o d(z,, F') = 0.
Conversely, suppose that liminf,,_, o d(z,, F')) = 0. From (2.4), we have that
d(@ny1,p) < (1+ Bn(k))d(ﬂfmp) + Anr)

with 3 | By < 0o and Y7 A,y < 00, which shows that the sequence {,}
is of monotone type, so lim,, s, d(acn7 F) exists by Lemma 1.5. Now liminf,,_,~ d(x,, F) =
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0 reveals that lim, o d(z,, F') = 0. Now, we show that {z,} is a Cauchy se-
quence. Let € > 0. Since lim,,_, o d(x,, F) = 0, there exists an integer ng such
that d(z,, F) < /6Q and Z;i;n*l Ajry < €/4Q for all n > ng. So, we can find
p* € F such that d(zy,,p*) < £/4Q. Hence, for all n > ng and m > 1, we have

d(xn-i-m, xn) S d(xn-l-mvp*) + d(l‘n,p*)

n+m—1
Jj=no
n+m—1
+Qd(ng, p°) +Q Y Ay
Jj=no
n+m—1
= 2Q(d(wn,p )+ Y. Ajw)
j=no
(2.7) < 2Q(5+ 15) ==

4Q  4Q

This proves that {z,} is a Cauchy sequence. Thus, the completeness of X implies
that {z,} must be convergent. Assume that lim,, ., z, = z. Since C is closed,
therefore z € C. Next, we show that z € F.. Now, the following two inequalities:

d(z,p) < d(Z,:Cn) + d(CCn,p) VpeF, n>1,

(2.8)

d(z,xz,) < d(z,p)+d(zn,p) YPEF, n>1,
give
(2.9) —d(z,z) < d(z,F)—d(zn, F) <d(z,z,), n>1.
That is,
(2.10) |d(z, F) —d(zp, F)| < d(z,z,), n>1.

As limy, o0 , = 2z and lim, o d(x,, F) = 0, we conclude that z € F, that is,
{z,} converges strongly to a point in F. This completes the proof.
O

We deduce some results from Theorem 2.2 as follows.

2.3. Corollary. Let (X,d) be a complete convex metric space, and let C be
a nonempty closed convexr subset of X. Let {T; : ¢ € I} be a finite family
of generalized asymptotically quasi-nonexpansive self-maps on C with sequences
{rn@y b {sn@)} C [0,00) for each i € I, respectively, such that Y " | rp) < 00
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and Y07 | Sy < 00. Assume that F = NE_ F(T;) is a nonempty set. Let {x,}
be the general iteration scheme defined by (1.14) with Y7 | Yn@) < 0o for each
i € 1. Then the sequence {x,} converges strongly to a point p in F if and only
there exists some subsequence {xy,} of {x,} which converges to a point p € F.

2.4. Corollary. Let (X,d) be a complete convex metric space, and let C be a
nonempty closed conver subset of X. Let {T; : i € I} be a finite family of asymptot-
ically quasi-nonexpansive self-maps on C with sequences {ry,;)} C [0,00) for each
i €1, such that y -, Tn(i) < 00. Assume that F' = Nk_,F(T;) is a nonempty set.
Let {x,} be the general iteration scheme defined by (1.14) with Y7 | V) < 00
for each i € I. Then the sequence {x,} converges strongly to a point in F if and
only if liminf,,_, o d(z,, F) =0, where d(x, F) = inf pe p{d(z,p)}.

Proof. Follows from Theorem 2.2 with s,,;) = 0 for each 7 € I and for all n > 1.
This completes the proof.
O

2.5. Theorem. Let (X,d) be a complete conver metric space, and let C be a
nonempty closed convex subset of X. Let {T; : i € I} be a finite family of uni-
formly L-Lipschitzian and generalized asymptotically quasi-nonexpansive self-maps
on C with sequences {rny}, {sn@)} C [0,00) for eachi € I, respectively, such that
S oo Tag)y < 00 and Y07 Sp(iy < 00. Assume that F = NF_ F(T;) # 0. Let {x,}
be the general iteration scheme defined by (1.14) with >, | Yn) < 0o for each
i€l and 0 < < ayiy < 1—0 for some 0 € (0,%), Then the sequence {x,}
converges to p € F provided lim, oo d(xy, T;z,) = 0, for each i € I, and one
member of the family {T; : i € I} is semi-compact.

Proof. Without loss of generality, we assume that 77 is semi-compact. Then, there
exists a subsequence {x,;} of {,} such that x,, — ¢ € C. Hence, for any i € I,
we have

< (L+L)d(q, ;) + d(xn;, Tizn,) — 0.

Thus g € F. By Lemma 1.5 and Theorem 2.2, x,, — q. This completes the proof.
d

2.6. Theorem. Let (X,d) be a complete convex metric space, and let C be a
nonempty closed convex subset of X. Let {T; : i € I} be a finite family of uni-
formly L-Lipschitzian and generalized asymptotically quasi-nonexpansive self-maps
on C with sequences {ryp(iy}, {sn@y} C [0,00) for eachi € I, respectively, such that
Doy gy < 00 and Y7 | Spy < 00. Assume that F = N[_ F(T;) # 0. Let {x,}
be the general iteration scheme defined by (1.14) with >°.° | Yn@) < 0o for each
i€l and 0 <9 < apy <1—20 for some § € (0, %) Suppose that the mappings
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{T; : i € I} for each i € I satisfy the following conditions:
(i) lim,, o0 d(zy, Tixy) = 0 for each i € I;

(ii) there exists a constant K > 0 such that d(xy, Tizy) > Kd(z,, F), for each
1 €1 and for alln > 1.

Then {x,} converges strongly to a point in F.

Proof. From conditions (i) and (ii), we have lim,, o d(x,, F) = 0, it follows as
in the proof of Theorem 2.2, that {x,,} must converges strongly to a point in F'.
This completes the proof.

O

3. Application

In this section we give an application of Theorem 2.2.

3.1. Theorem. Let X be a Banach space, and let C' be a nonempty closed con-
vex subset of X. Let {T; : i € I} be a finite family of generalized asymptotically
quasi-nonexpansive self-maps on C with sequences {ry)}, {sn@)} C [0, 00) for each
i € I, respectively, such that Y >~ | mpy < 00 and Y 0" | spy < 00. Assume that
F = nk_F(T;) is a nonempty set. Let {x,} be the multi-step iteration scheme
defined as

Tpt1 = Ynk = kTR Yn(k—1) + Bnk@n + YnkUnk,
Yn(r—1) = Cpk-1)TE 1Ynk—2) T Bnk—1)Tn + Yn(k—1)Un(k—1)s
Yn3z = a7L3T?:lyn2 + ﬂann + Yn3Uns,
Ynz = n2T5'Yn1 + Bpatn + Yn2tn2,
(3.1) Yn1 = an1T7'Yno + Br1Tn + Ynittn, 1 >1,
where Yno = X and {un1}, {un2}, ... {unk} are bounded sequences in C with

{ani}, {Bni}, and {yni} are appropriate real sequences in [0,1] such that ou; +
Bri+ i =1 for alli=1,2,....k and all n with Y ,° | yni < oo for each i € I.
If liminf, o d(z,, F) = 0, then the iterative sequence {x,} converges strongly to
a point p € F.

Proof. Since {un;, i = 1,2,...,k, n > 1} are bounded sequences in C, so we can
set

M :max{supﬂum —-pl, i= 1,2,...,k}.
n>1
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Let p € F, r, = max{r,q : i = 1,2,...,k} and 5, = max{s, : i =
.k} for all n. Since Y 07, 7,y < 0o and Y7 s,y < oo, for all i =

2,...,k, therefore > >°  r, < oo and > -, s, < co. Then by using (3.1), we
have

[yn1 =Dl = N TV Tn + Bpa®n + Yn1tn — pll
< ot [TV 2 = pll + Bt 120 — pll + Va1 luns — pll
< ant[(T+7n1) lzn = pll + sp1] + Bt o0 = pll + Ya1 lunt — p
S (anl + Bnl) 1 + rnl) ||$n _p” + api1sn1 + Tnl ||un1 _p”
< (anl + 6711) 1 + Tn) Hxn - p” + an18n + 1M
< ( +rn) ||xn_pH +5n+7n1M
(32) = (o) el + A

where A1 = s, +7,1 M, since by assumptions Y s, < oo and Y-, Yp1 < 00,
it follows that Y7 | A1 < oo.

Again from (3.1) and (3.2), we obtain that

(3.3) [Yn2 = pll < (L470)? |20 — pll + Az

where Ao = (1 + 7m,)An1 + $n + Ym2M, since by assumptions 220:1 Sp < 00,
S n2 <ooand Y o0 Ay < oo, it follows that Y2 | Aye < oco.
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Continuing the above process, using (3.1), we get

g1 =2l = ||k (TR Yne—1) — P) + Bk (@n — D) + Yok (Ui — D) ||

< ank [T Yne—1) — P|| + Bk lzn = Il + Yok |tnr — p|

< omk[(L+ 7k) |[Unce—1) = P|| + Sni] + Buk |20 —
+Vnk ||Unk - pH

< k(L4 70) [Yngi—1) — || + snl + Buk lzn — Dl
+nk ||unk — Pl

< k(1 +70) ||[Yne—1) — P|| + @nksn + Buk llzn — pll
Yok |tk — D

< ank(L 4 )[4 7) 7 lzn = pll + Apge1)] + Qnksn
+Bnk [|Zn — Pl + Yok || tnke — Pl

< (s + Bur ) (L1  llzn = pl + (L4 7)Aoy

+ankSn + ’YnkM
= (1 - 'Ynk)(]- + Tn)k ||xn - p” + ank(]- + 71n)An(k—l)
+04nk5n + ’YnkM
< (1 + rn)k ”xn _p” + (1 + Tn)An(kfl) + 5n + 7nkM
(3.4) = (L+7r0)" len —pll + Auk
where A = (1 + rn)Ang—1) + $n + YnrM, since by assumptions Y.~ r, <
00, Yot 18y < 00, >0 Ak < 00 and > ° Apg_1y < oo, it follows that
EZOZI Apir < oo. Therefore, by our assumptions, we know that the sequence

{z,n} is of monotone type and so the conclusion follows from Theorem 2.2. This

completes the proof.
O

3.2. Remark. (1) If v,; = 0 for each i € I and for all n > 1, then the approxi-
mation results about

(i) modified Mann iterations in [16] in Hilbert spaces,
(i) modified Mann iterations in [17] in uniformly convex Banach spaces,
(iii) modified Ishikawa iterations in Banach spaces [4, 9, 11], and

(iv) the three-step iteration scheme in uniformly convex Banach spaces from
[7, 20] are immediate consequences of our results.

(2) The approximation results about

(i) modified Ishikawa iterations with errors in Banach spaces [12], and
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(ii) the two-step and three-step iteration scheme with errors in uniformly con-
vex Banach spaces from [13, 15] are immediate consequences of our results.

(3) Our results also extend the results of Khan et al. [8] to the case of more
general class of asymptotically quasi-nonexpansive mappings and iteration scheme
with errors consider in this paper.

(4) Our results also generalize the results of [6] in the setup of convex metric
spaces.

(5) Our results also extend the corresponding results of [2, 10] to the case of
more general class of asymptotically nonexpansive and asymptotically nonexpan-
sive type mappings and multi-step iteration scheme with errors considered in this

paper.

3.3. Remark. Every uniformly convex Banach spaces are uniformly convex met-
ric spaces as shown in the following example:

3.4. Example. Let H be a Hilbert space and let X be a nonempty closed subset
of {x € H: ||z|| = 1} such that if z, y € X and «, S € [0,1] with a + 8 = 1, then
(ax+By)/|laz+ Byl € X and §(X) < +/2/2; see [14], where § is a modulus of
convexity of X. Let d(x,y) = cos ' {(z,y)} for every =, y € X, where (.,.) is the
inner product of H. When we define a convex structure W for (X, d) properly,
it is easily seen that (X, d) becomes a complete and uniformly convex metric space.

Also, the following example shows that the generalized asymptotically quasi-
nonexpansive mappings includes the class of asymptotically quasi-nonexpansive
mappings:

3.5. Example. Let E be the real line with the usual metric and K = [0, 1]. Define
T: K — K by

[ x/2, ifxz#0,
T(x){ 0, ifz=0.

Obviously T(0) = 0, i.e., 0 is a fixed point of the mapping T. Thus, T is quasi-
nonexpansive. It follows that T is uniformly quasi-1 Lipschitzian and asymptot-
ically quasi-nonexpansive with the constant sequence {k,} = {1} for each n > 1
and hence it is generalized asymptotically quasi-nonexpansive mapping with con-
stant sequences {k,} = {1} and {s,,} = {0} for each n > 1 but the converse is not
true in general.

Conclusion.

According to the Examples 3.4 and 3.5, we come to a conclusion that if the
results are true in uniformly convex Banach spaces then the results are also true
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in complete convex metric spaces. Thus our results are good improvement and
generalization of corresponding results of [2, 4, 6, 7, 9, 11, 12, 15, 16, 17, 20].

Acknowledgement. The author thank the referees for their valuable sugges-
tions and comments on the manuscript.
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