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Orientable small covers over the product of
2-cube with n-gon
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Abstract

We calculate the number of D-J equivalence classes and equivariant
homeomorphism classes of all orientable small covers over the product
of 2-cube with n-gon.
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1. Introduction

As defined by Davis and Januszkiewicz [5], a small cover is a smooth closed
manifold Mn with a locally standard (Z2)n−action such that its orbit space is a
simple convex polytope. For instance, the real projective space RPn with a natural
(Z2)n−action is a small cover over an n-simplex. This gives a direct connection
between equivariant topology and combinatorics, making research on the topology
of small covers possible through the combinatorial structure of quotient spaces.

Lü and Masuda [7] showed that the equivariant homeomorphism class of a
small cover over a simple convex polytope Pn agrees with the equivalence class of
its corresponding (Z2)n−coloring under the action of the automorphism group of
the face poset of Pn. This finding also holds true for orientable small covers by
the orientability condition in [8] (see Theoerem 2.5). However, general formulas
for calculating the number of equivariant homeomorphism classes of (orientable)
small covers over an arbitrary simple convex polytope do not exist.

In recent years, several studies have attempted to enumerate the number of
equivalence classes of all small covers over a specific polytope. Garrison and Scott
[6] used a computer program to calculate the number of homeomorphism classes
of all small covers over a dodecahedron. Cai, Chen and Lü [2] calculated the
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number of equivariant homeomorphism classes of small covers over prisms (an n-
sided prism is the product of 1-cube and n-gon). Choi [3] determined the number
of equivariant homeomorphism classes of small covers over cubes. However, little
is known about orientable small covers. Choi [4] calculated the number of D-
J equivalence classes of orientable small covers over cubes. This paper aims to
determine the number of D-J equivalence classes and equivariant homeomorphism
classes of all orientable small covers over I2 × Pn (see Theorem 3.1 and Theorem
4.1), where I2 and Pn denote 2-cube and n-gon, respectively.

The paper is organized as follows. In Section 2, we review the basic theory on
orientable small covers and calculate the automorphism group of the face poset
of I2 × Pn. In Section 3, we determine the number of D-J equivalence classes
of orientable small covers over I2 × Pn. In Section 4, we obtain a formula for
the number of equivariant homeomorphism classes of orientable small covers over
I2 × Pn.

2. Preliminaries

A convex polytope Pn of dimension n is simple if every vertex of Pn is the
intersection of n facets (i.e., faces of dimension (n − 1)) [9]. An n-dimensional
smooth closed manifold Mn is a small cover if it admits a smooth (Z2)n−action
such that the action is locally isomorphic to a standard action of (Z2)n on Rn and
the orbit space Mn/(Z2)n is a simple convex polytope of dimension n.

Let Pn be a simple convex polytope of dimension n and F(Pn) = {F1, · · · , F`}
be the set of facets of Pn. Assuming that π : Mn → Pn is a small cover over Pn,
then there are ` connected submanifolds π−1(F1), · · · , π−1(F`). Each submani-
fold π−1(Fi) is fixed pointwise by a Z2−subgroup Z2(Fi) of (Z2)n. Obviously,
the Z2−subgroup Z2(Fi) agrees with an element νi in (Z2)n as a vector space.
For each face F of codimension u, given that Pn is simple, there are u facets
Fi1 , · · · , Fiu such that F = Fi1 ∩ · · · ∩Fiu . Then, the corresponding submanifolds

π−1(Fi1), · · · , π−1(Fiu) intersect transversally in the (n−u)-dimensional subman-
ifold π−1(F ), and the isotropy subgroup Z2(F ) of π−1(F ) is a subtorus of rank u
generated by Z2(Fi1), · · · ,Z2(Fiu) (or is determined by νi1 , · · · , νiu in (Z2)n). This
gives a characteristic function [5]

λ : F(Pn) −→ (Z2)n

which is defined by λ(Fi) = νi such that whenever the intersection Fi1 ∩· · ·∩Fiu is
non-empty, λ(Fi1), · · · , λ(Fiu) are linearly independent in (Z2)n. Assuming that
each nonzero vector of (Z2)n is a color, then the characteristic function λ means
that each facet is colored. Hence, we also call λ a (Z2)n-coloring on Pn.

In fact, Davis and Januszkiewicz gave a reconstruction process of a small cover
by using a (Z2)n-coloring λ : F(Pn) −→ (Z2)n. Let Z2(Fi) be the subgroup of
(Z2)n generated by λ(Fi). Given a point p ∈ Pn, we denote the minimal face
containing p in its relative interior by F (p). Assuming that F (p) = Fi

1
∩ · · · ∩ Fiu

and Z2(F (p)) =
⊕u

j=1 Z2(Fij ), then Z2(F (p)) is a u-dimensional subgroup of

(Z2)n. Let M(λ) denote Pn × (Z2)n/ ∼, where (p, g) ∼ (q, h) if p = q and g−1h ∈
Z2(F (p)). The free action of (Z2)n on Pn × (Z2)n descends to an action on M(λ)
with quotient Pn. Thus, M(λ) is a small cover over Pn [5].
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Two small covers M1 and M2 over Pn are called weakly equivariantly homeo-
morphic if there is an automorphism ϕ : (Z2)n → (Z2)n and a homeomorphism
f : M1 →M2 such that f(t ·x) = ϕ(t) ·f(x) for every t ∈ (Z2)n and x ∈M1. If ϕ is
an identity, then M1 and M2 are equivariantly homeomorphic. Following [5], two
small covers M1 and M2 over Pn are called Davis-Januszkiewicz equivalent (or sim-
ply, D-J equivalent) if there is a weakly equivariant homeomorphism f : M1 →M2

covering the identity on Pn.
By Λ(Pn), we denote the set of all (Z2)n-colorings on Pn. We have

2.1. Theorem. ([5]) All small covers over Pn are given by {M(λ)|λ ∈ Λ(Pn)},
i.e., for each small cover Mn over Pn, there is a (Z2)n-coloring λ with an equi-
variant homeomorphism M(λ) −→Mn covering the identity on Pn.

Nakayama and Nishimura [8] found an orientability condition for a small cover.

2.2. Theorem. For a basis {e1, · · · , en} of (Z2)n, a homomorphism ε : (Z2)n −→
Z2 = {0, 1} is defined by ε(ei) = 1(i = 1, · · · , n). A small cover M(λ) over a simple
convex polytope Pn is orientable if and only if there exists a basis {e1, · · · , en} of
(Z2)n such that the image of ελ is {1}.

A (Z2)n-coloring that satisfies the orientability condition in Theorem 2.2 is an
orientable coloring of Pn. We know that there exists an orientable small cover over
every simple convex 3-polytope [8]. Similarly, we know the existence of orientable
small cover over I2×Pn by the existence of orientable colorings and determine the
number of D-J equivalence classes and equivariant homeomorphism classes.

By O(Pn), we denote the set of all orientable colorings on Pn. There is a
natural action of GL(n,Z2) on O(Pn) defined by the correspondence λ 7−→ σ ◦ λ,
and the action on O(Pn) is free. We assume that F1, · · · , Fn of F(Pn) meet at
one vertex p of Pn. Let e1, · · · , en be the standard basis of (Z2)n and B(Pn) =
{λ ∈ O(Pn)|λ(Fi) = ei, i = 1, · · · , n}. Then B(Pn) is the orbit space of O(Pn)
under the action of GL(n,Z2).

2.3. Remark. We have B(Pn) = {λ ∈ O(Pn)|λ(Fi) = ei, i = 1, · · · , n and
for n+1 ≤ j ≤ `, λ(Fj) = ej1 +ej2 + · · ·+ej2hj+1

, 1 ≤ j1 < j2 < · · · < j2hj+1 ≤ n}.
Below, we show that λ(Fj) = ej1 + ej2 + · · · + ej2hj+1

for n + 1 ≤ j ≤ `. If λ ∈
O(Pn), there exists a basis {e′1, · · · , e′n} of (Z2)n such that for 1 ≤ i ≤ `, λ(Fi) =
e′i1 + · · · + e′i2fi+1

, 1 ≤ i1 < · · · < i2fi+1 ≤ n. Given that λ(Fi) = ei, i = 1, · · · , n,

then ei = e′i1 + · · · + e′i2fi+1
. Thus, for n + 1 ≤ j ≤ `, λ(Fj) is not of the form

ej1 + · · ·+ ej2k , 1 ≤ j1 < · · · < j2k ≤ n.
Given that B(Pn) is the orbit space of O(Pn), then we have

2.4. Lemma. |O(Pn)| = |B(Pn)| × |GL(n,Z2)|.

Note that |GL(n,Z2)| =
n∏
k=1

(
2n − 2k−1

)
[1]. Two orientable small coversM(λ1)

and M(λ2) over Pn are D-J equivalent if and only if there is σ ∈ GL(n,Z2) such
that λ1 = σ ◦ λ2. Thus the number of D-J equivalence classes of orientable small
covers over Pn is |B(Pn)|.

Let Pn be a simple convex polytope of dimension n. All faces of Pn form a
poset (i.e., a partially ordered set by inclusion). An automorphism of F(Pn) is a
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bijection from F(Pn) to itself that preserves the poset structure of all faces of Pn.
By Aut(F(Pn)), we denote the group of automorphisms of F(Pn). We define the
right action of Aut(F(Pn)) on O(Pn) by λ × h 7−→ λ ◦ h, where λ ∈ O(Pn) and
h ∈ Aut(F(Pn)). By improving the classifying result on unoriented small covers
in [7], we have

2.5. Theorem. Two orientable small covers over an n-dimensional simple convex
polytope Pn are equivariantly homeomorphic if and only if there is h ∈ Aut(F(Pn))
such that λ1 = λ2◦h, where λ1 and λ2 are their corresponding orientable colorings
on Pn.

Proof. Theorem 2.5 is proven true by combining Lemma 5.4 in [7] with Theorem
2.2. �

According to Theorem 2.5, the number of orbits of O(Pn) under the action
of Aut(F(Pn)) is the number of equivariant homeomorphism classes of orientable
small covers over Pn. Thus, we count the number of orbits. Burnside Lemma is
very useful in enumerating the number of orbits.

Burnside Lemma Let G be a finite group acting on a set X. Then the number of
orbits X under the action of G equals 1

|G|
∑
g∈G |Xg|, where Xg = {x ∈ X|gx = x}.

Burnside Lemma suggests that, to determine the number of the orbits of O(Pn)
under the action of Aut(F(Pn)), the structure of Aut(F(Pn)) should first be un-
derstood. We shall particularly be concerned when the simple convex polytope is
I2 × Pn.

For convenience, we introduce the following marks. By F ′1, F
′
2, F

′
3, and F ′4 we

denote four edges of the 2-cube I2 in their general order (here I2 is considered
as a 4-gon). Similarly, by F ′5, F

′
6, · · · , and F ′n+4, we denote all edges of n-gon Pn

in their general order. Set F′ = {Fi = F ′i × Pn|1 ≤ i ≤ 4}, and F′′ = {Fi =
I2 × F ′i |5 ≤ i ≤ n+ 4}. Then F(I2 × Pn) = F′

⋃
F′′.

Next, we determine the automorphism group of face poset of I2 × Pn.
2.6. Lemma. When n=4, the automorphism group Aut(F(I2×Pn)) is isomorphic
to (Z2)4 × S4, where S4 is the symmetric group on four symbols. When n 6= 4,
Aut(F(I2 × Pn)) is isomorphic to D4 × Dn, where Dn is the dihedral group of
order 2n.

Proof. When n=4, I2 × Pn is a 4-cube I4. Obviously, the automorphism group
Aut(F(I4)) contains a symmetric group S4 because there is exactly one auto-
morphism for each permutation of the four pairs of opposite sides of I4. All ele-
ments of Aut(F(I4)) can be written in a simple form as χe11 χ

e2
2 χ

e3
3 χ

e4
4 · u, where

e1, e2, e3, e4 ∈ Z2, with reflections χ1, χ2, χ3, χ4 and u ∈ S4. Thus, the automor-
phism group Aut(F(I4)) is isomorphic to (Z2)4 × S4.

Whenn 6= 4, the facets of F′ and F′′ are mapped to F′ and F′′, respectively,
under the automorphisms of Aut(F(I2×Pn)). Given that the automorphism group
Aut(F(I2)) is isomorphic to D4 and Aut(F(Pn)) is isomorphic to Dn, Aut(F(I2×
Pn)) is isomorphic to D4 ×Dn. �
2.7. Remark. Let x, y, x′, y′ be the four automorphisms of Aut(F(I2×Pn)) with
the following properties:

186



(a) x(Fi) = Fi+1(1 ≤ i ≤ 3), x(F4) = F1, x(Fj) = Fj , 5 ≤ j ≤ n+ 4;

(b) y(Fi) = F5−i(1 ≤ i ≤ 4), y(Fj) = Fj , 5 ≤ j ≤ n+ 4;

(c) x′(Fi) = Fi(1 ≤ i ≤ 4), x′(Fj) = Fj+1(5 ≤ j ≤ n+ 3), x′(Fn+4) = F5;

(d) y′(Fi) = Fi(1 ≤ i ≤ 4), y′(Fj) = Fn+9−j , 5 ≤ j ≤ n+ 4.

Then, when n 6= 4, all automorphisms of Aut(F(I2 × Pn)) can be written in a
simple form as follows:

(1) xuyvx′u
′
y′v
′
, u ∈ Z4, u

′ ∈ Zn, v, v′ ∈ Z2

with x4 = y2 = x′n = y′2 = 1, xuy = yx4−u, and x′u
′
y′ = y′x′n−u

′
.

3. Orientable colorings on I2 × Pn

This section is devoted to calculating the number of all orientable colorings on
I2 × Pn. We also determine the number of D-J equivalence classes of orientable
small covers over I2 × Pn.

3.1. Theorem. By N, we denote the set of natural numbers. Let a, b, c be the
functions from N to N with the following properties:

(1) a(j) = 2a(j − 1) + 8a(j − 2) with a(1) = 1, a(2) = 2;

(2) b(j) = b(j − 1) + 4b(j − 2) with b(1) = b(2) = 1;

(3) c(j) = 2c(j−1)+4c(j−2)−6c(j−3)−3c(j−4)+4c(j−5) with c(1) = c(2) = 1,
c(3) = 3, c(4) = 7, c(5) = 17.

Then, the number of all orientable colorings on I2 × Pn is

|O(I2×Pn)| =
4∏
k=1

(
24 − 2k−1

)
·[a(n−1)+4b(n−1)+2c(n−1)+5· 1+(−1)n

2 ].

Proof. Let e1, e2, e3, e4 be the standard basis of (Z2)4, then (Z2)4 contains 15
nonzero elements (or 15 colors). We choose F1, F2 from F′ and F5, F6 from F′′

such that F1, F2, F5, F6 meet at one vertex of I2 × Pn. Then

B(I2×Pn) = {λ ∈ O(I2×Pn)|λ(F1) = e1, λ(F2) = e2, λ(F5) = e3, λ(F6) =e4}.
By Lemma 2.4, we have

|O(I2 × Pn)| = |B(I2 × Pn)| × |GL(4,Z2)| =
4∏
k=1

(
24 − 2k−1

)
· |B(I2 × Pn)|.

Write

B0(I2 × Pn) = {λ ∈ B(I2 × Pn)|λ(F3) = e1, e1 + e3 + e4},
B1(I2 × Pn) = {λ ∈ B(I2 × Pn)|λ(F3) = e1 + e2 + e3, e1 + e2 + e4}.
By the definition of B(Pn) and Remark 2.3, we have |B(I2 × Pn)| = |B0(I2 ×

Pn)|+ |B1(I2 × Pn)|. Then, our argument proceeds as follows.

(I) Calculation of |B0(I2 × Pn)|.

In this case, no matter which value of λ(F3) is chosen, λ(F4) = e2, e2 + e1 +
e3, e2 + e1 + e4, e2 + e3 + e4. Write

B0
0(I2 × Pn) = {λ ∈ B(I2 × Pn)|λ(F3) = e1, λ(F4) = e2},
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B1
0(I2 × Pn) = {λ ∈ B(I2 × Pn)|λ(F3) = e1, λ(F4) = e2 + e1 + e3},

B2
0(I2 × Pn) = {λ ∈ B(I2 × Pn)|λ(F3) = e1, λ(F4) = e2 + e1 + e4},

B3
0(I2 × Pn) = {λ ∈ B(I2 × Pn)|λ(F3) = e1, λ(F4) = e2 + e3 + e4},

B4
0(I2 × Pn) = {λ ∈ B(I2 × Pn)|λ(F3) = e1 + e3 + e4, λ(F4) = e2},

B5
0(I2 × Pn) = {λ ∈ B(I2 × Pn)|λ(F3) = e1 + e3 + e4, λ(F4) = e2 + e1 + e3},

B6
0(I2 × Pn) = {λ ∈ B(I2 × Pn)|λ(F3) = e1 + e3 + e4, λ(F4) = e2 + e1 + e4},

B7
0(I2 × Pn) = {λ ∈ B(I2 × Pn)|λ(F3) = e1 + e3 + e4, λ(F4) = e2 + e3 + e4}.

By the definition of B0(I2 × Pn) and Remark 2.3, we have |B0(I2 × Pn)| =
7∑
i=0

|Bi0(I2 × Pn)|. Then, our argument is divided into the following cases.

Case 1. Calculation of |B0
0(I2 × Pn)|.

By the definition of B(Pn) and Remark 2.3, we have λ(Fn+4) = e4, e4 + e1 +

e2, e4 + e1 + e3, e4 + e2 + e3. Set B0,0
0 (I2 × Pn) = {λ ∈ B0

0(I2 × Pn)|λ(Fn+3) =

e3, e1+e2+e3} and B0,1
0 (I2×Pn) = B0

0(I2×Pn)−B0,0
0 (I2×Pn). Take an orientable

coloring λ in B0,0
0 (I2 × Pn). Then, λ(Fn+2), λ(Fn+4) ∈ {e4, e4 + e1 + e2, e4 + e1 +

e3, e4+e2+e3}. In this case, the values of λ restricted to Fn+3 and Fn+4 have eight

possible choices. Thus, |B0,0
0 (I2 × Pn)| = 8|B0

0(I2 × Pn−2)|. Take an orientable

coloring λ in B0,1
0 (I2×Pn). Then, λ(Fn+3) = e4, e4+e1+e2, e4+e1+e3, e4+e2+e3.

If we fix any value of λ(Fn+3), then λ(Fn+4) has only two possible values. Thus,

|B0,1
0 (I2 × Pn)| = 2|B0

0(I2 × Pn−1)|. Furthermore, we have that

|B0
0(I2 × Pn)| = 2|B0

0(I2 × Pn−1)|+ 8|B0
0(I2 × Pn−2)|.

A direct observation shows that |B0
0(I2 × P2)| = 1 and |B0

0(I2 × P3)| = 2. Thus,
|B0

0(I2 × Pn)| = a(n− 1).

Case 2. Calculation of |B1
0(I2 × Pn)|.

Set B1,0
0 (I2 × Pn) = {λ ∈ B1

0(I2 × Pn)|λ(Fn+3) = e3} and B1,1
0 (I2 × Pn) =

B1
0(I2 × Pn) − B1,0

0 (I2 × Pn). Take an orientable coloring λ in B1,0
0 (I2 × Pn).

Then, λ(Fn+2), λ(Fn+4) ∈ {e4, e4 +e1 +e2, e4 +e1 +e3, e4 +e2 +e3}, so |B1,0
0 (I2×

Pn)| = 4|B1
0(I2 × Pn−2)|. Take an orientable coloring λ in B1,1

0 (I2 × Pn). Then,
λ(Fn+3) = e4, e4 +e1 +e2, e4 +e1 +e3, e4 +e2 +e3. However, λ(Fn+4) has only one
possible value whichever of the four possible values of λ(Fn+3) is chosen. Thus,

|B1,1
0 (I2 × Pn)| = |B1

0(I2 × Pn−1)|. We easily determine that |B1
0(I2 × P2)| =

|B1
0(I2 × P3)| = 1. Thus, |B1

0(I2 × Pn)| = b(n− 1).

Case 3. Calculation of |B2
0(I2 × Pn)|.

If we interchange e3 and e4, then the problem is reduced to Case 2. Thus,
|B2

0(I2 × Pn)| = b(n− 1).

Case 4. Calculation of |B3
0(I2 × Pn)|.

In this case, λ(Fn+4) = e4, e4 + e1 + e3. Set B3,0
0 (I2 × Pn) = {λ ∈ B3

0(I2 ×
Pn)|λ(Fn+3) = e3}, B3,1

0 (I2×Pn) = {λ ∈ B3
0(I2×Pn)|λ(Fn+3) = e4, e4 +e1 +e3},

and B3,2
0 (I2 × Pn) = {λ ∈ B3

0(I2 × Pn)|λ(Fn+3) = e1 + e2 + e3, e1 + e2 + e4}.
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Then, |B3
0(I2×Pn)| = |B3,0

0 (I2×Pn)|+ |B3,1
0 (I2×Pn)|+ |B3,2

0 (I2×Pn)|. An easy

argument shows that |B3,0
0 (I2 × Pn)| = 2|B3

0(I2 × Pn−2)| and |B3,1
0 (I2 × Pn)| =

|B3
0(I2 × Pn−1)|. Thus,

(2) |B3
0(I2 × Pn)| = |B3

0(I2 × Pn−1)|+ 2|B3
0(I2 × Pn−2)|+ |B3,2

0 (I2 × Pn)|.
Set B(n) = {λ ∈ B3,2

0 (I2 × Pn)|λ(Fn+2) = e1 + e3 + e4}. Then,

(3) |B3,2
0 (I2 × Pn)| = |B3,2

0 (I2 × Pn−1)|+ |B(n)|
and

(4) |B(n)| = 2|B3
0(I2 × Pn−4)|+ 2|B3

0(I2 × Pn−5)|+ |B(n− 2)|+ 2|B3,2
0 (I2 ×

Pn−2)|.
Combining Eqs. (2), (3) and (4), we obtain

|B3
0(I2 × Pn)| = 2|B3

0(I2 × Pn−1)|+ 4|B3
0(I2 × Pn−2)| − 6|B3

0(I2 × Pn−3)|−
3|B3

0(I2 × Pn−4)|+ 4|B3
0(I2 × Pn−5)|.

A direct observation shows that |B3
0(I2 × P2)| = |B3

0(I2 × P3)| = 1, |B3
0(I2 ×

P4)| = 3, |B3
0(I2×P5)| = 7, and |B3

0(I2×P6)| = 17. Thus, |B3
0(I2×Pn)| = c(n−1).

Case 5. Calculation of |B4
0(I2 × Pn)|.

If we interchange e1 and e2, then the problem is reduced to Case 4; thus,
|B4

0(I2 × Pn)| = c(n− 1).

Case 6. Calculation of |B5
0(I2 × Pn)|.

In this case, λ(F7) = e3, λ(F8) = e4, · · · , λ(F7+2i) = e3, λ(F7+2i+1) = e4, · · · .
Thus, |B5

0(I2 × Pn)| = 1+(−1)n

2 .

Case 7. Calculation of |B6
0(I2 × Pn)|.

Similar to Case 6, we have |B6
0(I2 × Pn)| = 1+(−1)n

2 .

Case 8. Calculation of |B7
0(I2 × Pn)|.

Similar to Case 6, we have |B7
0(I2 × Pn)| = 1+(−1)n

2 .

Thus, |B0(I2 × Pn)| = a(n− 1) + 2b(n− 1) + 2c(n− 1) + 3 · 1+(−1)n

2 .

(II) Calculation of |B1(I2 × Pn)|.
In this case, no matter which value of λ(F3) is chosen, λ(F4) = e2, e2 + e3 + e4.

Write

B0
1(I2 × Pn) = {λ ∈ B(I2 × Pn)|λ(F3) = e1 + e2 + e3, λ(F4) = e2},

B1
1(I2 × Pn) = {λ ∈ B(I2 × Pn)|λ(F3) = e1 + e2 + e3, λ(F4) = e2 + e3 + e4},

B2
1(I2 × Pn) = {λ ∈ B(I2 × Pn)|λ(F3) = e1 + e2 + e4, λ(F4) = e2},

B3
1(I2 × Pn) = {λ ∈ B(I2 × Pn)|λ(F3) = e1 + e2 + e4, λ(F4) = e2 + e3 + e4}.

By the definition of B1(I2 × Pn) and Remark 2.3, we have |B1(I2 × Pn)| =
3∑
i=0

|Bi1(I2 × Pn)|. Then, our argument is divided into the following cases.

Case 1. Calculation of |B0
1(I2 × Pn)|.
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If we interchange e1 and e2, then the problem is reduced to Case 2 in (I); thus,
|B0

1(I2 × Pn)| = b(n− 1).

Case 2. Calculation of |B1
1(I2 × Pn)|.

Similar to Case 6 in (I), we have |B1
1(I2 × Pn)| = 1+(−1)n

2 .

Case 3. Calculation of |B2
1(I2 × Pn)|.

If we interchange e1 and e2, then the problem is reduced to Case 3 in (I); thus
|B2

1(I2 × Pn)| = b(n− 1).

Case 4. Calculation of |B3
1(I2 × Pn)|.

Similar to Case 6 in (I), we have |B3
1(I2 × Pn)| = 1+(−1)n

2 .

Thus, |B1(I2 × Pn)| = 2b(n− 1) + 1 + (−1)n. �

3.2. Remark. By using the above method, we prove that

|O(P2 × Pn)| =
4∏

k=1

(
24 − 2k−1

)
· a(n− 1).

Based on Theorem 3.1, we know that the number of D-J equivalence classes of

orientable small covers over I2×Pn is a(n−1)+4b(n−1)+2c(n−1)+5 · 1+(−1)n

2 .

4. Number of equivariant homeomorphism classes

In this section, we determine the number of equivariant homeomorphism classes
of all orientable small covers over I2 × Pn.

Let ϕ denote the Euler’s totient function, i.e., ϕ(1) = 1, ϕ(N) for a positive
integer N (N ≥ 2) is the number of positive integers both less than N and coprime
to N . We have

4.1. Theorem. Let Eo(I
2×Pn) denote the number of equivariant homeomorphism

classes of orientable small covers over I2 × Pn. Then, Eo(I
2 × Pn) is equal to

(1) 1
16n{

∑
t′>1,t′|n

ϕ( nt′ )[|O(P2 × Pt′)|+ |O(P4 × Pt′)|] + 40320
∑

t′>1,t′|n
ϕ( nt′ )[a(t′−

1) + 2b(t′ − 1) + c(t′ − 1)]} for n odd,

(2) 1
16n{

∑
t′>1,t′|n

ϕ( nt′ )[|O(P2 × Pt′)|+ |O(P4 × Pt′)|] + 40320
∑

t′>1,t′|n
ϕ( nt′ )[a(t′−

1) + 2b(t′ − 1) + c(t′ − 1)] + 40320n[ã(n) + c̃(n) + d̃(n) + ẽ(n) + 5
4 ]} for n

even and n 6= 4,

(3) 12180 for n = 4,

where ã(j), b̃(j), c̃(j), d̃(j), and ẽ(j) are defined as follows

ã(j) =





0, j odd,

1, j = 2,

4, j = 4,

2ã(j − 2) + 8ã(j − 4), j even and j ≥ 6,
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b̃(j) =





4, j = 6,

8, j = 8,

b̃(j − 2) + 4b̃(j − 4), j even and j ≥ 10,

0, otherwise,

c̃(j) =





0, j odd,

1, j = 2,

2, j = 4,

6, j = 6,

b̃(j) + b̃(j − 2) + c̃(j − 4), j even and j ≥ 8,

d̃(j) =





0, j odd,

1, j = 2,

4, j = 4,

d̃(j − 2) + 4d̃(j − 4), j even and j ≥ 6,

and

ẽ(j) =





0, j odd,

1, j = 2,

2, j = 4,

6, j = 6,

14, j = 8,

38, j = 10,

2ẽ(j − 2) + 4ẽ(j − 4)− 6ẽ(j − 6)− 3ẽ(j − 8) + 4ẽ(j − 10),
j even and j ≥ 12.

Proof. Based on Theorem 2.5, Burnside Lemma, and Lemma 2.6, we have

Eo(I
2 × Pn) =

{ 1
16n

∑
g∈Aut(F(I2×Pn)) |Λg|, n 6= 4,

1
384

∑
g∈Aut(F(I4)) |Λg|, n = 4,

where Λg = {λ ∈ O(I2 × Pn)|λ = λ ◦ g}.
The argument is divided into three cases: (I) n odd, (II) n even and n 6= 4,

(III) n = 4.

(I) n odd

Given that n is odd, by Remark 2.7, each automorphism g of Aut(F(I2 × Pn))

can be written as xuyvx′u
′
y′v
′
.

Case 1. g = xux′u
′
.
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Let t = gcd(u, 4) (the greatest common divisor of u and 4) and t′ = gcd(u′, n).
Then all facets of F′ are divided into t orbits under the action of g, and each orbit
contains 4

t facets. Thus, each orientable coloring of Λg gives the same coloring on

all 4
t facets of each orbit. Similarly, all facets of F′′ are divided into t′ orbits under

the action of g, and each orbit contains n
t′ facets. Thus, each orientable coloring of

Λg gives the same coloring on all nt′ facets of each orbit. Hence, if t 6= 1 and t′ 6= 1,
then |Λg| = |O(Pt × Pt′)|. If t=1 (or t′ = 1), then all facets of F′ (or F′′) have the
same coloring, which is impossible by the definition of orientable colorings. For
every t > 1, there are exactly ϕ( 4

t ) automorphisms of the form xu, each of which
divides all facets of F′ into t orbits. Similarly, for every t′ > 1, there are exactly
ϕ( nt′ ) automorphisms of the form x′u

′
, each of which divides all facets of F′′ into

t′ orbits. Thus, when g = xux′u
′
,

∑
g=xux′u′

|Λg| =
∑

t,t′>1,t|4,t′|n
ϕ( 4

t )ϕ( nt′ )|O(Pt × Pt′ |

=
∑

t′>1,t′|n
ϕ( nt′ )[|O(P2 × Pt′)|+ |O(P4 × Pt′)|].

Case 2. g = xux′u
′
y′ or xuyx′u

′
y′.

Given that n is odd, each automorphism always gives an interchange between
two neighborly facets of F′′. Thus, the two neighborly facets have the same color-
ing, which contradicts the definition of orientable colorings. Hence, Λg is empty.

Case 3. g = xuyx′u
′

with u even.

Let l = 4−u
2 . Such an automorphism gives an interchange between two neigh-

borly facets Fl and Fl+1. Hence, both facets Fl and Fl+1 have the same coloring,
which contradicts the definition of orientable colorings. Thus, in this case Λg is
also empty.

Case 4. g = xuyx′u
′

with u odd.

Let t′ = gcd(u′, n). All facets of F′′ are divided into t′ orbits under the action
of g, and each orbit contains n

t′ facets. Hence, each orientable coloring of Λg gives
the same coloring on all n

t′ facets of each orbit. If we choose an arbitrary facet
from each orbit, it suffices to color t′ chosen facets for F′′. Moreover, given that
each automorphism g = xuyx′u

′
contains y as its factor and u is odd, it suffices

to color only three neighborly facets of F′ for F′ . In fact, it suffices to consider
the case g = xyx′u

′
because there is no essential difference between this case and

other cases. Based on the argument of Theorem 3.1, we have

|Λg| = 20160[a(t′ − 1) + 2b(t′ − 1) + c(t′ − 1)],

where a(t′−1), b(t′−1) and c(t′−1) are stated as in Theorem 3.1. Given that u is
odd and u ∈ Z4, u=1, 3. For every t′ > 1, there are exactly ϕ( nt′ ) automorphisms

of the form x′u
′
, each of which divides all facets of F′′ into t′ orbits. Thus, when

g = xuyx′u
′
,
∑

g=xuyx′u′
|Λg| = 2

∑
t′>1,t′|n

ϕ( nt′ )20160[a(t′ − 1) + 2b(t′ − 1) + c(t′ − 1)].
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Combining Cases 1 to 4, we complete the proof in (I).

(II) n even and n 6= 4

Given that n 6= 4, by Remark 2.7, each automorphism g of Aut(F(I2 × Pn))

can be written as xuyvx′u
′
y′v
′
.

Case 1. g = xux′u
′
.

Similar to Case 1 in (I), we have
∑

g=xux′u′
|Λg| =

∑
t′>1,t′|n

ϕ( nt′ )[|O(P2 × Pt′)| +

|O(P4 × Pt′)|].
Case 2. g = xuyx′u

′
with u even.

Similar to Case 3 in (I), Λg is empty.

Case 3. g = xuyx′u
′

with u odd.

Similar to Case 4 in (I),
∑

g=xuyx′u′
|Λg| = 2

∑
t′>1,t′|n

ϕ( nt′ )20160[a(t′− 1) + 2b(t′−

1) + c(t′ − 1)].

Case 4. g = xux′u
′
y′ with u′ even.

Similar to Case 3 in (I), Λg is also empty.

Case 5. g = xux′u
′
y′ with u′ odd.

Let t = gcd(u, 4). Then, all facets of F′ are divided into t orbits under the action
of g, and each orbit contains 4

t facets. Thus, each orientable coloring of Λg gives the

same coloring on all 4
t facets of each orbit. If we choose an arbitrary facet from each

orbit, it suffices to color t chosen facets for F′. When t=1 (i.e., u=1, 3), all facets
of F′ have the same coloring, which is impossible by the definition of orientable
colorings. Moreover, given that each automorphism g = xux′u

′
y′ contains y′ as its

factor and u′ is odd, it suffices to color only n
2 + 1 neighborly facets of F′′ for F′′.

First, we consider the case t=4 (i.e., u=4).

The argument of Theorem 3.1 can still be carried out. It suffices to consider
the case g = x′y′ because no essential difference exists between this case and other
cases. Set

C(n) = {λ ∈ Λg|λ(F1) = e1, λ(F2) = e2, λ(F5) = e3, λ(F6) = e4}.
We have |Λg| = 20160|C(n)|. Write

C0(n) = {λ ∈ C(n)|λ(F3) = e1, e1 + e3 + e4},
C1(n) = {λ ∈ C(n)|λ(F3) = e1 + e2 + e3, e1 + e2 + e4}.
Based on the definition of B(Pn) and Remark 2.3, we have |C(n)| = |C0(n)|+

|C1(n)|. Next, we calculate |C0(n)| and |C1(n)|.
(5.1). Calculation of |C0(n)|.

Write

C0
0 (n) = {λ ∈ C(n)|λ(F3) = e1, λ(F4) = e2},
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C1
0 (n) = {λ ∈ C(n)|λ(F3) = e1, λ(F4) = e2 + e1 + e3},

C2
0 (n) = {λ ∈ C(n)|λ(F3) = e1, λ(F4) = e2 + e1 + e4},

C3
0 (n) = {λ ∈ C(n)|λ(F3) = e1, λ(F4) = e2 + e3 + e4},

C4
0 (n) = {λ ∈ C(n)|λ(F3) = e1 + e3 + e4, λ(F4) = e2},

C5
0 (n) = {λ ∈ C(n)|λ(F3) = e1 + e3 + e4, λ(F4) = e2 + e1 + e3},

C6
0 (n) = {λ ∈ C(n)|λ(F3) = e1 + e3 + e4, λ(F4) = e2 + e1 + e4},

C7
0 (n) = {λ ∈ C(n)|λ(F3) = e1 + e3 + e4, λ(F4) = e2 + e3 + e4}.

By the definition of C0(n) and Remark 2.3, we have |C0(n)| =
7∑
i=0

|Ci0(n)|.
Then, our argument proceeds as follows.

(5.1.1). Calculation of |C0
0 (n)|.

Using a similar argument of Case 1 in (I) of Theorem 3.1, we have |C0
0 (n)| =

2|C0
0 (n − 2)| + 8|C0

0 (n − 4)| with initial values of |C0
0 (2)| = 1 and |C0

0 (4)| = 4.
Thus, |C0

0 (n)| = ã(n), where ã(n) is stated in Theorem 4.1.

(5.1.2). Calculation of |C1
0 (n)|.

In this case, λ(F7) = e3, e3 +e1 +e4. Set C1,0
0 (n) = {λ ∈ C1

0 (n)|λ(F7) = e3} and

C1,1
0 (n) = C1

0 (n)−C1,0
0 (n). Using a similar argument of Case 2 in (I) of Theorem

3.1, when n ≥ 10, |C1,0
0 (n)| = |C1,0

0 (n − 2)| + 4|C1,0
0 (n − 4)| with initial values of

|C1,0
0 (6)| = 4 and |C1,0

0 (8)| = 8. Thus, |C1,0
0 (n)| = b̃(n) for n ≥ 6, where b̃(n) is

stated in Theorem 4.1.
Take an orientable coloring λ in C1,1

0 (n). Then λ(F8) = e3, e4 and |C1,1
0 (n)| =

b̃(n − 2) + |C1
0 (n − 4)| for n ≥ 8. Therefore, when n ≥ 8, |C1

0 (n)| = b̃(n) + b̃(n −
2) + |C1

0 (n − 4)| with initial values of |C1
0 (2)| = 1, |C1

0 (4)| = 2 and |C1
0 (6)| = 6.

Thus, |C1
0 (n)| = c̃(n).

(5.1.3). Calculation of |C2
0 (n)|.

Similar to Case 2 in (I) of Theorem 3.1, we have |C2
0 (n)| = |C2

0 (n−2)|+4|C2
0 (n−

4)| with initial values of |C2
0 (2)| = 1 and |C2

0 (4)| = 4. Thus, |C2
0 (n)| = d̃(n).

(5.1.4). Calculation of |C3
0 (n)|.

Similar to Case 4 in (I) of Theorem 3.1, we have |C3
0 (n)| = 2|C3

0 (n − 2)| +
4|C3

0 (n− 4)| − 6|C3
0 (n− 6)| − 3|C3

0 (n− 8)|+ 4|C3
0 (n− 10)|. A direct observation

shows that |C3
0 (2)| = 1, |C3

0 (4)| = 2, |C3
0 (6)| = 6, |C3

0 (8)| = 14, and |C3
0 (10)| = 38.

Thus, |C3
0 (n)| = ẽ(n).

(5.1.5). Calculation of |C4
0 (n)|.

If we interchange e1 and e2, then the problem is reduced to (5.1.4). Thus,
|C4

0 (n)| = ẽ(n).

(5.1.6). Calculation of |C5
0 (n)|.

In this case, λ(F7) = e3, λ(F8) = e4, · · · , λ(Fn+10
2

) =

{
e3, n = 4k,

e4, n = 4k + 2.
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Thus, |C5
0 (n)| = 1.

(5.1.7). Calculation of |C6
0 (n)|.

Similar to (5.1.6), |C6
0 (n)| = 1.

(5.1.8). Calculation of |C7
0 (n)|.

Similar to (5.1.6), |C7
0 (n)| = 1.

Thus, |C0(n)| = ã(n) + c̃(n) + d̃(n) + 2ẽ(n) + 3.

(5.2). Calculation of |C1(n)|.
Set

C0
1 (n) = {λ ∈ C(n)|λ(F3) = e1 + e2 + e3, λ(F4) = e2},

C1
1 (n) = {λ ∈ C(n)|λ(F3) = e1 + e2 + e3, λ(F4) = e2 + e3 + e4},

C2
1 (n) = {λ ∈ C(n)|λ(F3) = e1 + e2 + e4, λ(F4) = e2},

C3
1 (n) = {λ ∈ C(n)|λ(F3) = e1 + e2 + e4, λ(F4) = e2 + e3 + e4}.

Based on the definition of C1(n) and Remark 2.3, we have |C1(n)| =
3∑
i=0

|Ci1(n)|.
Then, the argument proceeds as follows.

(5.2.1). Calculation of |C0
1 (n)|.

If we interchange e1 and e2, then the problem is reduced to (5.1.2). Thus,
|C0

1 (n)| = c̃(n).

(5.2.2). Calculation of |C1
1 (n)|.

Similar to (5.1.6), |C1
1 (n)| = 1.

(5.2.3). Calculation of |C2
1 (n)|.

If we interchange e1 and e2, then the problem is reduced to (5.1.3). Thus,

|C2
1 (n)| = d̃(n).

(5.2.4). Calculation of |C3
1 (n)|.

Similar to (5.1.6), |C3
1 (n)| = 1.

Thus, |C1(n)| = c̃(n) + d̃(n) + 2.

Hence, the number of all orientable colorings in Λg is just

|Λg| = 20160[ã(n) + 2c̃(n) + 2d̃(n) + 2ẽ(n) + 5].

There are exactly n
2 such automorphisms g = x′u

′
y′ because n is even and u′ is

odd. Thus,
∑

g=x′u′y′
|Λg| = 20160 · n2 [ã(n) + 2c̃(n) + 2d̃(n) + 2ẽ(n) + 5].

When t=2 (i.e., u=2), we have
∑

g=x2x′u′y′
|Λg| = 20160 · n2 ã(n).
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Thus,
∑

g=xux′u′y′
|Λg| = 20160[nã(n) + nc̃(n) + nd̃(n) + nẽ(n) + 5

2n].

Case 6. g = xuyx′u
′
y′ with u even or u′ even.

Similar to Case 3 in (I), Λg is empty.

Case 7. g = xuyx′u
′
y′ with u odd and u′ odd.

Similar to Case 5 , we have
∑

g=xuyx′u′y′
|Λg| = 20160n[ã(n) + c̃(n) + d̃(n) + ẽ(n)].

Combining Cases 1 to 7, we complete the proof in (II).

(III) n=4

When n=4, I2 × Pn is a 4-cube I4, and the automorphism group Aut(F(I4))
is isomorphic to Z2 × Z2 × Z2 × Z2 × S4. As before, let χ1, χ2, χ3, and χ4 denote
generators of the first subgroup Z2, the second subgroup Z2, the third subgroup Z2,
and the fourth subgroup Z2 of Aut(F(I4)) respectively. If g = χ1 and λ ∈ Λg, then
λ(F1) = λ(F3). Based on Theorem 3.1, we have |Λg| = 20160[a(3) + 2b(3) + c(3)].
Similarly, we also have |Λg| = 20160[a(3) + 2b(3) + c(3)] for g = χ2, χ3 or χ4.
If g=χ1χ2 and λ ∈ Λg, then λ(F1) = λ(F3) and λ(F2) = λ(F4). Based on Case
1 in (I) of Theorem 3.1, we obtain |Λg| = 20160a(3). Similarly, we also obtain
|Λg| = 20160a(3) for g = χ1χ3, χ1χ4, χ2χ3, χ2χ4 or χ3χ4. If g=χ1χ2χ3 and λ ∈ Λg,
then λ(Fi) = λ(Fi+2) for i = 1, 2, 5. We obtain |Λg| = 20160 · 4. Similarly, we also
obtain |Λg| = 20160 · 4 for g = χ1χ2χ4, χ1χ3χ4 or χ2χ3χ4. If g=χ1χ2χ3χ4 and
λ ∈ Λg, then λ(Fi) = λ(Fi+2) for i = 1, 2, 5, 6. We obtain |Λg| = 20160. Thus

Eo(I
4) = 1

384{20160 · 4[a(3) + 2b(3) + c(3)] + 20160 · 6a(3) + 20160 · 16 + 20160+

20160[a(3) + 4b(3) + 2c(3) + 5]}
= 12180. �
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