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Abstract

This paper examines recent results presented on estimating population
parameters in the presence of censored data with a single detection limit
(DL). The occurrence of censored data due to less than detectable mea-
surements is a common problem with environmental data such as qual-
ity and quantity monitoring applications of water, soil, and air samples.
In this paper, we present an overview of possible statistical methods for
handling non-detectable values, including maximum likelihood, simple
substitution, corrected biased maximum likelihood, and EM algorithm
methods. Simple substitution methods (e.g. substituting 0, DL/2, or
DL for the non-detected values) are the most commonly used. It has
been shown via simulation that if population parameters are estimated
through simple substitution methods, this can cause significant bias
in estimated parameters. Maximum likelihood estimators may pro-
duce dependable estimates of population parameters even when 90% of
the data values are censored and can be performed using a computer
program written in the R Language. A new substitution method of
estimating population parameters from data contain values that are
below a detection limit is presented and evaluated. Worked examples
are given illustrating the use of these estimators utilizing computer
program. Copies of source codes are available upon request.

Keywords: detection limits, censored data, normal and lognormal distributions,
likelihood function, maximum likelihood estimators.

1. Introduction

Environmental data frequently contain values that are below detection limits.
Values that are below DL are reported as being less than some reported limit
of detection, rather than as actual values. A data set for which all observations
may be identified and counted, with some observations falling into the restricted
interval of measurements and the remaining observations being fully measured,
is said to be censored. A situation where observations may be censored would
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be chemical measurements where some observations have a concentration below
the detection limit of the analytical method. A sample for which some observa-
tions are known only to fall below a known detection limit, while the remaining
observations falling above the detection limit are fully measured and reported is
called left-singly censored or simply left censored. Detection limits are usually
determined and justified in terms of the uncertainties that apply to a single rou-
tine measurement. Left-censored data commonly arise in environmental contexts.
Left-censored observations (observations reported as < DL) can occur when the
substance or attribute being measured is either absent or exists at such low concen-
trations that the substance is not present above the DL. In type I censoring, the
detection limit is fixed a priori for all observations and the number of the censored
observations varies. In type II censoring, the number of censored observations is
fixed a priori, and the detection limit vary.

The estimation of the parameters of normal and lognormal populations in the
presence of censored data has been studied by several authors in the context of
environmental data. There has been a corresponding increase in the amount of
attention devoted to the most proper analysis of data which have been collected
in related to environmental issues such as monitoring water and air quality, and
monitoring groundwater quality. The lognormal is frequently the parametric prob-
ability distribution of choice used in fitting environmental data Gilbert (1987).
However, Shumway et al. (1989) examined transformations to normality from

among the Box and Cox (1964) family of transformations: Y = Xλ−1
λ for λ 6= 0,

and Y = ln(X) for λ = 0. The transformed variable Y is assumed to be normally
distributed with mean µ and standard deviation σ . Cohen (1959) used the method
of maximum likelihood to derive estimators for the µ and σ parameters from left
censored samples. Cohen (1959) also provided tables that are needed to report
these maximum likelihood estimates (MLEs). Aboueissa and Stoline (2004) in-
troduced a new algorithm for computing Cohen (1959) MLE estimators of normal
population parameters from censored data with a single detection limit. Estima-
tors obtained via this algorithm required no tables and more easily computed than
the (MLEs) of Cohen (1959). Hass and Scheff (1990) compared methodologies
for the estimation of the averages in truncated samples. Saw (1961) derived the
first-order term in the bias of the Cohen (1959) MLE estimators for µ and σ,
and proposed bias-corrected MLE estimators. Based on the bias-corrected tables
in Saw (1961b), Schneider (1984,1986) performed a least-squares fit to produce
computational formulas for normally distributed singly-censored data. Dempster
et. al. (1977) proposed an iterative method, called the expectation maximization
algorithm (EM algorithm), for obtaining the maximum likelihood estimates for
these censored normal samples. The procedure consists of alternately estimating
the censored observations from the current parameter estimates and estimating
the parameters from the actual and estimated observations.

In practice, probably due to computational ease, simple substitution methods
are commonly used in many environmental applications. One of the most com-
monly used replacement method is to substitute each left censored observation by
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half of the detection limit DL, Helsel et al. (1986) and Helsel et al. (1988). Two
simple substitution methods were suggested by Gilliom and Helsel (1986). In one
method, all left censored observations are replaced by zero. In the other method,
all left censored observations are replaced by the detection limit DL. Aboueissa
and Stoline (2004) developed closed form estimators for estimating normal popula-
tion parameters from singly-left censored data based on a new replacement method.
It has been shown that via simulation if left-censored observations are estimated
through these substitution methods, this can cause significant bias in estimated
parameters. In this article, a new substitution method, called weighted substi-
tution method, is introduced and examined. This method is based on assigning
different weights for each left-censored observation. These weights are estimated
from the sample data prior to computing estimates of population parameters. It
has been shown that via simulation if left-censored data are estimated through the
weighted substitution method, this will reduce the bias in estimated parameters.
Other suggested methods are discussed in Gibbons (1994), Gleit (1985), Schneider
(1986), Gupta (1952), Stoline (1993), El-Shaarawi A. H. and Dolan D. M. (1989),
El-Shaarawi and Esterby (1992), USEPA (1989), NCASI (1985, 1991), Gilliom
and Helsel (1986), Helsel and Gilliom (1986), Helsel and Hirsch (1988), Schmee et.
al. (1985), and Wolynetz (1979).

The objective of this article is to develop a new substitution method which
yield reliable estimates of population parameters from left-censored data, and also
to compare the performances of the various estimation procedures. In addition,
a simple-to-use computer program is introduced and described for estimating the
population parameters of normally or lognormally distributed left-censored data
sets with a single detection limit using the eight parameter estimation methods
described in this article. The authors of this article performed a simulation study
to asses the performance of various estimate procedures in terms of bias and mean
squared error (MSE). Several methods, including MLE, bias-corrected MLE
(UMLE), and EM algorithm (EMA), have been considered.

2. Methods Used for Estimation

To simplify the presentation in this section, the method is described and il-
lustrated by reference to the analysis of normally distributed data, though this
condition occurs infrequently in typical environmental data analysis. However,
it is frequently necessary to transform real environmental data before analysis;
typically the logarithmic transformation of xi = log(yi) is used, although other
transformations are possible. When the logarithmic or other transformation is
used prior to censored data set analysis, it is necessary to transform the analysis
results back to the original scale of measurement following parameter estimation.

Let

mc−observations︷ ︸︸ ︷
x1, ..., xmc︸ ︷︷ ︸
left−censored

,

m−observations︷ ︸︸ ︷
xmc+1, ..., xn︸ ︷︷ ︸
non−censored

be a random sample of n observations of which

mc are left-censored while m = n−mc are non-censored (or fully measured) from
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a normal population with mean µ and standard deviation σ . For censored obser-
vations, it is only known that xj < DL for j = 1, ...,mc.

Let

(2.1) x̄m =
1

m

n∑

i=mc+1

xi , and s2
m =

1

m

n∑

i=mc+1

(xi − x̄m)2

be the sample mean and sample variance of the m non-censored observations
xmc+1, ..., xn.

2.1. MLE Estimators of Cohen. Cohen (1959) employed the method of max-
imum likelihood to the normally distributed left-censored samples, and developed
the following MLE estimators for the mean and standard deviation in terms of a
tabulated function of two arguments:

(2.2) µ̂ = x̄m − λ̂(x̄m −DL) ,

(2.3) σ̂ =

√
s2
m + λ̂(x̄m −DL)2 ,

where

(2.4) λ̂ = λ(h, γ), h =
mc

n
and γ =

s2
m

(x̄m −DL)2

Cohen (1959) provided tables of the function λ̂ = λ(γ, h) restricted to values of
γ = 0.00(0.05)1.00, and values of h = 0.01(0.01)0.10(0.05)0.70(0.10)0.90. The Co-
hen (1959) method requires use of these tables. Schneider (1986) extended these
tables to include values of γ up to 1.48. Schmee et. al. (1985) extended these
tables further to include values of γ = 0.00(0.10)1.00(1.00)10.00 and values of
h = 0.10(0.10)0.90. However, interpolations for h and γ values are often required
for most applications.

2.2. Aboueissa and Stoline Algorithm for Computing MLE of Cohen.
Aboueissa and Stoline (2004) introduced an algorithm for computing the Cohen
MLE estimators. This algorithm is based on solving the estimating equation

(2.5) γ =

(
1− h

1−h
φ(ξ)
Φ(ξ) ( h

1−h
φ(ξ)
Φ(ξ) − ξ)

)

( h
1−h

φ(ξ)
Φ(ξ) − ξ)2

,

numerically for ξ (say ξ̂). With ξ̂ obtained via this algorithm, the exact value of
the λ-parameter is then given by:

(2.6) λ̂as = λ(h, ξ̂) =
Y (h, ξ̂)

Y (h, ξ̂)− ξ̂
,

where

Y = Y (h, ξ) =

(
h

1− h

)
Z(ξ),
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Z(ξ) =
φ(−ξ)

1− Φ(−ξ) , and h =
mc

n
= CL = censoring level .

The functions φ(ξ) and Φ(ξ) are the pdf and cdf of the standard unit normal.

with λ̂as obtained from (2.6), the MLE estimators obtained via this algorithm
are obtained from (2.2) and (2.3) as:

(2.7) µ̂as = x̄m − λ̂as(x̄m −DL) ,

and

(2.8) σ̂as =

√
s2
m + λ̂as(x̄m −DL)2 .

MLE estimators obtained via this method are labeled the ASAMLEOC method
in this article. It should be noted that the ASAMLEOC method can be used to
obtain the MLE estimators of population parameters from censored samples for
all values of h and γ without any restrictions, and for all censoring levels includ-
ing censoring levels greater than 0.90. The ASAMLEOC estimators µ̂as and σ̂as
given by (2.7) and (2.8) are essentially Cohen’s (1959) MLE estimators, which are
obtained without the use of any auxiliary tables. It should also be noted that Co-
hen’s (1959) method can not be used to obtain the maximum likelihood estimates
from censored samples that have a censoring level higher than 90% (h > 0.90).

2.3. Bias-Corrected MLE Estimators. Saw (1961) derived the first-order
term in the bias of the MLE estimators of µ and σ and proposed bias-corrected
MLE estimators. Based on the bias-corrected tables in Saw (1961), Schneider
(1986) performed a least-squares fit to produce computational formulas for the
unbiased MLE estimators of µ and σ from normally distributed singly-censored
data. These formulas, for the singly left-censored samples can be written as

(2.9) µ̂u = µ̂− σ̂Bu
n+ 1

, and σ̂u = σ̂ − σ̂Bσ
n+ 1

,

where µ̂ and σ̂ are the MLE estimators of Cohen (1959) or equivalently the
ASAMLE estimators µ̂as and σ̂as, and

(2.10) Bu = −e2.692− 5.439m
n+1 and Bσ = −

(
0.312 +

0.859m

n+ 1

)−2

.

This method will be referred to as the UMLE method in this paper.

2.4. Haas and Scheff Estimators(1990). Haas and Scheff (1990)developed a
power series expansion that fits the tabled values of the auxiliary function λ(γ, h)
to within 6% for Cohen’s (1959) estimates. This power series expansion is given
by:

(2.11)

287



log λ = 0.182344− 0.3256

γ + 1
+ 0.10017γ + 0.78079ω − 0.00581γ2 − 0.06642ω2

− 0.0234γω + 0.000174γ3 + 0.001663γ2ω − 0.00086γω2 − 0.00653ω3,

where ω = log

(
h

1− h

)
.

This method will be referred to as the HS method in this paper.

2.5. Expectation Maximization Algorithm. Dempster et. al. (1977) pro-
posed an iterative method, called the expectation maximization algorithm, for
obtaining the MLE′s for the mean µ and the standard deviation σ of the normal
distribution from censored samples. The procedure used in expectation maximiza-
tion algorithm is based on replacing the censored observations and their squares
in the complete data likelihood function by their conditional expectations given
the data and the current estimates of µ and σ. This method will be referred to as
the EMA method here.

2.6. Substitution Methods. Replacement methods are easier to use and consist
of calculating the usual estimates of the mean and standard deviation by assigning
a constant value to observations that are less than the censoring limit. Two simple
substitution methods were suggested by Gilliom and Helsel (1986). In one method,
all censored observations are replaced by zero. This is the ZE method. In the
other method, all censored observations are replaced by the detection limit (DL).
This is the DL method. One of the most commonly used substitution method,
suggested by Helsel et.al. (1988), is to substitute each censored observations by
half of its detection limit (DL2 ). This is the HDL method.

3. Weighted Substitution Method for Left-Censored Data

The common replacement methods are based on replacing censored observations
that are less than DL by a single constant. Three existing substitution methods
were discussed in Section 2 based on replacing all left-censored observations with
a single value either 0, DL/2, or DL. To avoid tightly grouped replaced values in
cases where there are several left-censored values that share a common detection
limit, left-censored observations may be spaced from zero to the detection limit
according to some specified weights assigned for these left-censored observations.
In the suggested weighted substitution method left-censored observations that are
less than DL are replaced by non-constant different values based on assigning a
different weight for each left-censored observation.More details are now given in
the proposed weighted substitution method yielding estimates for µ and σ. The
following weights are assigned to the mc left-censored observations x1, ..., xmc :

(3.1) wj =

(
(m+ j − 1)

n

) j
j+1

(P (U ≥ DL))
ln(m+j−1)

, for j = 1, 2, ...,mc ,
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where the probability P (U ≥ DL) is estimated from the sample data by:

(3.2) ̂P (U ≥ DL) = 1− Φ

(
DL− x̄m

sm

)

An extensive simulation study was conducted on several weights. The simulation
results (shown in the appendix) indicate that the proposed estimators using (3.1)
are superior to those using the other weights in the sense of mean square error
(variance of the estimator plus the square of the bias) in addition to the ability
to recover the true mean and standard deviation as well as the existing methods
such as maximum likelihood and EM algorithm estimators.

Estimates of the weights given in (3.1) are given by:

(3.3) ŵj =

(
(m+ j − 1)

n

) j
j+1 (

̂P (U ≥ DL)
)ln(m+j−1)

.

where the distribution of U is approximated by a normal distribution with an es-
timated mean x̄m and an estimated variance s2

m.

These weights are selected on a trial and error basis by means of simulations
to yield estimators of population parameters that perform nearly as well as es-
timators obtained via the existing methods such as MLE estimators and EMA
method. Left-censored observations x1, x2, ..., xmc are then replaced by the follow-
ing weighted mc observations:

(3.4) (xw1 , x
w
2 , ..., x

w
mc) ≡ (ŵ1DL, ŵ2DL, ..., ŵmcDL)

Let

(3.5) x̄mc =
1

mc

mc∑

i=1

xwi , and s2
mc =

1

mc

mc∑

i=1

(xwi − x̄mc)2

be the sample mean and sample variance of the weightedmc observations xw1 , x
w
2 , ..., x

w
mc .

The corresponding weighted substitution method estimators µ̂w and σ̂w of µ and
σ are given by, respectively:

(3.6)
µ̂w =

1

n

(
mc∑

i=1

xwi +
n∑

i=mc+1

xi

)

= x̄m − λ̂µw (x̄m − x̄mc) ,
and

(3.7)

σ̂w =

√√√√ 1

n

(
mc∑

i=1

(xwi − µ̂w)2 +
n∑

i=mc+1

(xi − µ̂w)2

)

=

√
m s2

m +mc s2
mc

n
+ λ̂σw (x̄m − x̄mc)2 ,
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where

(3.8) λ̂µw =
mc

n
and λ̂σw =

m mc

n2
.

It should be noted that µ̂w in (3.6) can be written as:

(3.9) µ̂w =
m x̄m +mc x̄mc

n
,

which is the weighted average of the sample means x̄m and x̄mc of fully measured
and weighted observations, respectively. It should also be observed that σ̂w in
(3.7) can be written as:

(3.10) σ̂w =

√
s2
w + λ̂σw (x̄m − x̄mc)2

where s2
w =

m s2m+mc s
2
mc

n is the weighted average of the sample variances s2
m and

s2
mc of fully measured and weighted observations, respectively. Extensive simula-

tion results show that use of the WSM method leads to estimators that have the
ability to recover the true population parameters as well as the maximum likeli-
hood estimators, and are generally superior to the constant replacement methods.
In environmental sciences such as applied medical and environmental studies most
of the data sets include non-detected (or left-censored) data values. The use of
statistical methods such as the proposed one allows estimates of population pa-
rameters from data under consideration.

Asymptotic Variances of Estimates: The asymptotic variance-covariance ma-
trix of the maximum likelihood estimates (µ̂, σ̂) is obtained by inverting the
Fisher information matrix I with elements that are negatives of expected val-
ues of the second-order partial derivatives of the log-likelihood function with re-
spect to the parameters evaluated at the estimates µ̂ and σ̂. The asymptotic
variance-covariance matrix showed by Cohen (1991, 1959), will be used to obtain
the estimated asymptotic variances of both µ̂ and σ̂. Cohen (1959) describes the
estimated asymptotic variance-covariance matrix of (µ̂, σ̂) by

Cov(µ̂, σ̂) =


( σ̂2

n[1−Φ(ξ̂)]
) ϕ̂22

ϕ̂11ϕ̂22−ϕ̂2
12

( σ̂2

n[1−Φ(ξ̂)]
) −ϕ̂12

ϕ̂11ϕ̂22−ϕ̂2
12

( σ̂2

n[1−Φ(ξ̂)]
) −ϕ̂12

ϕ̂11ϕ̂22−ϕ̂2
12

( σ̂2

n[1−Φ(ξ̂)]
) ϕ̂11

ϕ̂11ϕ̂22−ϕ̂2
12




where

ϕ̂11 = ϕ11(ξ̂) = 1 + Z(ξ̂)[Z(−ξ̂) + ξ̂]

ϕ̂12 = ϕ12(ξ̂) = Z(ξ̂)
(

1 + ξ̂[Z(−ξ̂) + ξ̂]
)

ϕ̂22 = ϕ22(ξ̂) = 2 + ξ̂ϕ̂12

For the ASAMLEOC ξ̂ is the solution of (2.5) as described in the previous sec-

tion. For all other methods, without loss of generality, ξ̂ = DL−µ̂
σ̂ .
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4. Computer Programs

To facilitate the application of parameter estimation methods described in this
article, a computer programs is presented to automate parameters estimation from
left-censored data sets that are normally or lognormally distributed. This com-
puter program is called ”SingleLeft.Censored.Normal.Lognormal.estimates”,
and is written in the R language. The EM Algorithm method has been pro-
grammed in the R language. The program is called ”EMA.Method”, and is pre-
sented as a part of the main computer program ”SingleLeft.Censored.Normal.Lognormal.estimates”.
Copies of source codes are available upon request.

5. Worked Example

The guidance document Statistical Analysis of Ground-Water Monitoring Data
at RCRA Facilities, Interim Final Guidance (USEPA, 1989b) contains an ex-
ample involving a set of sulfate concentrations (mg/L) in which three values are
reported as (< 1450 = DL). The sulfate concentrations are assumed to come from
a normal distribution. These 24 sulfate concentration values are:

< 1, 450 1, 800 1, 840 1, 820 1, 860 1, 780 1, 760 1, 800
1, 900 1, 770 1, 790 1, 780 1, 850 1, 760 < 1, 450 1, 710
1, 575 1, 475 1, 780 1, 790 1, 780 < 1, 450 1, 790 1, 800

For this sample n = 24, m = 21, mc = 3, h = 3
24 . The sample mean and the sample

variance of the non-censored sample values are x̄m = 1771.905 and s2
m = 8184.467.

WSM Method: From (3.3) and (3.4) we obtain the estimate weights and the
weighted data as follows:

(ŵ1 , ŵ2 , ŵ3) = (0.9348828 , 0.9430983 , 0.9680175),

and

(xw1 , xw2 , xw3 ) = (1355.580 , 1367.493 , 1403.625).

The updated data set (fully measured and weighted data) is given by:

1,355.580 1, 800 1, 840 1, 820 1, 860 1, 780 1, 760 1, 800
1, 900 1, 770 1, 790 1, 780 1, 850 1, 760 1,367.493 1, 710
1, 575 1, 475 1, 780 1, 790 1, 780 1,403.625 1, 790 1, 800

The sample mean x̄mc and sample variance s2
mc of the weighted data xw1 , xw2 , xw3

are given by:

x̄mc = 1375.566 and s2
mc = 417.3153

From (3.8) we obtain

λ̂µw =
mc

n
=

3

24
= 0.125 and λ̂σw =

m mc

n
=

(21)(3)

242
= 0.109375 .

Accordingly, using estimators (3.6) - (3.7) we calculate the WSM method estima-
tors µ̂w and σ̂w as:

µ̂w = 1771.905− 0.125(1771.905− 1375.566) = 1722.3626 ,
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Table 1. Estimates for µ and σ from Sulfate Data

Method of Estimation µ̂ σ̂
ASAMLEOC 1723.9951 153.6451
UMLE 1723.0543 159.3983
HS 1719.8363 157.9416
EMA 1723.9951 153.6451
ZE 1550.4167 592.0813
HDL 1641.0417 356.4231
DL 1731.6667 135.9968
WSM 1722.3624 156.1880

and

σ̂w =

√
21(8184.467) + 3(417.3153)

24
+ 0.109375(1771.905− 1375.566)2 = 156.1880 .

Applying the computer program ”SingleLeft.Censored.Normal” for these data
as shown in the Appendix, yields estimates for µ and σ parameters via eight
methods of estimation including the WSM method. The results are summarized
in Table 1.

Discussion: An inspection of Table 1 reveals that the ASAMLEOC, UMLE,
HS, EMA and WSM methods yield quite similar estimates for both µ and σ. The
DL method estimate for µ is close to those obtained by ASAMLEOC , EMA,
WSM , UMLE and HS methods. The DL method estimate for σ seems to be
underestimated comparing to those estimates obtained by ASAMLEOC, EMA,
WSM , UMLE and HS methods. The ZE and HDL methods yield estimates
which are different from those produced by ASAMLEOC, EMA, WSM , UMLE
and HS methods. The estimates of σ obtained by the ZE and HDL methods are
highly overestimated, while the estimates of µ are underestimated comparing to
estimates obtained by ASAMLEOC, EMA, WSM , UMLE and HS methods.
Overall, the WSM method performs similar to ASAMLEOC, EMA, UMLE
and HS methods, and superior to the common substitution ZE, HDL and DL
methods.

For more investigations of the performance of the parameter estimation meth-
ods described in section 2, the sulfate concentrations data are artificially cen-
sored at censoring levels (0.25 , 0.50 , 0.625 , 0.75 , 0.875 , 0.917) with a
single detection limit of 1, 450. The corresponding number of left-censored ob-
servations for each of these censoring levels are 6, 12, 15, 18, 21 and 22, respec-
tively. Then the estimates of µ and σ are computed using the computer program
”SingleLeft.Censored.Normal”. Results are summarized in Table 2. The follow-
ing observations are made from an examination of the results reported in Table 2.
The WSM estimates for µ and σ are similar to those reported by ASAMLEOC,
EMA, UMLE and HS for cases with censoring levels less than or equal to 0.75.
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Table 2. Estimates for µ and σ from Sulfate Data with artificial

censoring levels

mc = 6, CL = 0.25 mc = 12, CL = 0.50 mc = 15, CL = 0.625

Method of Estimation µ̂ σ̂ µ̂ σ̂ µ̂ σ̂

ASAMLEOC 1658.6581 205.1465 1497.0883 313.4529 1367.1360 361.7728

UMLE 1656.2454 214.6244 1483.4885 337.3514 1336.9885 399.2681

HS 1651.2191 210.7608 1484.2813 320.0817 1351.8316 368.3523

EMA 1658.6581 205.1465 1497.1077 313.4304 1367.8667 361.0457

ZE 1322.9166 768.2189 888.9583 890.6903 661.4583 855.3307

HDL 1504.1667 457.3376 1251.4583 529.3775 1114.5833 505.3091

DL 1685.4167 158.9478 1613.9583 173.1027 1567.7083 159.5957

WSM 1647.8992 218.9194 1456.3776 341.5274 1314.6978 382.7615

mc = 18, CL = 0.75 mc = 21, CL = 0.875 mc = 22, CL = 0.917

ASAMLEOC 1191.5900 412.5770 815.9108 564.2837 623.1800 605.8733

UMLE 1125.5549 474.0433 642.4414 695.2905 391.6580 773.0710

HS 1170.5134 420.0236 801.0685 568.6071 633.4851 603.1457

EMA 1204.8421 401.5795 996.7565 443.5979 996.0501 381.4442

ZE 436.0417 756.5147 222.5000 588.7080 147.5000 489.2107

HDL 979.7917 443.4793 856.875 348.9562 812.0833 288.8372

DL 1523.5417 134.6947 1491.2500 109.2898 1476.6667 88.4904

WSM 1149.1283 406.4031 968.9359 419.4892 897.6092 410.0749

For cases with censoring levels above 0.75, the WSM and EMA methods yield
similar results. For cases with censoring levels less than 0.75, µ is underestimated
by both ZE and HDL Methods, while σ is overestimated comparing to estimates
obtained by ASAMLEOC, EMA, UMLE and HS methods. The DL method
yield similar estimate for µ for cases with censoring levels less than 0.75, while σ is
underestimated for all censoring levels via this method comparing to estimates ob-
tained by ASAMLEOC of Cohen, EMA, UMLE and HS methods. Overall, the
WSM method yields similar estimates to those obtained by ASAMLEOC, EMA,
UMLE and HS methods, and superior to the existing substitution methods ZE,
HDL and DL for all censoring levels.

6. Comparison of Methods

In this section the estimation methods described above were compared by a sim-
ulation study. We shall assess the performance of estimators obtained via these
methods in terms of the mean squared error MSE (variance of the estimator plus
the square of the bias). The simulation study was performed with ten thousand
repetitions (N = 10000) of samples from a normal distribution for each combina-
tion of n, µ, σ, and the censoring level CL = h. Simulations were conducted with
censoring levels 0.15, 0.25, 0.50, 0.75, and 0.90. The selected combinations of
(n, µ, σ, CL) are:

(6.1)

n = 10, 25, 50, 75, 100 , µ = 25 , σ = 10, CL = 0.15
n = 10, 25, 50, 75, 100 , µ = 25 , σ = 10, CL = 0.25
n = 10, 25, 50, 75, 100 , µ = 25 , σ = 10, CL = 0.50
n = 10, 25, 50, 75, 100 , µ = 10 , σ = 5, CL = 0.75
n = 10, 25, 50, 75, 100 , µ = 10 , σ = 5, CL = 0.90

Given the censoring level CL, the detection limit is computed from the relation
DL = CLth percentile. The data sets were then artificially censored at DL. Any
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value falling below DL was considered to be left-censored. These simulated data
sets (N = 10000 for each combination of n, µ, σ and CL) were then utilized by
these estimators to obtain estimates of µ and σ. The average of the N = 10000
estimates are reported as µ̂ and σ̂ in Table 1 and 2. The MSE based on N = 10000
simulation runs are also reported in each table. The MSE of µ̂ is defined by:

(6.2) MSE(µ̂, µ) = V ar(µ̂) + (b(µ̂, µ))
2
,

where

(6.3) b(µ̂, µ) = µ̂− µ ,
is the bias of µ̂, where

(6.4) µ̂ =
1

N

N∑

i=1

µ̂i and V ar(µ̂) =
1

N − 1

N∑

i=1

(µ̂i − µ̂)2.

The MSE of σ̂ can be defined in a similar way.

Estimation Methods: The methods used for the estimation of the normal pop-
ulation parameters from singly-left-censored samples are:

ASAMLEOC: Aboueissa and Stoline Algorithm for Calculating MLE of Cohen,
UMLE: Bias-Corrected MLE Estimators,

HS: Haas and Scheff method,
EMA: Expectation Maximization algorithm method,
ZE: Replacing all left-censored data by zero method,

HDL: Replacing all left-censored data by half of the detection limit method,
DL: Replacing all left-censored data by the detection limit method,

WSM : The new Weighted Substitution Method.

Tables 4 and 5 are partitioned into 5 subgroups by increasing censoring level:
CL = 0.15, 0.25, 0.50, 0.75 and 0.90. The simulation results within each subgroup
are further partitioned by increasing sample size n = 10, 25, 50 and 75. Two
simulation results are given for each method and for each combination of n, µ, σ
and CL. These are the average value of the estimate and the MSE.

6.1. Comparison of Methods: µ Parameter.
WSM to existing methods: The following observations and conclusions are
made from an examination of the simulation results reported for the mean µ.

For the µ = 25 parameter value: the reported new WSM method estimates
are all in the range 24.8722 − 25.2874, the reported HDL method estimates are
all in the range 23.7069 − 24.6108, the reported EMA method estimates are all
in the range 24.7206 − 25.002 and the reported ASAMLEOC method estimates
are all in the range 24.5856− 25.0355 for cases with censoring level less than 50%.
For cases with censoring levels less than 50%: (1) the MSE values for HDL
method are larger than those reported by the new WSM method, and (2) the
MSE values for WSM method are nearly equal to those reported by the new
EMA and ASAMLEOC methods. For cases with censoring level 50%: the re-
ported new WSM method estimates are all in the range 23.4630 − 24.6600, the
reported HDL method estimates are all in the range 22.5559 − 22.9255, the re-
ported EMA method estimates are all in the range 24.8221 − 25.0050 and the
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reported ASAMLEOC method estimates are all in the range 25.0019− 25.4548.
The MSE values for HDL method are larger than those reported by the new
WSM method. The MSE values for the new WSM method are nearly equal to
those reported by both EMA and ASAMLEOC methods except for cases with
sample sizes 50, 75, and 100.

For the µ = 10 parameter value and for cases with censoring level greater
than or equal to 75%: the reported new WSM method estimates are all in
the range 8.5887 − 9.8231, the reported HDL method estimates are all in the
range 8.6633 − 9.2154, the reported EMA method estimates are all in the range
10.1079−12.7350 and the reported ASAMLEOC method estimates are all in the
range 9.8679− 11.2427. The MSE values for HDL and EMA methods are quite
similar and smaller than those reported by EMA and ASAMLEOC methods ex-
cept for cases with sample sizes 75 and 100. For cases with censoring level 90%
and sample size 10, it has been noted that estimates for the µ parameter are not
available via EMA method.

Overall, the new WSM method appears to be superior to the existing meth-
ods for cases with censoring levels less than 50%, and superior to EMA and
ASAMLEOC methods for cases with censoring levels greater than or equal to
50% except for cases with sample sizes 75 and 100. The new WSM and HDL
methods yield quite similar estimates for the µ parameter for cases with censoring
levels greater than or equal to 50%.

6.2. Comparison of Methods: σ Parameter.
WSM to existing methods: The following observations and conclusions are
made from an examination of the simulation results reported for the standard de-
viation σ.

For the σ = 10 parameter value: the reported new WSM method estimates are
all in the range 9.2886 − 9.8007, the reported HDL method estimates are all in
the range 10.2680 − 10.7815, the reported EMA method estimates are all in the
range 9.6781− 10.0459 and the reported ASAMLEOC method estimates are all
in the range 9.5468 − 10.0068 for cases with censoring level less than 50%. The
MSE values for EMA and ASAMLEOC methods are larger than those reported
by the new WSM method for cases with censoring levels less than 50%. The
MSE values reported by HDL and the new WSM methods are quite similar for
cases with censoring levels less than 50%. For cases with censoring level 50%:
the reported new WSM method estimates are all in the range 9.3601 − 10.5496,
the reported HDL method estimates are all in the range 10.7585 − 11.0397, the
reported EMA method estimates are all in the range 9.5578− 9.9383 and the re-
ported ASAMLEOC method estimates are all in the range 9.1672− 9.8955. The
MSE values for HDL and the new WSM methods are quite similar, and smaller
than those reported by both EMA and ASAMLEOC methods except for cases
with sample sizes 100.
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For the σ = 5 parameter value and for cases with censoring level greater
than or equal to 75%: the reported new WSM method estimates are all in
the range 4.3496 − 5.0428, the reported HDL method estimates are all in the
range 3.0071 − 4.3463, the reported EMA method estimates are all in the range
3.0289 − 4.8167 and the reported ASAMLEOC method estimates are all in the
range 3.8187 − 4.9756. The MSE values for EMA, EMA and ASAMLEOC
methods are larger than those reported by the new WSM method. For cases with
censoring level 90% and sample size 10, it has been noted that estimates for the σ
parameter are not available via EMA method. It should be noted that the σ = 5
parameter value for most cases is highly under estimated by EMA, EMA and
ASAMLEOC methods.

Overall, the new WSM method appears to be superior to HDL method for
cases with censoring levels greater than or equal to 50%, and superior to EMA
and ASAMLEOC methods for all censoring cases. The HDL and the new WSM
methods perform similarly for cases with censoring levels less than 50%.

In summary, the maximum likelihood estimators (ASAMLEOC), the new weighted
substitution method estimators (WSM), and the EM algorithm estimators (EMA)
perform similarly, and all are generally superior to the existing substitution method
estimators.

6.3. Additional Simulation Results.
The following simulation results are obtained using the following combinations of
n, µ, σ, and censoring level CL.

Table 3. Estimates for µ and σ from Sulfate Data

(n, µ, σ) k CL
(k, 25, 10) k = 10, 25, 50, 75, 100 0.75 - 0.90
(k, 10, 5) k = 10, 25, 50, 75, 100 0.15 - 0.50
(k, 20, 3) k = 10, 25, 50, 75, 100 0.10 - 0.90

Tables 6, 7 and 8 are partitioned into two subgroups. Each subgroup has a differ-
ent censoring level. The simulation results within each subgroup are given for both
population mean µ and standard deviation σ. Two simulation results are given
for each method and for each combination of n, µ, σ and CL. These simulation
results are the average value of the estimate and the MSE.
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Table 4. Simulation Estimates of the Mean µ from Normally Dis-

tributed Left-Censored Samples with a Single Detection Limit

Methods Of Estimation

MLE Replacement
(n, µ, σ) EMA ASAMLEOC UMLE HS WSM ZE HDL DL

CL = 0.15

(10, 25, 10) µ̂
MSE

24.7206
12.9903

24.5856
12.1390

24.3367
12.4803

24.4160
12.3479

25.0303
10.2139

22.4497
14.1331

24.0517
10.3785

25.6536
12.1721

(25, 25, 10) µ̂
MSE

25.0022
4.0587

25.0047
4.0515

24.9302
4.0600

24.8702
4.0765

25.2874
3.6776

23.3820
5.5471

24.6056
3.5844

25.8292
4.7208

(50, 25, 10) µ̂
MSE

24.9873
1.9815

24.9610
1.9524

24.9221
1.9576

24.8229
1.9836

25.2175
1.7494

23.4054
3.9807

24.6045
1.8237

25.8036
2.5930

(75, 25, 10) µ̂
MSE

24.9569
1.3018

24.9167
1.2937

24.8892
1.2997

24.7757
1.3415

25.1520
1.2036

23.3772
3.5491

24.5654
1.2649

25.7536
1.8417

(100, 25, 10) µ̂
MSE

24.9303
1.0832

24.9455
1.0840

24.9308
1.0861

24.8173
1.1177

25.1187
1.0118

23.5041
3.0278

24.6108
1.0706

25.7176
1.5900

CL = 0.25

(10, 25, 10) µ̂
MSE

24.9314
11.1167

24.7705
10.1121

24.3606
10.6242

24.5564
10.2893

25.1387
8.6504

20.8147
22.7221

23.7069
8.7693

26.5991
12.2048

(25, 25, 10) µ̂
MSE

24.8567
4.7220

25.0355
4.4562

24.9278
4.4708

24.8842
4.4865

25.0651
3.8785

21.9426
11.9771

24.1728
4.0882

26.4031
6.3499

(50, 25, 10) µ̂
MSE

24.9379
2.3519

24.9031
2.2546

24.8405
2.2750

24.7176
2.3375

24.9884
1.9278

21.6906
12.1852

24.0783
2.4918

26.4659
4.3222

(75, 25, 10) µ̂
MSE

24.9199
1.3578

24.9175
1.3316

24.8798
1.3406

24.7403
1.3983

24.8745
1.1832

21.7923
11.0518

24.1097
1.7847

26.4272
3.3294

(100, 25, 10) µ̂
MSE

24.9792
1.0849

25.0024
1.0738

24.9770
1.0749

24.8292
1.1061

24.8722
0.9745

21.9016
10.2353

24.1936
1.4676

26.4857
3.2606

CL = 0.50

(10, 25, 10) µ̂
MSE

24.8221
18.5532

25.1868
15.2003

24.1506
17.3134

24.9091
15.4780

24.6600
10.1436

16.2848
79.3801

22.5559
12.9385

28.8270
27.0316

(25, 25, 10) µ̂
MSE

24.9778
6.7314

25.4548
6.3569

25.0936
6.3417

25.2066
6.3287

23.8873
5.2874

16.9032
67.0511

22.9255
7.2413

28.9479
20.7299

(50, 25, 10) µ̂
MSE

24.9382
3.2269

25.0019
2.9649

24.8038
3.0511

24.7091
3.1225

23.8758
4.0171

16.4341
74.0480

22.6824
6.7341

28.9307
17.8859

(75, 25, 10) µ̂
MSE

25.0050
1.9961

25.1557
1.9971

25.0237
1.9946

24.8749
2.0344

23.76042
4.2894

16.6278
70.5353

22.8010
5.7310

28.9742
17.3938

(100, 25, 10) µ̂
MSE

24.9496
1.4499

24.9960
1.3884

24.8980
1.4097

24.7015
1.5089

23.4630
5.1825

16.4471
73.4808

22.6953
5.9611

28.9434
16.6976

CL = 0.75

(10, 10, 5) µ̂
MSE

11.1600
4.9783

10.9294
6.9497

9.7694
8.5266

10.7134
6.9843

9.8231
2.3121

4.6079
29.4568

9.1331
2.5634

13.6582
16.9481

(25, 10, 5) µ̂
MSE

10.3701
3.2304

10.7352
3.9538

10.1216
4.0427

10.4767
3.8897

9.2815
2.3455

4.4301
31.1690

9.2023
2.3161

13.9745
17.4969

(50, 10, 5) µ̂
MSE

10.2091
1.6294

10.2622
1.7626

9.8291
1.9279

9.9475
1.8441

9.1792
1.2663

4.1868
33.8541

9.1008
1.1847

14.0148
16.8751

(75, 10, 5) µ̂
MSE

10.1761
1.0370

10.0857
1.2607

9.7393
1.4362

9.7467
1.4306

9.0131
1.6401

4.1183
34.6373

9.0916
1.0413

14.0649
17.0802

(100, 10, 5) µ̂
MSE

10.1079
0.8523

9.9587
0.9697

9.6655
1.1543

9.6094
1.2111

8.9862
1.2560

4.0600
35.3154

9.0399
1.0860

14.0197
16.5823

CL = 0.90

(10, 10, 5) µ̂
MSE

NAN
NAN

9.9275
28.3201

6.4233
78.0182

9.8992
28.5537

9.7546
2.1788

1.7684
67.8434

8.6633
3.4499

15.5582
36.3779

(25, 10, 5) µ̂
MSE

12.7350
11.2545

11.2427
10.9418

9.8571
13.8752

10.8905
11.3257

9.0188
2.8197

2.1579
7.8420

9.1766
1.3721

16.1952
40.5871

(50, 10, 5) µ̂
MSE

12.4702
8.8839

9.8679
8.3572

9.0350
11.1032

9.4993
9.3857

9.0459
5.7839

1.8560
66.3434

9.1220
2.1813

16.3880
42.1725

(75, 10, 5) µ̂
MSE

12.3973
7.6331

10.5135
4.9507

9.9385
5.4244

10.1106
5.2242

9.1537
6.9610

1.9673
64.5361

9.2154
4.8869

16.4635
42.6704

(100, 10, 5) µ̂
MSE

12.2278
6.3274

9.8990
4.2162

9.4768
4.9141

9.4882
4.8985

8.5887
6.3863

1.8662
66.1671

9.1851
3.8660

16.5041
42.9826
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Table 5. Simulation Estimates of the Standard Deviation σ from

Normally Distributed Left-Censored Samples with a Single Detection

Limit

Methods Of Estimation

MLE Replacement
(n, µ, σ) EMA ASAMLEOC UMLE HS WSM ZE HDL DL

CL = 0.15

(10, 25, 10) σ̂
MSE

10.0459
6.3001

9.6976
6.4146

10.7021
8.1939

9.8076
6.4824

9.4377
5.3325

13.0290
11.5996

10.3384
4.9412

8.0643
8.1432

(25, 25, 10) σ̂
MSE

9.8113
2.5130

9.7730
2.5439

10.1485
2.7096

9.8612
2.5525

9.6837
2.2003

12.4614
7.0256

10.2680
1.8620

8.4608
4.2423

(50, 25, 10) σ̂
MSE

9.9661
1.3647

10.0068
1.3279

10.2000
1.4193

10.0965
1.3572

9.7549
1.0455

12.5478
7.0106

10.4218
0.9788

8.6617
2.7903

(75, 25, 10) σ̂
MSE

9.9220
0.8380

9.9845
0.8363

10.1138
0.8708

10.0765
0.8575

9.4640
0.7558

12.5021
6.5641

10.4922
0.6781

8.6389
2.4788

(100, 25, 10) σ̂
MSE

9.9273
0.6693

9.9035
0.6685

9.9950
0.6715

9.9874
0.6704

9.7880
0.6262

12.3037
5.5621

10.3035
0.5424

8.6555
2.3117

CL = 0.25

(10, 25, 10) σ̂
MSE

9.6782
7.6926

9.7455
7.8342

10.9469
10.6996

9.8648
7.9515

9.2886
4.5755

14.7549
25.2537

10.7656
3.3651

7.2926
11.7217

(25, 25, 10) σ̂
MSE

9.7791
2.8727

9.5468
2.7838

9.9658
2.8110

9.6299
2.7655

9.5273
2.0599

13.8585
15.9031

10.4642
1.7138

7.6557
7.1502

(50, 25, 10) σ̂
MSE

9.9417
1.5469

9.9884
1.4527

10.2161
1.5662

10.0907
1.4891

9.5583
1.0459

14.2765
18.8102

10.7815
1.1838

7.8224
5.6361

(75, 25, 10) σ̂
MSE

9.9461
0.9648

9.9494
0.9589

10.0974
0.9944

10.0468
0.9761

9.6981
0.6769

14.1626
17.6624

10.7359
0.9304

7.8518
5.2130

(100, 25, 10) σ̂
MSE

9.9602
0.7465

9.9296
0.7489

10.0385
0.7619

10.0245
0.7601

9.8007
0.4713

14.1353
17.3686

10.7264
0.8366

7.8658
5.0213

CL = 0.50

(10, 25, 10) σ̂
MSE

9.5578
15.6057

9.1672
12.0724

10.8553
16.6869

9.2823
12.1633

9.3601
3.7688

16.7716
49.5103

10.7585
3.1956

5.3312
25.6978

(25, 25, 10) σ̂
MSE

9.7338
5.2199

9.2809
5.2880

9.9360
5.4728

9.3811
5.2627

9.9686
1.6210

16.7956
47.6687

10.8394
1.8370

5.5985
21.1074

(50, 25, 10) σ̂
MSE

9.9095
2.6241

9.8507
2.5035

10.2101
2.7096

9.9679
2.5395

10.2462
1.3816

16.9698
49.3191

11.0231
1.6188

5.7495
18.9206

(75, 25, 10) σ̂
MSE

9.9029
1.6039

9.7586
1.5602

9.9950
1.5756

9.8706
1.5542

10.3847
1.4119

16.9536
48.8112

11.0084
1.3613

5.7604
18.4996

(100, 25, 10) σ̂
MSE

9.9383
1.2036

9.8955
1.2086

10.0758
1.2475

10.0129
1.2261

10.5496
1.7183

16.9832
16.9832

11.0397
1.3615

5.7767
18.2478

CL = 0.75

(10, 10, 5) σ̂
MSE

4.2618
5.2597

3.8187
5.6734

4.9812
7.2788

3.8871
5.6663

4.3496
1.1665

7.1417
5.5348

4.2411
1.5443

1.5442
12.6638

(25, 10, 5) σ̂
MSE

4.5483
2.7109

4.2664
2.7569

4.8400
2.8810

4.3438
2.7305

4.6328
0.4991

7.2150
5.3049

4.3111
0.8201

1.6639
11.4708

(50, 10, 5) σ̂
MSE

4.7104
1.3499

4.6859
1.2885

5.0415
1.3782

4.7798
1.2854

4.8445
0.2456

7.1681
4.8861

4.3241
0.5780

1.7189
10.9302

(75, 10, 5) σ̂
MSE

4.8058
0.8648

4.8796
0.8804

5.1431
0.9823

4.9806
0.9026

4.9818
0.1611

7.1746
4.8646

4.3463
0.5148

1.7528
10.6573

(100, 10, 5) µ̂
MSE

4.8167
0.6827

4.9337
0.6806

5.1437
0.7556

5.0375
0.7065

5.0428
0.1283

7.1359
4.6661

4.3290
0.5177

1.7547
10.6186

CL = 0.90

(10, 10, 5) σ̂
MSE

NAN
NAN

4.2813
13.5159

6.8391
36.5542

4.2891
13.5523

4.3553
1.5075

5.3054
1.463764

3.0071
4.4102

0.7088
18.7701

(25, 10, 5) σ̂
MSE

3.5159
5.3528

4.0208
5.5123

4.9838
6.9890

4.1082
5.5572

4.4259
0.8011

5.8762
1.1049

3.3071
3.0605

0.8551
17.3969

(50, 10, 5) σ̂
MSE

3.4667
4.5614

4.9175
3.7233

5.5312
4.9842

5.0063
3.8528

4.8617
0.4854

5.6002
0.5449

3.2012
3.3510

0.9177
16.7972

(75, 10, 5) σ̂
MSE

3.4707
3.8156

4.5939
2.2375

4.9854
2.4406

4.6899
2.2567

4.8792
0.3493

5.7293
0.65004

3.2513
3.1282

0.9179
16.7499

(100, 10, 5) σ̂
MSE

3.5912
3.0289

4.9756
1.7452

5.2876
2.0531

5.0733
1.8204

4.8105
0.2995

5.6338
0.4841

3.2202
3.2185

0.9437
16.5173
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Table 6. Simulation Estimates of the Mean µ and σ from Normally

Distributed Left-Censored Samples with a Single Detection Limit and

Censoring Levels CL = 0.75, 0.90: (k, 25, 10) , (k =
10, 25, 50, 75, 100)

Methods Of Estimation

MLE Replacement
(n, µ, σ) EMA ASAMLEOC UMLE HS WSM ZE HDL DL

CL = 0.75

(10, 25, 10) µ̂
MSE

27.565
21.380

26.815
34.594

24.464
42.150

26.380
34.912

27.349
26.146

10.737
205.140

21.543
19.480

32.349
72.169

(25, 25, 10) µ̂
MSE

25.492
11.982

26.063
14.436

24.800
16.016

25.528
14.680

25.797
11.949

10.235
218.58

21.480
14.862

32.725
65.793

(50, 25, 10) µ̂
MSE

25.321
6.356

25.493
6.912

24.620
7.578

24.857
7.245

25.407
6.216

9.689
234.71

21.376
14.493

33.063
68.410

(75, 25, 10) µ̂
MSE

25.294
4.253

25.148
5.072

24.457
5.826

24.471
5.801

25.221
4.392

9.487
240.82

21.283
14.641

33.080
67.417

(100, 25, 10) µ̂
MSE

25.223
3.434

24.947
3.905

24.354
4.632

24.242
4.850

25.086
3.474

9.412
243.12

21.281
14.450

33.151
68.053

(10, 25, 10) σ̂
MSE

8.464
20.263

7.742
21.496

10.099
27.905

7.880
21.453

8.114
18.758

16.589
47.473

9.635
12.165

3.133
49.949

(25, 25, 10) σ̂
MSE

9.259
11.333

8.782
11.516

9.963
12.918

8.943
11.534

9.040
10.770

16.612
45.296

9.735
7.948

3.416
44.854

(50, 25, 10) σ̂
MSE

9.548
5.479

9.451
5.080

10.167
5.556

9.640
5.100

9.499
5.083

16.532
43.540

9.734
5.599

3.469
43.307

(75, 25, 10) σ̂
MSE

9.601
3.588

9.726
3.637

10.457
5.826

11.471
5.801

9.664
3.485

16.467
42.344

9.721
2.422

3.494
42.789

(100, 25, 10) σ̂
MSE

9.748
2.733

9.970
2.791

10.394
3.187

10.179
2.940

9.859
2.666

16.483
42.417

9.756
2.320

3.543
42.050

CL = 0.90

(10, 25, 10) µ̂
MSE

NAN 24.304
110.97

16.853
8.147

24.244
111.98

23.178
29.204

4.080
437.99

20.178
19.204

36.276
146.64

(25, 25, 10) µ̂
MSE

30.247
44.689

27.918
44.648

25.236
53.141

27.246
45.532

28.366
42.684

4.916
403.54

21.211
17.366

37.506
165.91

(50, 25, 10) µ̂
MSE

29.900
34.130

24.606
31.013

22.926
41.799

23.866
34.897

27.251
21.481

4.214
432.14

20.983
17.709

37.751
167.83

(75, 25, 10) µ̂
MSE

29.811
30.283

25.967
27.901

24.815
19.642

25.164
18.856

26.881
18.244

4.465
421.76

21.179
17.674

37.894
169.76

(100, 25, 10) µ̂
MSE

29.637
27.767

24.944
17.654

24.116
20.304

24.138
20.268

27.290
15.268

4.213
432.14

21.053
16.340

37.892
168.765

(10, 25, 10) σ̂
MSE

NAN 8.587
52.124

13.718
141.74

8.603
52.263

11.177
3.453

12.239
8.032

6.873
11.582

1.507
73.601

(25, 25, 10) σ̂
MSE

7.251
21.416

7.784
22.564

9.649
27.230

7.951
22.670

7.816
19.561

13.367
12.790

7.390
17.606

1.654
70.487

(50, 25, 10) σ̂
MSE

6.941
17.354

9.915
13.288

11.153
18.132

10.094
13.751

8.475
11.657

12.697
7.945

7.150
8.526

1.848
66.917

(75, 25, 10) σ̂
MSE

6.935
24.960

9.207
8.208

9.991
8.925

9.398
8.264

8.791
9.549

12.984
9.373

7.257
9.790

1.842
66.862

(100, 25, 10) σ̂
MSE

6.970
13.718

9.755
7.583

10.367
8.631

9.947
7.832

8.363
8.131

12.698
7.606

7.132
8.736

1.848
66.734

The following observations and conclusions are made from an examination of
the simulation results reported in Tables 6− 8. The new WSM method appears
to be superior to existing substitution methods for all censoring cases, and yields
quite similar estimates to EMA and ASAMLEOC methods. The HDL and the
newWSM methods perform similarly for cases with censoring levels less than 50%.

In summary, the maximum likelihood estimators (ASAMLEOC), the new weighted
substitution method estimators (WSM), and the EM algorithm estimators (EMA)
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Table 7. Simulation Estimates of the Mean µ and σ from Normally

Distributed Left-Censored Samples with a Single Detection Limit and

Censoring Levels CL = 0.15, 0.50: (k, 10, 5) , (k = 10, 25, 50, 75, 100)

Methods Of Estimation

MLE Replacement
(n, µ, σ) EMA ASAMLEOC UMLE HS WSM ZE HDL DL

CL = 0.15

(10, 10, 5) µ̂
MSE

10.078
2.836

10.103
2.669

9.888
2.689

9.928
2.667

10.045
2.437

9.405
2.195

9.976
2.203

10.547
2.951

(25, 10, 5) µ̂
MSE

10.046
1.019

10.047
1.013

10.010
1.102

9.980
1.014

10.046
1.011

9.626
1.140

10.043
1.272

10.460
1.256

(50, 10, 5) µ̂
MSE

9.977
0.508

9.964
0.492

9.945
0.494

9.894
0.502

9.979
0.498

9.580
0.538

9.978
0.507

10.380
0.633

(75, 10, 5) µ̂
MSE

9.959
0.373

9.939
0.373

9.925
0.375

9.868
0.387

9.949
0.371

9.585
0.438

9.973
0.351

10.362
0.496

(100, 10, 5) µ̂
MSE

9.993
0.256

9.999
0.255

9.991
0.255

9.934
0.259

9.996
0.254

9.643
0.316

10.213
0.238

10.382
0.399

(10, 10, 5) σ̂
MSE

5.019
1.524

4.856
1.703

5.359
2.178

4.911
1.723

5.027
1.526

5.746
1.727

4.825
1.852

4.048
2.194

(25, 10, 5) σ̂
MSE

4.917
0.640

4.886
0.617

5.073
0.656

4.929
0.618

4.911
0.596

5.520
0.612

4.819
0.597

4.230
1.046

(50, 10, 5) σ̂
MSE

4.931
0.337

4.952
0.328

5.047
0.341

4.997
0.332

4.956
0.329

5.514
0.398

4.849
0.321

4.285
0.755

(75, 10, 5) σ̂
MSE

5.015
0.236

5.045
0.237

5.111
0.253

5.092
0.248

5.030
0.234

5.553
0.400

4.913
0.213

4.366
0.578

(100, 10, 5) σ̂
MSE

4.931
0.120

4.923
0.161

4.968
0.159

4.965
0.159

4.927
0.158

5.449
0.267

4.829
0.175

4.302
0.605

CL = 0.50

(10, 10, 5) µ̂
MSE

9.990
3.691

10.093
3.433

9.588
3.878

9.955
3.485

10.061
3.240

6.853
10.724

9.357
2.066

11.861
6.368

(25, 10, 5) µ̂
MSE

10.014
1.548

10.228
1.533

10.047
1.531

10.102
1.528

10.121
1.453

7.162
8.392

9.571
1.183

11.980
5.131

(50, 10, 5) µ̂
MSE

9.976
0.754

10.020
0.711

9.921
0.728

9.874
0.743

9.983
0.579

7.294
5.436

9.947
0.441

12.880
4.692

(75, 10, 5) µ̂
MSE

9.962
0.571

10.053
0.522

9.988
0.525

9.924
0.538

10.007
0.532

7.031
8.934

9.494
0.490

11.958
4.252

(100, 10, 5) µ̂
MSE

10.017
0.329

10.029
0.339

9.980
0.340

9.882
0.359

10.022
0.327

6.982
9.196

9.487
0.432

11.992
4.265

(10, 10, 5) σ̂
MSE

4.626
3.317

4.464
2.744

5.287
3.527

4.522
2.744

4.555
2.785

7.115
5.343

4.736
1.679

2.590
6.650

(25, 10, 5) σ̂
MSE

4.866
1.316

4.659
1.280

4.988
1.333

4.780
1.272

4.763
1.224

7.207
5.217

4.862
1.097

2.809
5.230

(50, 10, 5) σ̂
MSE

4.975
0.612

4.934
0.586

5.114
0.638

4.992
0.596

4.954
0.579

7.294
5.436

4.947
0.541

2.880
4.692

(75, 10, 5) σ̂
MSE

4.955
0.431

4.868
0.427

4.986
0.430

4.924
0.425

4.917
0.417

7.257
5.217

4.923
0.302

2.873
4.666

(100, 10, 5) σ̂
MSE

4.936
0.230

4.924
0.273

5.024
0.278

4.983
0.275

4.930
0.265

7.290
5.338

4.924
0.217

2.873
4.614

perform similarly, and all are generally superior to the existing substitution method
estimators.

7. Conclusions and Recommendations

This article has dealt with the problem of estimating the mean and standard de-
viation of a normal and/or lognormal populations in the presence of left-censored
data. To avoid clumping of replaced values in cases where there are several left-
censored observations that share a common detection limit, a new replacement
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Table 8. Simulation Estimates of the Mean µ and σ from Normally

Distributed Left-Censored Samples with a Single Detection Limit and

Censoring Levels CL = 0.10, 0.90: (k, 20, 3) , (k = 10, 25, 50, 75, 100)

Methods Of Estimation

MLE Replacement
(n, µ, σ) EMA ASAMLEOC UMLE HS WSM ZE HDL DL

CL = 0.10

(10, 20, 3) µ̂
MSE

19.984
0.948

20.026
0.895

19.982
0.896

20.004
0.895

20.005
0.915

18.482
3.034

19.323
1.264

20.164
0.919

(25, 20, 3) µ̂
MSE

19.962
0.370

19.948
0.363

19.929
0.366

19.914
0.370

19.955
0.365

18.151
3.694

19.137
1.058

20.123
0.374

(50, 20, 3) µ̂
MSE

19.973
0.177

19.980
0.175

19.973
0.176

19.952
0.178

19.976
0.176

18.496
2.404

19.309
0.635

20.122
0.190

(75, 20, 3) µ̂
MSE

19.900
0.125

19.983
0.124

19.977
0.124

19.952
0.126

19.986
0.124

18.405
2.646

19.271
0.643

20.137
0.143

(100, 20, 3) µ̂
MSE

19.990
0.087

19.992
0.087

19.989
0.087

19.964
0.088

19.991
0.087

18.513
2.286

19.324
0.538

19.991
0.087

(10, 20, 3) σ̂
MSE

3.143
0.537

2.780
0.554

3.026
0.600

2.796
0.552

3.068
0.474

6.595
13.047

3.319
1.948

2.549
0.629

(25, 20, 3) σ̂
MSE

2.988
0.214

2.967
0.220

3.075
0.241

2.992
0.222

2.993
0.211

7.090
16.783

4.644
2.786

2.666
0.289

(50, 20, 3) σ̂
MSE

2.977
0.104

2.961
0.102

3.012
104

2.982
0.102

2.970
0.101

6.614
13.083

3.427
2.080

2.711
0.168

(75, 20, 3) σ̂
MSE

2.988
0.066

2.999
0.067

3.035
0.069

3.022
0.068

2.994
0.065

6.789
14.377

4.526
2.358

2.728
0.129

(100, 20, 3) σ̂
MSE

2.986
0.053

2.983
0.052

3.008
0.053

3.004
0.052

2.985
0.052

6.621
13.129

4.042
2.103

2.730
0.116

CL = 0.90

(10, 20, 3) µ̂
MSE

NAN 19.896
11.399

17.761
32.365

19.879
11.512

18.866
12.444

2.462
307.61

12.894
51.034

23.327
12.850

(25, 20, 3) µ̂
MSE

21.756
4.333

20.830
4.200

20.032
5.098

20.627
4.317

21.385
3.816

2.965
290.20

13.325
44.812

23.685
14.411

(50, 20, 3) µ̂
MSE

21.420
2.985

19.862
3.364

19.354
4.479

19.634
3.796

20.631
2.119

2.517
305.67

13.180
46.661

23.843
15.274

(75, 20, 3) µ̂
MSE

21.423
2.733

20.217
1.646

19.866
1.881

19.972
1.787

20.716
1.634

2.672
300.27

13.255
45.576

23.839
15.018

(100, 20, 3) µ̂
MSE

21.382
2.393

19.976
1.468

19.725
1.696

19.733
1.691

20.678
1.255

2.518
305.62

13.207
46.219

23.896
15.425

(10, 20, 3) σ̂
MSE

NAN 2.609
5.860

4.167
15.924

2.613
5.879

6.895
6.173

7.387
19.540

3.909
1.013

0.432
6.751

(25, 20, 3) σ̂
MSE

1.997
2.061

2.317
2.027

2.872
2.411

2.367
2.034

2.320
1.735

8.038
25.496

4.220
1.546

0.495
6.353

(50, 20, 3) σ̂
MSE

2.128
1.496

3.002
1.395

3.377
1.907

3.057
1.451

2.693
1.086

7.560
20.850

4.012
1.763

0.561
5.999

(75, 20, 3) σ̂
MSE

2.082
1.404

2.797
0.811

3.036
0.908

2.856
0.824

2.444
0.917

7.742
22.529

4.093
1.220

0.557
5.999

(100, 20, 3) σ̂
MSE

2.120
1.157

2.954
0.628

3.139
0.726

3.011
0.651

2.537
0.665

7.563
20.856

4.008
1.035

0.559
5.983

method called weighted substitution method is introduced. In this method left-
censored observations are spaced from zero to the detection limit according to
weights assigned to these non-detected data. To facilitate the application of esti-
mation methods described in this article, a computer program is presented. The
computer program ”SingleLeft.Censored.Normal”, written in the R language, is
an easy-to-use computerized tool for obtaining estimates and their standard devia-
tions of population parameters of singly left-censored data using either a normal or
lognormal distribution. The simulation results presented in Tables 3-4 show that
the new WSM and HDL methods perform similarly for cases where the censoring
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levels is less than 50%. The new WSM method perform better than EMA and
ASAMLEOC methods for cases where the censoring levels is less than 50%. For
estimating the σ parameter the new WSM method perform better than the exist-
ing methods for cases where the censoring levels is greater than or equal to 75%.
Taken together, the suggested new WSM method appear to work best for nor-
mally distributed censored samples, and lognormal versions of the estimator can
be obtained simply by taking natural logarithm of the data and the detection limit.
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Appendix

The suggested weighted substitution method is based on replacing the left-censored
observations that are less than the detection limit DL by non-constant different
values based on assigning a different weight for each observation. Some of the
choices of the weights that were examined are:

w1j(= wj) =

(
(m+ j − 1)

n

) j
j+1

(P (U ≥ DL))
ln(m+j−1)

, (3.1 given above)

w2j =

(
(m+ j − 1)

n

) j
j+1

[P (U ≥ DL)]

w3j =

(
(m+ j − 1)

n

) j
j+1

(P (U ≥ DL))
m+j−1

,

w4j =

(
(m+ j − 1)

n

)(
j
j+1

)

(P (U ≤ DL))
ln(m+j−1)

,

w5j =

(
(m+ j − 1)

n

) j
j+1

[P (U ≤ DL)]
(m+j−1)

,

w6j =

(
(m+ j − 1)

n

)
(P (U ≥ DL))

ln(m+j−1)

,

w7j =

(
(m+ j − 1)

n

)
(P (U ≥ DL)) ,

for j = 1, 2, ...,mc

where the probability P (U ≥ DL) is estimated from the sample data by:

̂P (U ≥ DL) = 1− Φ

(
DL− x̄m

sm

)

An extensive simulation study was conducted on these weights in addition to other
weights (not shown here). The simulation results indicate that the suggested
weight in (3.1) leads to estimators that have the ability to recover the true mean
and standard deviation as well as the existing methods such as maximum likelihood
and EM algorithm estimators. More simulation results will be available in the web
page of the author later on if needed.
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Table 9. Simulation Estimates of the Mean µ and σ from Normally

Distributed Left-Censored Samples with a Single Detection Limit and

Censoring Levels CL = 0.75, 0.90: (k, 25, 10) , (k =
10, 25, 50, 75, 100)

Methods Of Estimation
(n, µ, σ) MLE W1j(= Wj) W2j W3j W4j W5j W6j W7j

CL = 0.75

(10, 25, 10) µ̂
MSE

26.820
34.258

24.234
12.401

23.252
16.047

19.329
51.433

11.108
194.777

10.741
205.259

21.515
21.974

22.402
15.600

(25, 25, 10) µ̂
MSE

26.063
14.436

23.465
6.016

20.810
22.861

13.064
148.885

10.320
216.079

10.235
218.583

19.899
30.475

22.433
9.668

(50, 25, 10) µ̂
MSE

25.493
6.912

24.206
5.299

19.842
30.481

10.692
206.662

9.706
234.184

9.689
234.705

19.339
35.300

21.544
7.859

(75, 25, 10) µ̂
MSE

25.148
5.072

24.521
5.233

19.296
35.658

9.883
229.296

9.493
240.630

9.487
240.824

18.920
40.013

21.625
8.410

(100, 25, 10) µ̂
MSE

24.980
3.789

24.113
4.305

18.714
42.200

9.571
238.248

9.416
242.978

9.413
243.065

18.997
38.541

22.970
6.051

(10, 25, 10) σ̂
MSE

7.490
22.999

8.921
3.664

8.536
4.216

11.143
6.978

16.354
44.455

16.586
47.441

10.111
2.020

3.023
51.492

(25, 25, 10) σ̂
MSE

8.782
11.516

10.168
1.413

9.342
5.342

14.902
27.034

16.560
44.618

16.612
45.296

11.266
5.969

10.379
7.088

(50, 25, 10) σ̂
MSE

9.451
5.080

9.745
0.576

11.873
3.077

15.960
36.846

16.522
43.411

16.532
43.540

12.475
5.094

11.987
4.726

(75, 25, 10) σ̂
MSE

9.726
3.637

9.912
0.314

11.267
2.292

16.245
39.594

16.463
42.298

16.467
42.344

11.611
4.972

11.945
5.237

(100, 25, 10) σ̂
MSE

9.950
2.791

10.486
1.468

11.732
4.555

16.397
41.318

16.484
42.428

16.485
42.448

12.464
3.102

10.997
2.250

CL = 0.90

(10, 25, 10) µ̂
MSE

24.891
108.321

24.215
99.875

22.568
114.827

7.982
387.340

5.174
393.543

4.045
439.447

20.009
121.432

20.099
132.093

(25, 25, 10) µ̂
MSE

27.918
44.648

23.327
42.724

20.050
45.861

12.317
191.703

5.044
398.446

4.918
403.496

18.748
48.107

20.927
41.091

(50, 25, 10) µ̂
MSE

24.606
31.013

23.938
29.925

18.526
52.094

8.797
289.135

4.245
430.836

4.214
432.141

17.937
59.028

20.844
31.088

(75, 25, 10) µ̂
MSE

25.967
17.901

23.983
16.502

16.584
78.491

5.541
382.210

4.485
420.910

4.465
421.758

15.983
88.275

20.569
21.601

(100, 25, 10) µ̂
MSE

24.944
17.655

23.896
16.520

16.544
78.921

5.135
398.059

4.222
431.778

4.213
432.136

16.188
84.747

21.690
20.197

(10, 25, 10) σ̂
MSE

8.587
52.124

9.071
50.071

8.672
55.982

12.014
67.803

13.322
84.007

13.366
58.602

14.071
55.341

13.510
52.762

(25, 25, 10) σ̂
MSE

7.784
22.567

9.771
15.847

9.585
24.087

11.906
16.094

16.560
44.618

16.612
45.296

12.647
25.442

12.993
23.087

(50, 25, 10) σ̂
MSE

9.915
13.288

9.964
10.487

10.730
11.522

12.510
13.951

12.687
14.890

12.997
13.944

11.604
15.604

12.106
12.106

(75, 25, 10) σ̂
MSE

9.207
8.208

10.156
5.371

11.415
7.468

12.656
9.784

12.977
9.332

12.984
9.373

10.938
8.034

11.048
7.997

(100, 25, 10) σ̂
MSE

9.755
7.583

10.143
5.264

11.544
6.514

12.423
7.486

12.696
8.591

12.699
8.606

11.479
6.479

11.029
8.029
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Table 10. Simulation Estimates of the Mean µ and σ from Normally

Distributed Left-Censored Samples with a Single Detection Limit and

Censoring Levels CL = 0.15, 0.50: (k, 10, 5) , (k = 10, 25, 50, 75, 100)

Methods Of Estimation
(n, µ, σ) MLE W1j(= Wj) W2j W3j W4j W5j W6j W7j

CL = 0.15

(10, 10, 5) µ̂
MSE

10.013
2.669

10.327
2.617

10.388
2.988

11.072
2.899

9.001
3.120

9.105
3.195

10.704
3.560

11.264
3.626

(25, 10, 5) µ̂
MSE

10.047
1.013

10.073
1.008

10.560
1.788

9.661
1.843

9.326
1.848

9.034
1.901

10.544
1.196

10.703
1.934

(50, 10, 5) µ̂
MSE

9.964
0.492

10.084
0.490

10.286
0.553

9.570
0.804

9.380
0.638

9.294
0.701

10.363
0.781

10.565
0.739

(75, 10, 5) µ̂
MSE

9.939
0.373

10.164
0.367

10.372
0.426

9.618
0.621

9.585
0.438

9.275
0.509

10.357
0.470

10.470
0.478

(100, 10, 5) µ̂
MSE

9.991
0.255

10.082
0.270

10.298
0.334

9.654
0.375

9.542
0.416

9.343
0.493

10.165
0.273

10.380
0.326

(10, 10, 5) σ̂
MSE

4.856
1.703

4.609
1.544

4.241
1.973

4.065
2.164

5.974
2.218

6.746
2.228

4.221
1.986

4.244
2.507

(25, 10, 5) σ̂
MSE

4.886
0.617

4.772
0.690

4.356
0.842

5.209
0.973

5.520
0.908

5.728
0.937

4.522
0.690

4.409
0.798

(50, 10, 5) σ̂
MSE

4.952
0.329

4.885
0.302

4.404
0.585

5.456
0.604

5.513
0.698

5.743
0.599

4.270
0.603

4.417
0.957

(75, 10, 5) σ̂
MSE

5.045
0.237

4.829
0.293

4.482
0.434

5.496
0.450

5.553
0.500

5.729
0.564

4.645
0.375

4.510
0.609

(100, 10, 5) σ̂
MSE

4.923
0.161

4.772
0.189

4.412
0.458

5.431
0.354

5.449
0.377

5.793
0.386

4.589
0.306

4.430
0.414

CL = 0.50

(10, 10, 5) µ̂
MSE

10.093
3.433

10.114
2.506

10.490
2.339

9.245
3.189

6.897
10.452

6.853
10.724

9.706
3.213

10.655
3.233

(25, 10, 5) µ̂
MSE

10.228
1.533

9.975
0.827

10.593
1.230

7.873
5.163

7.169
8.352

7.162
8.392

9.560
0.889

10.445
0.989

(50, 10, 5) µ̂
MSE

10.020
0.711

9.969
0.561

10.493
0.677

7.200
8.130

6.980
9.288

6.979
9.288

9.620
0.608

10.464
0.664

(75, 10, 5) µ̂
MSE

10.054
0.522

9.779
0.517

10.573
0.547

7.078
8.670

7.031
8.931

7.957
8.652

9.483
0.690

10.950
0.472

(100, 10, 5) µ̂
MSE

10.029
0.339

9.827
0.366

10.469
0.466

6.996
9.112

6.982
9.194

6.982
9.196

9.465
0.627

10.482
0.769

(10, 10, 5) σ̂
MSE

4.464
2.744

4.310
1.864

3.741
3.279

4.633
2.321

7.074
5.166

7.115
5.343

4.370
2.190

4.179
2.320

(25, 10, 5) σ̂
MSE

4.659
1.280

4.599
0.668

3.968
1.407

6.502
2.879

7.200
5.184

7.207
5.217

4.705
0.998

10.534
1.093

(50, 10, 5) σ̂
MSE

4.934
0.586

4.866
0.267

4.118
0.933

7.082
4.565

7.293
5.565

7.294
5.436

9.520
0.703

10.964
0.864

(75, 10, 5) σ̂
MSE

4.868
0.427

4.868
0.179

4.116
0.895

7.211
5.021

7.257
5.215

7.946
6.012

4.658
0.258

4.242
0.683

(100, 10, 5) σ̂
MSE

4.924
0.273

4.932
0.118

4.148
0.800

7.276
5.275

7.290
5.337

7.290
5.338

5.311
0.216

4.261
0.617
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Table 11. Simulation Estimates of the Mean µ and σ from Normally

Distributed Left-Censored Samples with a Single Detection Limit and

Censoring Levels CL = 0.10, 0.90: (k, 20, 3) , (k = 10, 25, 50, 75, 100)

Methods Of Estimation
(n, µ, σ) MLE W1j(= Wj) W2j W3j W4j W5j W6j W7j

CL = 0.10

(10, 20, 3) µ̂
MSE

20.026
0.895

20.008
0.881

19.881
0.892

19.067
1.319

18.488
3.016

18.482
3.034

19.752
0.913

19.375
0.870

(25, 20, 3) µ̂
MSE

19.948
0.363

19.937
0.353

19.762
0.408

18.863
1.735

18.151
3.693

18.151
3.694

19.474
0.538

19.683
0.483

(50, 20, 3) µ̂
MSE

19.980
0.176

19.984
0.172

19.799
0.217

18.736
1.794

18.496
2.404

17.968
2.725

19.672
0.238

19.754
0.282

(75, 20, 3) µ̂
MSE

19.983
0.124

19.990
0.122

19.781
0.175

18.531
2.277

18.405
2.646

17.998
2.763

19.667
0.0.238

19.873
0.195

(100, 20, 3) µ̂
MSE

19.992
0.087

19.999
0.087

19.783
0.139

18.559
2.157

18.513
2.286

18.092
14.109

19.761
0.147

19.072
0.185

(10, 20, 3) σ̂
MSE

2.780
0.554

3.026
0.432

2.789
0.455

4.218
2.324

6.579
12.932

6.595
13.047

3.204
0.543

2.772
0.493

(25, 20, 3) σ̂
MSE

2.967
0.220

2.953
0.173

3.274
0.292

5.311
6.297

7.090
16.777

7.390
15.638

3.367
0.427

3.245
0.258

(50, 20, 3) σ̂
MSE

2.961
0.102

2.928
0.081

3.285
0.187

5.951
9.016

6.614
13.083

7.025
12.573

3.348
0.218

2.790
0.276

(75, 20, 3) σ̂
MSE

2.999
0.067

2.960
0.054

3.359
0.204

6.447
12.022

6.789
14.377

6.993
12.948

3.408
0.241

3.209
0.187

(100, 20, 3) σ̂
MSE

2.983
0.052

2.945
0.045

3.365
0.194

6.492
12.238

6.621
13.129

6.904
12.839

3.405
0.225

2.789
0.098

CL = 0.90

(10, 20, 3) µ̂
MSE

19.398
15.410

18.993
16.107

17.859
17.703

14.982
30.444

5.676
282.441

4.462
307.606

12.836
51.858

13.908
47.054

(25, 20, 3) µ̂
MSE

20.830
4.200

18.759
6.295

17.983
8.054

12.467
77.596

11.050
83.965

13.966
92.837

11.658
72.274

13.133
57.946

(50, 20, 3) µ̂
MSE

19.862
3.364

18.699
3.109

15.795
5.895

10.277
8.973

6.537
12.948

6.517
56.666

13.125
10.102

12.042
41.033

(75, 20, 3) µ̂
MSE

20.217
1.646

18.649
2.017

16.972
3.896

9.683
11.874

8.375
13.874

7.047
15.266

13.196
11.551

12.972
16.801

(100, 20, 3) µ̂
MSE

19.976
3.706

19.274
4.003

14.280
8.604

14.168
16.173

8.523
21.403

7.518
23.619

13.138
33.287

14.973
49.818

(10, 20, 3) σ̂
MSE

2.609
5.860

3.546
6.027

4.013
6.627

5.546
7.182

7.470
15.271

7.387
16.539

4.975
5.048

4.998
6.192

(25, 20, 3) σ̂
MSE

2.317
2.027

3.402
2.377

3.869
3.094

5.678
4.289

5.678
7.286

6.038
11.494

4.812
3.750

5.091
10.700

(50, 20, 3) σ̂
MSE

2.936
1.392

3.078
1.973

4.948
3.275

5.826
5.749

6.553
9.788

6.560
10.849

5.329
8.188

4.958
7.854

(75, 20, 3) σ̂
MSE

2.797
2.811

3.306
2.913

3.972
4.870

8.522
10.611

7.738
17.492

6.803
15.529

5.028
10.722

6.145
9.321

(100, 20, 3) σ̂
MSE

2.594
4.628

3.514
5.023

6.014
6.286

7.378
13.307

7.562
15.009

7.563
14.721

6.235
8.517

6.663
7.452
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