On estimating population parameters in the presence of censored data: overview of available methods

Abou El-Makarim A. Aboueissa*

Abstract

This paper examines recent results presented on estimating population parameters in the presence of censored data with a single detection limit $(D L)$. The occurrence of censored data due to less than detectable measurements is a common problem with environmental data such as quality and quantity monitoring applications of water, soil, and air samples. In this paper, we present an overview of possible statistical methods for handling non-detectable values, including maximum likelihood, simple substitution, corrected biased maximum likelihood, and EM algorithm methods. Simple substitution methods (e.g. substituting $0, D L / 2$, or $D L$ for the non-detected values) are the most commonly used. It has been shown via simulation that if population parameters are estimated through simple substitution methods, this can cause significant bias in estimated parameters. Maximum likelihood estimators may produce dependable estimates of population parameters even when 90% of the data values are censored and can be performed using a computer program written in the R Language. A new substitution method of estimating population parameters from data contain values that are below a detection limit is presented and evaluated. Worked examples are given illustrating the use of these estimators utilizing computer program. Copies of source codes are available upon request.

Keywords: detection limits, censored data, normal and lognormal distributions, likelihood function, maximum likelihood estimators.

1. Introduction

Environmental data frequently contain values that are below detection limits. Values that are below $D L$ are reported as being less than some reported limit of detection, rather than as actual values. A data set for which all observations may be identified and counted, with some observations falling into the restricted interval of measurements and the remaining observations being fully measured, is said to be censored. A situation where observations may be censored would

[^0]be chemical measurements where some observations have a concentration below the detection limit of the analytical method. A sample for which some observations are known only to fall below a known detection limit, while the remaining observations falling above the detection limit are fully measured and reported is called left-singly censored or simply left censored. Detection limits are usually determined and justified in terms of the uncertainties that apply to a single routine measurement. Left-censored data commonly arise in environmental contexts. Left-censored observations (observations reported as $<D L$) can occur when the substance or attribute being measured is either absent or exists at such low concentrations that the substance is not present above the $D L$. In type I censoring, the detection limit is fixed a priori for all observations and the number of the censored observations varies. In type $I I$ censoring, the number of censored observations is fixed a priori, and the detection limit vary.

The estimation of the parameters of normal and lognormal populations in the presence of censored data has been studied by several authors in the context of environmental data. There has been a corresponding increase in the amount of attention devoted to the most proper analysis of data which have been collected in related to environmental issues such as monitoring water and air quality, and monitoring groundwater quality. The lognormal is frequently the parametric probability distribution of choice used in fitting environmental data Gilbert (1987). However, Shumway et al. (1989) examined transformations to normality from among the Box and Cox (1964) family of transformations: $Y=\frac{X^{\lambda}-1}{\lambda}$ for $\lambda \neq 0$, and $Y=\ln (X)$ for $\lambda=0$. The transformed variable Y is assumed to be normally distributed with mean μ and standard deviation σ. Cohen (1959) used the method of maximum likelihood to derive estimators for the μ and σ parameters from left censored samples. Cohen (1959) also provided tables that are needed to report these maximum likelihood estimates (MLEs). Aboueissa and Stoline (2004) introduced a new algorithm for computing Cohen (1959) MLE estimators of normal population parameters from censored data with a single detection limit. Estimators obtained via this algorithm required no tables and more easily computed than the (MLEs) of Cohen (1959). Hass and Scheff (1990) compared methodologies for the estimation of the averages in truncated samples. Saw (1961) derived the first-order term in the bias of the Cohen (1959) MLE estimators for μ and σ, and proposed bias-corrected MLE estimators. Based on the bias-corrected tables in Saw (1961b), Schneider $(1984,1986)$ performed a least-squares fit to produce computational formulas for normally distributed singly-censored data. Dempster et. al. (1977) proposed an iterative method, called the expectation maximization algorithm ($E M$ algorithm), for obtaining the maximum likelihood estimates for these censored normal samples. The procedure consists of alternately estimating the censored observations from the current parameter estimates and estimating the parameters from the actual and estimated observations.

In practice, probably due to computational ease, simple substitution methods are commonly used in many environmental applications. One of the most commonly used replacement method is to substitute each left censored observation by
half of the detection limit $D L$, Helsel et al. (1986) and Helsel et al. (1988). Two simple substitution methods were suggested by Gilliom and Helsel (1986). In one method, all left censored observations are replaced by zero. In the other method, all left censored observations are replaced by the detection limit $D L$. Aboueissa and Stoline (2004) developed closed form estimators for estimating normal population parameters from singly-left censored data based on a new replacement method. It has been shown that via simulation if left-censored observations are estimated through these substitution methods, this can cause significant bias in estimated parameters. In this article, a new substitution method, called weighted substitution method, is introduced and examined. This method is based on assigning different weights for each left-censored observation. These weights are estimated from the sample data prior to computing estimates of population parameters. It has been shown that via simulation if left-censored data are estimated through the weighted substitution method, this will reduce the bias in estimated parameters. Other suggested methods are discussed in Gibbons (1994), Gleit (1985), Schneider (1986), Gupta (1952), Stoline (1993), El-Shaarawi A. H. and Dolan D. M. (1989), El-Shaarawi and Esterby (1992), USEPA (1989), NCASI (1985, 1991), Gilliom and Helsel (1986), Helsel and Gilliom (1986), Helsel and Hirsch (1988), Schmee et. al. (1985), and Wolynetz (1979).

The objective of this article is to develop a new substitution method which yield reliable estimates of population parameters from left-censored data, and also to compare the performances of the various estimation procedures. In addition, a simple-to-use computer program is introduced and described for estimating the population parameters of normally or lognormally distributed left-censored data sets with a single detection limit using the eight parameter estimation methods described in this article. The authors of this article performed a simulation study to asses the performance of various estimate procedures in terms of bias and mean squared error (MSE). Several methods, including MLE, bias-corrected MLE $(U M L E)$, and $E M$ algorithm $(E M A)$, have been considered.

2. Methods Used for Estimation

To simplify the presentation in this section, the method is described and illustrated by reference to the analysis of normally distributed data, though this condition occurs infrequently in typical environmental data analysis. However, it is frequently necessary to transform real environmental data before analysis; typically the logarithmic transformation of $x_{i}=\log \left(y_{i}\right)$ is used, although other transformations are possible. When the logarithmic or other transformation is used prior to censored data set analysis, it is necessary to transform the analysis results back to the original scale of measurement following parameter estimation. Let $\underbrace{\overbrace{x_{1}, \ldots, x_{m_{c}}}^{m_{c}-\text { observations }}}_{\text {left-censored }}, \overbrace{\text { non-censored }}^{m-\text { observations }} \overbrace{m_{c}+1}, \ldots, x_{n} ~ b e ~ a ~ r a n d o m ~ s a m p l e ~ o f ~ n ~ o b s e r v a t i o n s ~ o f ~ w h i c h ~$ m_{c} are left-censored while $m=n-m_{c}$ are non-censored (or fully measured) from
a normal population with mean μ and standard deviation σ. For censored observations, it is only known that $x_{j}<D L$ for $j=1, \ldots, m_{c}$.

Let

$$
\begin{equation*}
\bar{x}_{m}=\frac{1}{m} \sum_{i=m_{c}+1}^{n} x_{i}, \quad \text { and } \quad s_{m}^{2}=\frac{1}{m} \sum_{i=m_{c}+1}^{n}\left(x_{i}-\bar{x}_{m}\right)^{2} \tag{2.1}
\end{equation*}
$$

be the sample mean and sample variance of the m non-censored observations $x_{m_{c}+1}, \ldots, x_{n}$.
2.1. MLE Estimators of Cohen. Cohen (1959) employed the method of maximum likelihood to the normally distributed left-censored samples, and developed the following MLE estimators for the mean and standard deviation in terms of a tabulated function of two arguments:

$$
\begin{align*}
& \hat{\mu}=\bar{x}_{m}-\hat{\lambda}\left(\bar{x}_{m}-D L\right) \tag{2.2}\\
& \hat{\sigma}=\sqrt{s_{m}^{2}+\hat{\lambda}\left(\bar{x}_{m}-D L\right)^{2}} \tag{2.3}
\end{align*}
$$

where

$$
\begin{equation*}
\hat{\lambda}=\lambda(h, \gamma), h=\frac{m_{c}}{n} \text { and } \gamma=\frac{s_{m}^{2}}{\left(\bar{x}_{m}-D L\right)^{2}} \tag{2.4}
\end{equation*}
$$

Cohen (1959) provided tables of the function $\hat{\lambda}=\lambda(\gamma, h)$ restricted to values of $\gamma=0.00(0.05) 1.00$, and values of $h=0.01(0.01) 0.10(0.05) 0.70(0.10) 0.90$. The Cohen (1959) method requires use of these tables. Schneider (1986) extended these tables to include values of γ up to 1.48. Schmee et. al. (1985) extended these tables further to include values of $\gamma=0.00(0.10) 1.00(1.00) 10.00$ and values of $h=0.10(0.10) 0.90$. However, interpolations for h and γ values are often required for most applications.
2.2. Aboueissa and Stoline Algorithm for Computing $M L E$ of Cohen. Aboueissa and Stoline (2004) introduced an algorithm for computing the Cohen $M L E$ estimators. This algorithm is based on solving the estimating equation

$$
\begin{equation*}
\gamma=\frac{\left(1-\frac{h}{1-h} \frac{\phi(\xi)}{\Phi(\xi)}\left(\frac{h}{1-h} \frac{\phi(\xi)}{\Phi(\xi)}-\xi\right)\right)}{\left(\frac{h}{1-h} \frac{\phi(\xi)}{\Phi(\xi)}-\xi\right)^{2}} \tag{2.5}
\end{equation*}
$$

numerically for $\xi(\operatorname{say} \hat{\xi})$. With $\hat{\xi}$ obtained via this algorithm, the exact value of the λ-parameter is then given by:

$$
\begin{equation*}
\hat{\lambda}_{a s}=\lambda(h, \hat{\xi})=\frac{Y(h, \hat{\xi})}{Y(h, \hat{\xi})-\hat{\xi}}, \tag{2.6}
\end{equation*}
$$

where

$$
Y=Y(h, \xi)=\left(\frac{h}{1-h}\right) Z(\xi)
$$

$$
Z(\xi)=\frac{\phi(-\xi)}{1-\Phi(-\xi)}, \quad \text { and } \quad h=\frac{m_{c}}{n}=C L=\text { censoring level }
$$

The functions $\phi(\xi)$ and $\Phi(\xi)$ are the $p d f$ and $c d f$ of the standard unit normal. with $\hat{\lambda}_{a s}$ obtained from (2.6), the MLE estimators obtained via this algorithm are obtained from (2.2) and (2.3) as:

$$
\begin{equation*}
\hat{\mu}_{a s}=\bar{x}_{m}-\hat{\lambda}_{a s}\left(\bar{x}_{m}-D L\right), \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{\sigma}_{a s}=\sqrt{s_{m}^{2}+\hat{\lambda}_{a s}\left(\bar{x}_{m}-D L\right)^{2}} \tag{2.8}
\end{equation*}
$$

$M L E$ estimators obtained via this method are labeled the $A S A M L E O C$ method in this article. It should be noted that the $A S A M L E O C$ method can be used to obtain the $M L E$ estimators of population parameters from censored samples for all values of h and γ without any restrictions, and for all censoring levels including censoring levels greater than 0.90 . The $A S A M L E O C$ estimators $\hat{\mu}_{a s}$ and $\hat{\sigma}_{a s}$ given by (2.7) and (2.8) are essentially Cohen's (1959) MLE estimators, which are obtained without the use of any auxiliary tables. It should also be noted that Cohen's (1959) method can not be used to obtain the maximum likelihood estimates from censored samples that have a censoring level higher than $90 \%(h>0.90)$.
2.3. Bias-Corrected $M L E$ Estimators. Saw (1961) derived the first-order term in the bias of the $M L E$ estimators of μ and σ and proposed bias-corrected MLE estimators. Based on the bias-corrected tables in Saw (1961), Schneider (1986) performed a least-squares fit to produce computational formulas for the unbiased $M L E$ estimators of μ and σ from normally distributed singly-censored data. These formulas, for the singly left-censored samples can be written as

$$
\begin{equation*}
\hat{\mu}_{u}=\hat{\mu}-\frac{\hat{\sigma} B_{u}}{n+1}, \quad \text { and } \quad \hat{\sigma}_{u}=\hat{\sigma}-\frac{\hat{\sigma} B_{\sigma}}{n+1} \tag{2.9}
\end{equation*}
$$

where $\hat{\mu}$ and $\hat{\sigma}$ are the $M L E$ estimators of Cohen (1959) or equivalently the $A S A M L E$ estimators $\hat{\mu}_{a s}$ and $\hat{\sigma}_{a s}$, and

$$
\begin{equation*}
B_{u}=-e^{2.692-\frac{5.439 m}{n+1}} \quad \text { and } \quad B_{\sigma}=-\left(0.312+\frac{0.859 m}{n+1}\right)^{-2} \tag{2.10}
\end{equation*}
$$

This method will be referred to as the $U M L E$ method in this paper.
2.4. Haas and Scheff Estimators(1990). Haas and Scheff (1990)developed a power series expansion that fits the tabled values of the auxiliary function $\lambda(\gamma, h)$ to within 6% for Cohen's (1959) estimates. This power series expansion is given by:

$$
\begin{aligned}
\log \lambda & =0.182344-\frac{0.3256}{\gamma+1}+0.10017 \gamma+0.78079 \omega-0.00581 \gamma^{2}-0.06642 \omega^{2} \\
& -0.0234 \gamma \omega+0.000174 \gamma^{3}+0.001663 \gamma^{2} \omega-0.00086 \gamma \omega^{2}-0.00653 \omega^{3}, \\
& \text { where } \omega=\log \left(\frac{h}{1-h}\right) .
\end{aligned}
$$

This method will be referred to as the $H S$ method in this paper.
2.5. Expectation Maximization Algorithm. Dempster et. al. (1977) proposed an iterative method, called the expectation maximization algorithm, for obtaining the $M L E^{\prime} s$ for the mean μ and the standard deviation σ of the normal distribution from censored samples. The procedure used in expectation maximization algorithm is based on replacing the censored observations and their squares in the complete data likelihood function by their conditional expectations given the data and the current estimates of μ and σ. This method will be referred to as the $E M A$ method here.
2.6. Substitution Methods. Replacement methods are easier to use and consist of calculating the usual estimates of the mean and standard deviation by assigning a constant value to observations that are less than the censoring limit. Two simple substitution methods were suggested by Gilliom and Helsel (1986). In one method, all censored observations are replaced by zero. This is the $Z E$ method. In the other method, all censored observations are replaced by the detection limit ($D L$). This is the $D L$ method. One of the most commonly used substitution method, suggested by Helsel et.al. (1988), is to substitute each censored observations by half of its detection limit $\left(\frac{D L}{2}\right)$. This is the $H D L$ method.

3. Weighted Substitution Method for Left-Censored Data

The common replacement methods are based on replacing censored observations that are less than $D L$ by a single constant. Three existing substitution methods were discussed in Section 2 based on replacing all left-censored observations with a single value either $0, D L / 2$, or $D L$. To avoid tightly grouped replaced values in cases where there are several left-censored values that share a common detection limit, left-censored observations may be spaced from zero to the detection limit according to some specified weights assigned for these left-censored observations. In the suggested weighted substitution method left-censored observations that are less than $D L$ are replaced by non-constant different values based on assigning a different weight for each left-censored observation.More details are now given in the proposed weighted substitution method yielding estimates for μ and σ. The following weights are assigned to the m_{c} left-censored observations $x_{1}, \ldots, x_{m_{c}}$:

$$
\begin{equation*}
w_{j}=\left(\frac{(m+j-1)}{n}\right)^{\frac{j}{j+1}}(P(U \geq D L))^{\ln (m+j-1)} \quad, \text { for } j=1,2, \ldots, m_{c} \tag{3.1}
\end{equation*}
$$

where the probability $P(U \geq D L)$ is estimated from the sample data by:

$$
\begin{equation*}
P(\widehat{U \geq D} L)=1-\Phi\left(\frac{D L-\bar{x}_{m}}{s_{m}}\right) \tag{3.2}
\end{equation*}
$$

An extensive simulation study was conducted on several weights. The simulation results (shown in the appendix) indicate that the proposed estimators using (3.1) are superior to those using the other weights in the sense of mean square error (variance of the estimator plus the square of the bias) in addition to the ability to recover the true mean and standard deviation as well as the existing methods such as maximum likelihood and EM algorithm estimators.

Estimates of the weights given in (3.1) are given by:

$$
\begin{equation*}
\widehat{w_{j}}=\left(\frac{(m+j-1)}{n}\right)^{\frac{j}{j+1}}(P(\widehat{U \geq D} L))^{\ln (m+j-1)} \tag{3.3}
\end{equation*}
$$

where the distribution of U is approximated by a normal distribution with an estimated mean \bar{x}_{m} and an estimated variance s_{m}^{2}.

These weights are selected on a trial and error basis by means of simulations to yield estimators of population parameters that perform nearly as well as estimators obtained via the existing methods such as MLE estimators and EMA method. Left-censored observations $x_{1}, x_{2}, \ldots, x_{m_{c}}$ are then replaced by the following weighted m_{c} observations:

$$
\begin{equation*}
\left(x_{1}^{w}, x_{2}^{w}, \ldots, x_{m_{c}}^{w}\right) \equiv\left(\widehat{w_{1}} D L, \widehat{w_{2}} D L, \ldots, \widehat{w_{m_{c}}} D L\right) \tag{3.4}
\end{equation*}
$$

Let

$$
\begin{equation*}
\bar{x}_{m_{c}}=\frac{1}{m_{c}} \sum_{i=1}^{m_{c}} x_{i}^{w}, \quad \text { and } \quad s_{m_{c}}^{2}=\frac{1}{m_{c}} \sum_{i=1}^{m_{c}}\left(x_{i}^{w}-\bar{x}_{m_{c}}\right)^{2} \tag{3.5}
\end{equation*}
$$

be the sample mean and sample variance of the weighted m_{c} observations $x_{1}^{w}, x_{2}^{w}, \ldots, x_{m_{c}}^{w}$. The corresponding weighted substitution method estimators $\hat{\mu}_{w}$ and $\hat{\sigma}_{w}$ of μ and σ are given by, respectively:

$$
\begin{align*}
\hat{\mu}_{w} & =\frac{1}{n}\left(\sum_{i=1}^{m_{c}} x_{i}^{w}+\sum_{i=m_{c}+1}^{n} x_{i}\right) \tag{3.6}\\
& =\bar{x}_{m}-\hat{\lambda}_{\mu_{w}}\left(\bar{x}_{m}-\bar{x}_{m_{c}}\right)
\end{align*}
$$

and

$$
\begin{align*}
\hat{\sigma}_{w} & =\sqrt{\frac{1}{n}\left(\sum_{i=1}^{m_{c}}\left(x_{i}^{w}-\hat{\mu}_{w}\right)^{2}+\sum_{i=m_{c}+1}^{n}\left(x_{i}-\hat{\mu}_{w}\right)^{2}\right)} \tag{3.7}\\
& =\sqrt{\frac{m s_{m}^{2}+m_{c} s_{m_{c}}^{2}+\hat{\lambda}_{\sigma_{w}}\left(\bar{x}_{m}-\bar{x}_{m_{c}}\right)^{2}}{n}}
\end{align*}
$$

where

$$
\begin{equation*}
\hat{\lambda}_{\mu_{w}}=\frac{m_{c}}{n} \quad \text { and } \quad \hat{\lambda}_{\sigma_{w}}=\frac{m m_{c}}{n^{2}} \tag{3.8}
\end{equation*}
$$

It should be noted that $\hat{\mu}_{w}$ in (3.6) can be written as:

$$
\begin{equation*}
\hat{\mu}_{w}=\frac{m \bar{x}_{m}+m_{c} \bar{x}_{m_{c}}}{n} \tag{3.9}
\end{equation*}
$$

which is the weighted average of the sample means \bar{x}_{m} and $\bar{x}_{m_{c}}$ of fully measured and weighted observations, respectively. It should also be observed that $\hat{\sigma}_{w}$ in (3.7) can be written as:

$$
\begin{equation*}
\hat{\sigma}_{w}=\sqrt{s_{w}^{2}+\hat{\lambda}_{\sigma_{w}}\left(\bar{x}_{m}-\bar{x}_{m_{c}}\right)^{2}} \tag{3.10}
\end{equation*}
$$

where $s_{w}^{2}=\frac{m s_{m}^{2}+m_{c} s_{m_{c}}^{2}}{n}$ is the weighted average of the sample variances s_{m}^{2} and $s_{m_{c}}^{2}$ of fully measured and weighted observations, respectively. Extensive simulation results show that use of the $W S M$ method leads to estimators that have the ability to recover the true population parameters as well as the maximum likelihood estimators, and are generally superior to the constant replacement methods. In environmental sciences such as applied medical and environmental studies most of the data sets include non-detected (or left-censored) data values. The use of statistical methods such as the proposed one allows estimates of population parameters from data under consideration.

Asymptotic Variances of Estimates: The asymptotic variance-covariance matrix of the maximum likelihood estimates $(\hat{\mu}, \hat{\sigma})$ is obtained by inverting the Fisher information matrix I with elements that are negatives of expected values of the second-order partial derivatives of the log-likelihood function with respect to the parameters evaluated at the estimates $\hat{\mu}$ and $\hat{\sigma}$. The asymptotic variance-covariance matrix showed by Cohen $(1991,1959)$, will be used to obtain the estimated asymptotic variances of both $\hat{\mu}$ and $\hat{\sigma}$. Cohen (1959) describes the estimated asymptotic variance-covariance matrix of $(\hat{\mu}, \hat{\sigma})$ by

$$
\operatorname{Cov}(\hat{\mu}, \hat{\sigma})=\left(\begin{array}{ll}
\left(\frac{\hat{\sigma}^{2}}{n[1-\Phi(\hat{\xi})]}\right) \frac{\hat{\varphi}_{22}}{\hat{\varphi}_{11} \hat{\varphi}_{22}-\hat{\varphi}_{12}^{2}} & \left(\frac{\hat{\sigma}^{2}}{n[1-\Phi(\hat{\xi})]}\right) \frac{-\hat{\varphi}_{12}}{\hat{\varphi}_{11} \hat{\varphi}_{22}-\hat{\varphi}_{12}^{2}} \\
\left(\frac{\hat{\sigma}^{2}}{n[1-\Phi(\hat{\xi})]}\right) \frac{-\hat{\varphi}_{12}}{\hat{\varphi}_{11} \hat{\varphi}_{22}-\hat{\varphi}_{12}^{2}} & \left(\frac{\left.\hat{\sigma}^{2}(\hat{\xi})\right]}{n[1-\Phi(\hat{\xi})}\right) \frac{\hat{\varphi}_{11}}{\hat{\varphi}_{11} \hat{\varphi}_{22}-\hat{\varphi}_{12}^{2}}
\end{array}\right)
$$

where

$$
\begin{aligned}
& \hat{\varphi}_{11}=\varphi_{11}(\hat{\xi})=1+Z(\hat{\xi})[Z(-\hat{\xi})+\hat{\xi}] \\
& \hat{\varphi}_{12}=\varphi_{12}(\hat{\xi})=Z(\hat{\xi})(1+\hat{\xi}[Z(-\hat{\xi})+\hat{\xi}]) \\
& \hat{\varphi}_{22}=\varphi_{22}(\hat{\xi})=2+\hat{\xi} \hat{\varphi}_{12}
\end{aligned}
$$

For the $A S A M L E O C \hat{\xi}$ is the solution of (2.5) as described in the previous section. For all other methods, without loss of generality, $\hat{\xi}=\frac{D L-\hat{\mu}}{\hat{\sigma}}$.

4. Computer Programs

To facilitate the application of parameter estimation methods described in this article, a computer programs is presented to automate parameters estimation from left-censored data sets that are normally or lognormally distributed. This computer program is called "SingleLeft.Censored.Normal.Lognormal.estimates", and is written in the R language. The $E M$ Algorithm method has been programmed in the R language. The program is called "EMA.Method", and is presented as a part of the main computer program "SingleLeft.Censored.Normal.Lognormal.estimates". Copies of source codes are available upon request.

5. Worked Example

The guidance document Statistical Analysis of Ground-Water Monitoring Data at $R C R A$ Facilities, Interim Final Guidance ($U S E P A$, 1989b) contains an example involving a set of sulfate concentrations (mg / L) in which three values are reported as $(<1450=D L)$. The sulfate concentrations are assumed to come from a normal distribution. These 24 sulfate concentration values are:

$<1,450$	1,800	1,840	1,820	1,860	1,780	1,760	1,800
1,900	1,770	1,790	1,780	1,850	1,760	$<1,450$	1,710
1,575	1,475	1,780	1,790	1,780	$<1,450$	1,790	1,800

For this sample $n=24, m=21, m_{c}=3, h=\frac{3}{24}$. The sample mean and the sample variance of the non-censored sample values are $\bar{x}_{m}=1771.905$ and $s_{m}^{2}=8184.467$.

WSM Method: From (3.3) and (3.4) we obtain the estimate weights and the weighted data as follows:

$$
\left(\hat{w}_{1}, \hat{w}_{2}, \hat{w}_{3}\right)=(0.9348828,0.9430983,0.9680175),
$$

and

$$
\left(x_{1}^{w}, x_{2}^{w}, x_{3}^{w}\right)=(1355.580,1367.493,1403.625)
$$

The updated data set (fully measured and weighted data) is given by:

$\mathbf{1 , 3 5 5 . 5 8 0}$	1,800	1,840	1,820	1,860	1,780	1,760	1,800
1,900	1,770	1,790	1,780	1,850	1,760	$\mathbf{1 , 3 6 7 . 4 9 3}$	1,710
1,575	1,475	1,780	1,790	1,780	$\mathbf{1 , 4 0 3 . 6 2 5}$	1,790	1,800

The sample mean $\bar{x}_{m_{c}}$ and sample variance $s_{m_{c}}^{2}$ of the weighted data $x_{1}^{w}, x_{2}^{w}, x_{3}^{w}$ are given by:

$$
\bar{x}_{m_{c}}=1375.566 \text { and } s_{m_{c}}^{2}=417.3153
$$

From (3.8) we obtain

$$
\hat{\lambda}_{\mu_{w}}=\frac{m_{c}}{n}=\frac{3}{24}=0.125 \text { and } \hat{\lambda}_{\sigma_{w}}=\frac{m m_{c}}{n}=\frac{(21)(3)}{24^{2}}=0.109375 .
$$

Accordingly, using estimators (3.6) - (3.7) we calculate the WSM method estimators $\hat{\mu}_{w}$ and $\hat{\sigma}_{w}$ as:

$$
\hat{\mu}_{w}=1771.905-0.125(1771.905-1375.566)=1722.3626,
$$

Table 1. Estimates for μ and σ from Sulfate Data

Method of Estimation	$\hat{\mu}$	$\hat{\sigma}$
ASAMLEOC	1723.9951	153.6451
$U M L E$	1723.0543	159.3983
HS	1719.8363	157.9416
$E M A$	1723.9951	153.6451
$Z E$	1550.4167	592.0813
$H D L$	1641.0417	356.4231
$D L$	1731.6667	135.9968
WSM	$\mathbf{1 7 2 2 . 3 6 2 4}$	$\mathbf{1 5 6 . 1 8 8 0}$

and

$$
\hat{\sigma}_{w}=\sqrt{\frac{21(8184.467)+3(417.3153)}{24}+0.109375(1771.905-1375.566)^{2}}=156.1880
$$

Applying the computer program "SingleLeft.Censored.Normal" for these data as shown in the Appendix, yields estimates for μ and σ parameters via eight methods of estimation including the WSM method. The results are summarized in Table 1.

Discussion: An inspection of Table 1 reveals that the $A S A M L E O C, U M L E$, $H S, E M A$ and $W S M$ methods yield quite similar estimates for both μ and σ. The $D L$ method estimate for μ is close to those obtained by $A S A M L E O C, E M A$, $W S M, U M L E$ and $H S$ methods. The $D L$ method estimate for σ seems to be underestimated comparing to those estimates obtained by $A S A M L E O C, E M A$, $W S M, U M L E$ and $H S$ methods. The $Z E$ and $H D L$ methods yield estimates which are different from those produced by $A S A M L E O C, E M A, W S M, U M L E$ and $H S$ methods. The estimates of σ obtained by the $Z E$ and $H D L$ methods are highly overestimated, while the estimates of μ are underestimated comparing to estimates obtained by $A S A M L E O C, E M A, W S M, U M L E$ and $H S$ methods. Overall, the WSM method performs similar to $A S A M L E O C, E M A, U M L E$ and $H S$ methods, and superior to the common substitution $Z E, H D L$ and $D L$ methods.

For more investigations of the performance of the parameter estimation methods described in section 2 , the sulfate concentrations data are artificially censored at censoring levels $(0.25,0.50,0.625,0.75,0.875,0.917)$ with a single detection limit of 1,450 . The corresponding number of left-censored observations for each of these censoring levels are $6,12,15,18,21$ and 22 , respectively. Then the estimates of μ and σ are computed using the computer program "SingleLeft.Censored.Normal". Results are summarized in Table 2. The following observations are made from an examination of the results reported in Table 2. The $W S M$ estimates for μ and σ are similar to those reported by $A S A M L E O C$, $E M A, U M L E$ and $H S$ for cases with censoring levels less than or equal to 0.75 .

TABLE 2. Estimates for μ and σ from Sulfate Data with artificial censoring levels

	$m_{c}=6, C L=0.25$		$m_{c}=12, C L=0.50$		$m_{c}=15, C L=0.625$	
Method of Estimation	$\hat{\mu}$	$\hat{\sigma}$	$\hat{\mu}$	$\hat{\sigma}$	$\hat{\mu}$	$\hat{\sigma}$
ASAMLEOC	1658.6581	205.1465	1497.0883	313.4529	1367.1360	361.7728
$U M L E$	1656.2454	214.6244	1483.4885	337.3514	1336.9885	399.2681
$H S$	1651.2191	210.7608	1484.2813	320.0817	1351.8316	368.3523
EMA	1658.6581	205.1465	1497.1077	313.4304	1367.8667	361.0457
$Z E$	1322.9166	768.2189	888.9583	890.6903	661.4583	855.3307
$H D L$	1504.1667	457.3376	1251.4583	529.3775	1114.5833	505.3091
DL	1685.4167	158.9478	1613.9583	173.1027	1567.7083	159.5957
WSM	1647.8992	218.9194	1456.3776	341.5274	1314.6978	382.7615
	$m_{c}=18, C L=0.75$		$m_{c}=21, C L=0.875$		$m_{c}=22, C L=0.917$	
ASAMLEOC	1191.5900	412.5770	815.9108	564.2837	623.1800	605.8733
$U M L E$	1125.5549	474.0433	642.4414	695.2905	391.6580	773.0710
$H S$	1170.5134	420.0236	801.0685	568.6071	633.4851	603.1457
$E M A$	1204.8421	401.5795	996.7565	443.5979	996.0501	381.4442
$Z E$	436.0417	756.5147	222.5000	588.7080	147.5000	489.2107
$H D L$	979.7917	443.4793	856.875	348.9562	812.0833	288.8372
DL	1523.5417	134.6947	1491.2500	109.2898	1476.6667	88.4904
WSM	1149.1283	406.4031	968.9359	419.4892	897.6092	410.0749

For cases with censoring levels above 0.75 , the $W S M$ and $E M A$ methods yield similar results. For cases with censoring levels less than $0.75, \mu$ is underestimated by both $Z E$ and $H D L$ Methods, while σ is overestimated comparing to estimates obtained by $A S A M L E O C, E M A, U M L E$ and $H S$ methods. The $D L$ method yield similar estimate for μ for cases with censoring levels less than 0.75 , while σ is underestimated for all censoring levels via this method comparing to estimates obtained by $A S A M L E O C$ of Cohen, $E M A, U M L E$ and $H S$ methods. Overall, the $W S M$ method yields similar estimates to those obtained by $A S A M L E O C, E M A$, $U M L E$ and $H S$ methods, and superior to the existing substitution methods $Z E$, $H D L$ and $D L$ for all censoring levels.

6. Comparison of Methods

In this section the estimation methods described above were compared by a simulation study. We shall assess the performance of estimators obtained via these methods in terms of the mean squared error $M S E$ (variance of the estimator plus the square of the bias). The simulation study was performed with ten thousand repetitions ($N=10000$) of samples from a normal distribution for each combination of n, μ, σ, and the censoring level $C L=h$. Simulations were conducted with censoring levels $0.15,0.25,0.50,0.75$, and 0.90 . The selected combinations of $(n, \mu, \sigma, C L)$ are:

$$
\begin{array}{ccc}
n=10,25,50,75,100, \mu=25, & \sigma=10, C L=0.15 \\
n=10,25,50,75,100, \mu=25, & \sigma=10, C L=0.25 \\
n=10,25,50,75,100, \mu=25, & \sigma=10, C L=0.50 \tag{6.1}\\
n=10,25,50,75,100, \mu=10, & \sigma=5, C L=0.75 \\
n=10,25,50,75,100, \mu=10, & \sigma=5, C L=0.90
\end{array}
$$

Given the censoring level $C L$, the detection limit is computed from the relation $D L=C L^{t h}$ percentile. The data sets were then artificially censored at $D L$. Any
value falling below $D L$ was considered to be left-censored. These simulated data sets $(N=10000$ for each combination of n, μ, σ and $C L)$ were then utilized by these estimators to obtain estimates of μ and σ. The average of the $N=10000$ estimates are reported as $\hat{\mu}$ and $\hat{\sigma}$ in Table 1 and 2. The $M S E$ based on $N=10000$ simulation runs are also reported in each table. The $M S E$ of $\hat{\mu}$ is defined by:

$$
\begin{equation*}
M S E(\hat{\mu}, \mu)=\operatorname{Var}(\hat{\mu})+(b(\hat{\mu}, \mu))^{2} \tag{6.2}
\end{equation*}
$$

where

$$
\begin{equation*}
b(\hat{\mu}, \mu)=\hat{\mu}-\mu \tag{6.3}
\end{equation*}
$$

is the bias of $\hat{\mu}$, where

$$
\begin{equation*}
\hat{\mu}=\frac{1}{N} \sum_{i=1}^{N} \hat{\mu}_{i} \quad \text { and } \quad \operatorname{Var}(\hat{\mu})=\frac{1}{N-1} \sum_{i=1}^{N}\left(\hat{\mu}_{i}-\hat{\mu}\right)^{2} . \tag{6.4}
\end{equation*}
$$

The $M S E$ of $\hat{\sigma}$ can be defined in a similar way.
Estimation Methods: The methods used for the estimation of the normal population parameters from singly-left-censored samples are:
ASAMLEOC: Aboueissa and Stoline Algorithm for Calculating MLE of Cohen,
UMLE: Bias-Corrected MLE Estimators,
HS: Haas and Scheff method,
EMA: Expectation Maximization algorithm method,
$Z E$: Replacing all left-censored data by zero method,
$H D L$: Replacing all left-censored data by half of the detection limit method,
$D L$: Replacing all left-censored data by the detection limit method,
WSM: The new Weighted Substitution Method.
Tables 4 and 5 are partitioned into 5 subgroups by increasing censoring level: $C L=0.15,0.25,0.50,0.75$ and 0.90 . The simulation results within each subgroup are further partitioned by increasing sample size $n=10,25,50$ and 75 . Two simulation results are given for each method and for each combination of n, μ, σ and $C L$. These are the average value of the estimate and the $M S E$.

6.1. Comparison of Methods: μ Parameter.

$W S M$ to existing methods: The following observations and conclusions are made from an examination of the simulation results reported for the mean μ.

For the $\mu=25$ parameter value: the reported new $W S M$ method estimates are all in the range $24.8722-25.2874$, the reported $H D L$ method estimates are all in the range $23.7069-24.6108$, the reported $E M A$ method estimates are all in the range $24.7206-25.002$ and the reported $A S A M L E O C$ method estimates are all in the range $24.5856-25.0355$ for cases with censoring level less than 50%. For cases with censoring levels less than 50% : (1) the $M S E$ values for $H D L$ method are larger than those reported by the new $W S M$ method, and (2) the $M S E$ values for $W S M$ method are nearly equal to those reported by the new $E M A$ and $A S A M L E O C$ methods. For cases with censoring level 50% : the reported new WSM method estimates are all in the range $23.4630-24.6600$, the reported $H D L$ method estimates are all in the range $22.5559-22.9255$, the reported $E M A$ method estimates are all in the range $24.8221-25.0050$ and the
reported $A S A M L E O C$ method estimates are all in the range $25.0019-25.4548$. The $M S E$ values for $H D L$ method are larger than those reported by the new $W S M$ method. The $M S E$ values for the new $W S M$ method are nearly equal to those reported by both $E M A$ and $A S A M L E O C$ methods except for cases with sample sizes 50,75 , and 100 .

For the $\mu=10$ parameter value and for cases with censoring level greater than or equal to 75% : the reported new $W S M$ method estimates are all in the range $8.5887-9.8231$, the reported $H D L$ method estimates are all in the range $8.6633-9.2154$, the reported $E M A$ method estimates are all in the range $10.1079-12.7350$ and the reported $A S A M L E O C$ method estimates are all in the range $9.8679-11.2427$. The $M S E$ values for $H D L$ and $E M A$ methods are quite similar and smaller than those reported by $E M A$ and $A S A M L E O C$ methods except for cases with sample sizes 75 and 100. For cases with censoring level 90% and sample size 10, it has been noted that estimates for the μ parameter are not available via $E M A$ method.

Overall, the new $W S M$ method appears to be superior to the existing methods for cases with censoring levels less than 50%, and superior to EMA and $A S A M L E O C$ methods for cases with censoring levels greater than or equal to 50% except for cases with sample sizes 75 and 100 . The new $W S M$ and $H D L$ methods yield quite similar estimates for the μ parameter for cases with censoring levels greater than or equal to 50%.

6.2. Comparison of Methods: σ Parameter.

$W S M$ to existing methods: The following observations and conclusions are made from an examination of the simulation results reported for the standard deviation σ.

For the $\sigma=10$ parameter value: the reported new $W S M$ method estimates are all in the range $9.2886-9.8007$, the reported $H D L$ method estimates are all in the range $10.2680-10.7815$, the reported $E M A$ method estimates are all in the range $9.6781-10.0459$ and the reported $A S A M L E O C$ method estimates are all in the range $9.5468-10.0068$ for cases with censoring level less than 50%. The $M S E$ values for $E M A$ and $A S A M L E O C$ methods are larger than those reported by the new $W S M$ method for cases with censoring levels less than 50%. The $M S E$ values reported by $H D L$ and the new $W S M$ methods are quite similar for cases with censoring levels less than 50%. For cases with censoring level 50% : the reported new $W S M$ method estimates are all in the range $9.3601-10.5496$, the reported $H D L$ method estimates are all in the range $10.7585-11.0397$, the reported $E M A$ method estimates are all in the range $9.5578-9.9383$ and the reported $A S A M L E O C$ method estimates are all in the range $9.1672-9.8955$. The $M S E$ values for $H D L$ and the new $W S M$ methods are quite similar, and smaller than those reported by both $E M A$ and $A S A M L E O C$ methods except for cases with sample sizes 100 .

For the $\sigma=5$ parameter value and for cases with censoring level greater than or equal to 75% : the reported new $W S M$ method estimates are all in the range $4.3496-5.0428$, the reported $H D L$ method estimates are all in the range $3.0071-4.3463$, the reported $E M A$ method estimates are all in the range $3.0289-4.8167$ and the reported $A S A M L E O C$ method estimates are all in the range $3.8187-4.9756$. The $M S E$ values for $E M A, E M A$ and $A S A M L E O C$ methods are larger than those reported by the new $W S M$ method. For cases with censoring level 90% and sample size 10 , it has been noted that estimates for the σ parameter are not available via $E M A$ method. It should be noted that the $\sigma=5$ parameter value for most cases is highly under estimated by $E M A, E M A$ and ASAMLEOC methods.

Overall, the new WSM method appears to be superior to $H D L$ method for cases with censoring levels greater than or equal to 50%, and superior to $E M A$ and $A S A M L E O C$ methods for all censoring cases. The $H D L$ and the new $W S M$ methods perform similarly for cases with censoring levels less than 50%.

In summary, the maximum likelihood estimators (ASAMLEOC), the new weighted substitution method estimators (WSM), and the EM algorithm estimators (EMA) perform similarly, and all are generally superior to the existing substitution method estimators.

6.3. Additional Simulation Results.

The following simulation results are obtained using the following combinations of n, μ, σ, and censoring level $C L$.

Table 3. Estimates for μ and σ from Sulfate Data

(n, μ, σ)	k	$C L$
$(k, 25,10)$	$k=10,25,50,75,100$	$0.75-0.90$
$(k, 10,5)$	$k=10,25,50,75,100$	$0.15-0.50$
$(k, 20,3)$	$k=10,25,50,75,100$	$0.10-0.90$

Tables 6,7 and 8 are partitioned into two subgroups. Each subgroup has a different censoring level. The simulation results within each subgroup are given for both population mean μ and standard deviation σ. Two simulation results are given for each method and for each combination of n, μ, σ and $C L$. These simulation results are the average value of the estimate and the MSE.

Table 4. Simulation Estimates of the Mean μ from Normally Distributed Left-Censored Samples with a Single Detection Limit

$(\mathbf{n}, \mu, \sigma)$	Methods Of Estimation								
			MLE			Replacement			
		EMA	ASAMLEOC	UMLE	HS	WSM	ZE	HDL	DL
$C L=0.15$									
$(10,25,10)$	$\begin{gathered} \hat{\mu} \\ \text { MSE } \end{gathered}$	$\begin{aligned} & 24.7206 \\ & 12.9903 \end{aligned}$	$\begin{aligned} & 24.5856 \\ & 12.1390 \end{aligned}$	$\begin{aligned} & 24.3367 \\ & 12.4803 \end{aligned}$	$\begin{aligned} & 24.4160 \\ & 12.3479 \end{aligned}$	$\begin{aligned} & 25.0303 \\ & 10.2139 \end{aligned}$	$\begin{aligned} & 22.4497 \\ & 14.1331 \end{aligned}$	$\begin{aligned} & 24.0517 \\ & 10.3785 \end{aligned}$	$\begin{aligned} & 25.6536 \\ & 12.1721 \end{aligned}$
$(25,25,10)$	$\begin{gathered} \hat{\mu} \\ \text { MSE } \end{gathered}$	$\begin{aligned} & 25.0022 \\ & 4.0587 \end{aligned}$	$\begin{aligned} & 25.0047 \\ & 4.0515 \end{aligned}$	$\begin{aligned} & 24.9302 \\ & 4.0600 \end{aligned}$	$\begin{aligned} & 24.8702 \\ & 4.0765 \end{aligned}$	$\begin{aligned} & 25.2874 \\ & 3.6776 \end{aligned}$	$\begin{aligned} & 23.3820 \\ & 5.5471 \end{aligned}$	$\begin{aligned} & 24.6056 \\ & 3.5844 \end{aligned}$	$\begin{aligned} & 25.8292 \\ & 4.7208 \end{aligned}$
(50, 25, 10)	$\begin{gathered} \hat{\mu} \\ \text { MSE } \end{gathered}$	$\begin{aligned} & \hline 24.9873 \\ & 1.9815 \end{aligned}$	$\begin{aligned} & \hline 24.9610 \\ & 1.9524 \end{aligned}$	$\begin{aligned} & 24.9221 \\ & 1.9576 \end{aligned}$	$\begin{aligned} & 24.8229 \\ & 1.9836 \end{aligned}$	$\begin{aligned} & 25.2175 \\ & 1.7494 \end{aligned}$	$\begin{aligned} & \hline 23.4054 \\ & 3.9807 \end{aligned}$	$\begin{aligned} & 24.6045 \\ & 1.8237 \end{aligned}$	$\begin{aligned} & \hline 25.8036 \\ & 2.5930 \end{aligned}$
(75, 25, 10)	$\begin{gathered} \hat{\mu} \\ \text { MSE } \end{gathered}$	$\begin{aligned} & 24.9569 \\ & 1.3018 \end{aligned}$	$\begin{aligned} & 24.9167 \\ & 1.2937 \end{aligned}$	$\begin{aligned} & 24.8892 \\ & 1.2997 \end{aligned}$	$\begin{aligned} & 24.7757 \\ & 1.3415 \end{aligned}$	$\begin{aligned} & 25.1520 \\ & 1.2036 \end{aligned}$	$\begin{aligned} & 23.3772 \\ & 3.5491 \end{aligned}$	$\begin{aligned} & 24.5654 \\ & 1.2649 \end{aligned}$	$\begin{aligned} & 25.7536 \\ & 1.8417 \end{aligned}$
(100, 25, 10)	$\begin{gathered} \hat{\mu} \\ \text { MSE } \end{gathered}$	$\begin{aligned} & \hline 24.9303 \\ & 1.0832 \end{aligned}$	$\begin{aligned} & \hline 24.9455 \\ & 1.0840 \end{aligned}$	$\begin{aligned} & 24.9308 \\ & 1.0861 \end{aligned}$	$\begin{aligned} & \hline 24.8173 \\ & 1.1177 \end{aligned}$	$\begin{aligned} & 25.1187 \\ & 1.0118 \end{aligned}$	$\begin{aligned} & \hline 23.5041 \\ & 3.0278 \end{aligned}$	$\begin{aligned} & \hline 24.6108 \\ & 1.0706 \end{aligned}$	$\begin{aligned} & \hline 25.7176 \\ & 1.5900 \end{aligned}$
$C L=0.25$									
$(10,25,10)$	$\begin{gathered} \hat{\mu} \\ \text { MSE } \end{gathered}$	$\begin{aligned} & 24.9314 \\ & 11.1167 \end{aligned}$	$\begin{aligned} & 24.7705 \\ & 10.1121 \end{aligned}$	$\begin{aligned} & 24.3606 \\ & 10.6242 \end{aligned}$	$\begin{aligned} & 24.5564 \\ & 10.2893 \end{aligned}$	$\begin{aligned} & 25.1387 \\ & 8.6504 \end{aligned}$	$\begin{aligned} & 20.8147 \\ & 22.7221 \end{aligned}$	$\begin{aligned} & 23.7069 \\ & 8.7693 \end{aligned}$	$\begin{aligned} & 26.5991 \\ & 12.2048 \end{aligned}$
$(25,25,10)$	$\begin{gathered} \hat{\mu} \\ \text { MSE } \end{gathered}$	$\begin{aligned} & 24.8567 \\ & 4.7220 \end{aligned}$	$\begin{aligned} & 25.0355 \\ & 4.4562 \end{aligned}$	$\begin{aligned} & 24.9278 \\ & 4.4708 \end{aligned}$	$\begin{aligned} & 24.8842 \\ & 4.4865 \end{aligned}$	$\begin{aligned} & 25.0651 \\ & 3.8785 \end{aligned}$	$\begin{aligned} & 21.9426 \\ & 11.9771 \end{aligned}$	$\begin{aligned} & 24.1728 \\ & 4.0882 \end{aligned}$	$\begin{aligned} & 26.4031 \\ & 6.3499 \end{aligned}$
(50, 25, 10)	$\begin{gathered} \hat{\mu} \\ \text { MSE } \end{gathered}$	$\begin{aligned} & 24.9379 \\ & 2.3519 \end{aligned}$	$\begin{aligned} & 24.9031 \\ & 2.2546 \end{aligned}$	$\begin{aligned} & 24.8405 \\ & 2.2750 \end{aligned}$	$\begin{aligned} & 24.7176 \\ & 2.3375 \end{aligned}$	$\begin{aligned} & 24.9884 \\ & 1.9278 \end{aligned}$	$\begin{aligned} & 21.6906 \\ & 12.1852 \end{aligned}$	$\begin{aligned} & 24.0783 \\ & 2.4918 \end{aligned}$	$\begin{aligned} & 26.4659 \\ & 4.3222 \end{aligned}$
$(75,25,10)$	$\begin{gathered} \hat{\mu} \\ \text { MSE } \end{gathered}$	$\begin{aligned} & \hline 24.9199 \\ & 1.3578 \end{aligned}$	$\begin{aligned} & 24.9175 \\ & 1.3316 \end{aligned}$	$\begin{aligned} & 24.8798 \\ & 1.3406 \end{aligned}$	$\begin{aligned} & \hline 24.7403 \\ & 1.3983 \end{aligned}$	$\begin{aligned} & 24.8745 \\ & 1.1832 \end{aligned}$	$\begin{aligned} & \hline 21.7923 \\ & 11.0518 \end{aligned}$	$\begin{aligned} & 24.1097 \\ & 1.7847 \end{aligned}$	$\begin{aligned} & 26.4272 \\ & 3.3294 \end{aligned}$
(100, 25, 10)	$\begin{gathered} \hat{\mu} \\ \text { MSE } \end{gathered}$	$\begin{aligned} & \hline 24.9792 \\ & 1.0849 \end{aligned}$	$\begin{aligned} & \hline 25.0024 \\ & 1.0738 \end{aligned}$	$\begin{aligned} & 24.9770 \\ & 1.0749 \end{aligned}$	$\begin{aligned} & 24.8292 \\ & 1.1061 \end{aligned}$	$\begin{aligned} & 24.8722 \\ & 0.9745 \end{aligned}$	$\begin{aligned} & 21.9016 \\ & 10.2353 \end{aligned}$	$\begin{aligned} & 24.1936 \\ & 1.4676 \end{aligned}$	$\begin{aligned} & 26.4857 \\ & 3.2606 \end{aligned}$
$C L=0.50$									
$(10,25,10)$	$\begin{gathered} \hat{\mu} \\ \text { MSE } \end{gathered}$	$\begin{aligned} & 24.8221 \\ & 18.5532 \end{aligned}$	$\begin{aligned} & 25.1868 \\ & 15.2003 \end{aligned}$	$\begin{aligned} & 24.1506 \\ & 17.3134 \end{aligned}$	$\begin{aligned} & 24.9091 \\ & 15.4780 \\ & \hline \end{aligned}$	$\begin{aligned} & 24.6600 \\ & 10.1436 \end{aligned}$	$\begin{aligned} & 16.2848 \\ & 79.3801 \end{aligned}$	$\begin{aligned} & 22.5559 \\ & 12.9385 \end{aligned}$	$\begin{aligned} & 28.8270 \\ & 27.0316 \end{aligned}$
$(25,25,10)$	$\begin{gathered} \hat{\mu} \\ \text { MSE } \end{gathered}$	$\begin{aligned} & 24.9778 \\ & 6.7314 \end{aligned}$	$\begin{aligned} & 25.4548 \\ & 6.3569 \end{aligned}$	$\begin{aligned} & 25.0936 \\ & 6.3417 \end{aligned}$	$\begin{aligned} & 25.2066 \\ & 6.3287 \end{aligned}$	$\begin{aligned} & 23.8873 \\ & 5.2874 \end{aligned}$	$\begin{aligned} & 16.9032 \\ & 67.0511 \end{aligned}$	$\begin{aligned} & 22.9255 \\ & 7.2413 \end{aligned}$	$\begin{aligned} & 28.9479 \\ & 20.7299 \end{aligned}$
$(50,25,10)$	$\begin{gathered} \hat{\mu} \\ \text { MSE } \end{gathered}$	$\begin{aligned} & 24.9382 \\ & 3.2269 \end{aligned}$	$\begin{aligned} & 25.0019 \\ & 2.9649 \\ & \hline \end{aligned}$	$\begin{aligned} & 24.8038 \\ & 3.0511 \end{aligned}$	$\begin{aligned} & 24.7091 \\ & 3.1225 \end{aligned}$	$\begin{aligned} & 23.8758 \\ & 4.0171 \end{aligned}$	$\begin{aligned} & \hline 16.4341 \\ & 74.0480 \end{aligned}$	$\begin{aligned} & \hline 22.6824 \\ & 6.7341 \end{aligned}$	$\begin{aligned} & \hline 28.9307 \\ & 17.8859 \\ & \hline \end{aligned}$
$(75,25,10)$	$\begin{gathered} \hat{\mu} \\ \text { MSE } \end{gathered}$	$\begin{aligned} & \hline 25.0050 \\ & 1.9961 \end{aligned}$	$\begin{aligned} & \hline 25.1557 \\ & 1.9971 \end{aligned}$	$\begin{aligned} & 25.0237 \\ & 1.9946 \end{aligned}$	$\begin{aligned} & 24.8749 \\ & 2.0344 \end{aligned}$	$\begin{aligned} & 23.76042 \\ & 4.2894 \end{aligned}$	$\begin{aligned} & 16.6278 \\ & 70.5353 \end{aligned}$	$\begin{aligned} & 22.8010 \\ & 5.7310 \end{aligned}$	$\begin{aligned} & \hline 28.9742 \\ & 17.3938 \end{aligned}$
(100, 25, 10)	$\begin{gathered} \hat{\mu} \\ \text { MSE } \end{gathered}$	$\begin{aligned} & \hline 24.9496 \\ & 1.4499 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 24.9960 \\ & 1.3884 \end{aligned}$	$\begin{aligned} & 24.8980 \\ & 1.4097 \end{aligned}$	$\begin{aligned} & \hline 24.7015 \\ & 1.5089 \\ & \hline \end{aligned}$	$\begin{aligned} & 23.4630 \\ & 5.1825 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 16.4471 \\ & 73.4808 \end{aligned}$	$\begin{aligned} & \hline 22.6953 \\ & 5.9611 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 28.9434 \\ & 16.6976 \\ & \hline \end{aligned}$
$C L=0.75$									
$(10,10,5)$	$\begin{gathered} \hat{\mu} \\ \text { MSE } \end{gathered}$	$\begin{aligned} & 11.1600 \\ & 4.9783 \end{aligned}$	$\begin{aligned} & 10.9294 \\ & 6.9497 \end{aligned}$	$\begin{aligned} & 9.7694 \\ & 8.5266 \end{aligned}$	$\begin{aligned} & 10.7134 \\ & 6.9843 \end{aligned}$	$\begin{aligned} & 9.8231 \\ & 2.3121 \end{aligned}$	$\begin{aligned} & 4.6079 \\ & 29.4568 \\ & \hline \end{aligned}$	$\begin{aligned} & 9.1331 \\ & 2.5634 \end{aligned}$	$\begin{aligned} & 13.6582 \\ & 16.9481 \end{aligned}$
(25, 10, 5)	$\begin{gathered} \hat{\mu} \\ \text { MSE } \end{gathered}$	$\begin{aligned} & 10.3701 \\ & 3.2304 \end{aligned}$	$\begin{aligned} & 10.7352 \\ & 3.9538 \end{aligned}$	$\begin{aligned} & 10.1216 \\ & 4.0427 \end{aligned}$	$\begin{aligned} & 10.4767 \\ & 3.8897 \end{aligned}$	$\begin{aligned} & 9.2815 \\ & 2.3455 \end{aligned}$	$\begin{aligned} & \hline 4.4301 \\ & 31.1690 \end{aligned}$	$\begin{aligned} & 9.2023 \\ & 2.3161 \end{aligned}$	$\begin{aligned} & 13.9745 \\ & 17.4969 \end{aligned}$
$(50,10,5)$	$\begin{gathered} \hat{\mu} \\ \mathrm{MSE} \end{gathered}$	$\begin{aligned} & \hline 10.2091 \\ & 1.6294 \end{aligned}$	$\begin{aligned} & 10.2622 \\ & 1.7626 \end{aligned}$	$\begin{aligned} & \hline 9.8291 \\ & 1.9279 \end{aligned}$	$\begin{aligned} & 9.9475 \\ & 1.8441 \end{aligned}$	$\begin{aligned} & \hline 9.1792 \\ & 1.2663 \end{aligned}$	$\begin{aligned} & 4.1868 \\ & 33.8541 \end{aligned}$	$\begin{aligned} & \hline 9.1008 \\ & 1.1847 \end{aligned}$	$\begin{aligned} & \hline 14.0148 \\ & 16.8751 \end{aligned}$
$(75,10,5)$	$\begin{gathered} \hat{\mu} \\ \text { MSE } \end{gathered}$	$\begin{aligned} & 10.1761 \\ & 1.0370 \end{aligned}$	$\begin{aligned} & 10.0857 \\ & 1.2607 \end{aligned}$	$\begin{aligned} & 9.7393 \\ & 1.4362 \end{aligned}$	$\begin{aligned} & 9.7467 \\ & 1.4306 \end{aligned}$	$\begin{aligned} & 9.0131 \\ & 1.6401 \end{aligned}$	$\begin{aligned} & \hline 4.1183 \\ & 34.6373 \end{aligned}$	$\begin{aligned} & \hline 9.0916 \\ & 1.0413 \end{aligned}$	$\begin{aligned} & 14.0649 \\ & 17.0802 \end{aligned}$
(100, 10, 5)	$\begin{gathered} \hat{\mu} \\ \text { MSE } \end{gathered}$	$\begin{aligned} & 10.1079 \\ & 0.8523 \end{aligned}$	$\begin{aligned} & 9.9587 \\ & 0.9697 \end{aligned}$	$\begin{aligned} & 9.6655 \\ & 1.1543 \end{aligned}$	$\begin{aligned} & 9.6094 \\ & 1.2111 \end{aligned}$	$\begin{aligned} & 8.9862 \\ & 1.2560 \end{aligned}$	$\begin{aligned} & 4.0600 \\ & 35.3154 \end{aligned}$	$\begin{aligned} & 9.0399 \\ & 1.0860 \end{aligned}$	$\begin{aligned} & 14.0197 \\ & 16.5823 \end{aligned}$
$C L=0.90$									
$(10,10,5)$	$\begin{gathered} \hat{\mu} \\ \text { MSE } \end{gathered}$	$\begin{aligned} & N A N \\ & N A N \end{aligned}$	$\begin{aligned} & 9.9275 \\ & 28.3201 \end{aligned}$	$\begin{aligned} & 6.4233 \\ & 78.0182 \end{aligned}$	$\begin{aligned} & 9.8992 \\ & 28.5537 \\ & \hline \end{aligned}$	$\begin{aligned} & 9.7546 \\ & 2.1788 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.7684 \\ & 67.8434 \end{aligned}$	$\begin{aligned} & 8.6633 \\ & 3.4499 \\ & \hline \end{aligned}$	$\begin{aligned} & 15.5582 \\ & 36.3779 \\ & \hline \end{aligned}$
(25, 10, 5)	$\begin{gathered} \hat{\mu} \\ \text { MSE } \end{gathered}$	$\begin{aligned} & 12.7350 \\ & 11.2545 \end{aligned}$	$\begin{aligned} & 11.2427 \\ & 10.9418 \end{aligned}$	$\begin{aligned} & 9.8571 \\ & 13.8752 \end{aligned}$	$\begin{aligned} & 10.8905 \\ & 11.3257 \end{aligned}$	$\begin{aligned} & 9.0188 \\ & 2.8197 \end{aligned}$	$\begin{aligned} & 2.1579 \\ & 7.8420 \end{aligned}$	$\begin{aligned} & 9.1766 \\ & 1.3721 \end{aligned}$	$\begin{aligned} & 16.1952 \\ & 40.5871 \end{aligned}$
(50, 10, 5)	$\begin{gathered} \hat{\mu} \\ \text { MSE } \end{gathered}$	$\begin{aligned} & 12.4702 \\ & 8.8839 \end{aligned}$	$\begin{aligned} & 9.8679 \\ & 8.3572 \end{aligned}$	$\begin{aligned} & \hline 9.0350 \\ & 11.1032 \end{aligned}$	$\begin{aligned} & 9.4993 \\ & 9.3857 \end{aligned}$	$\begin{aligned} & 9.0459 \\ & 5.7839 \end{aligned}$	$\begin{aligned} & \hline 1.8560 \\ & 66.3434 \end{aligned}$	$\begin{aligned} & 9.1220 \\ & 2.1813 \end{aligned}$	$\begin{aligned} & 16.3880 \\ & 42.1725 \end{aligned}$
$(75,10,5)$	$\begin{gathered} \hat{\mu} \\ \text { MSE } \end{gathered}$	$\begin{aligned} & 12.3973 \\ & 7.6331 \end{aligned}$	$\begin{aligned} & 10.5135 \\ & 4.9507 \end{aligned}$	$\begin{aligned} & 9.9385 \\ & 5.4244 \end{aligned}$	$\begin{aligned} & 10.1106 \\ & 5.2242 \end{aligned}$	$\begin{aligned} & 9.1537 \\ & 6.9610 \end{aligned}$	$\begin{aligned} & \hline 1.9673 \\ & 64.5361 \end{aligned}$	$\begin{aligned} & 9.2154 \\ & 4.8869 \end{aligned}$	$\begin{aligned} & 16.4635 \\ & 42.6704 \end{aligned}$
$(100,10,5)$	$\begin{gathered} \hat{\mu} \\ \text { MSE } \end{gathered}$	$\begin{aligned} & 12.2278 \\ & 6.3274 \end{aligned}$	$\begin{aligned} & \hline 9.8990 \\ & 4.2162 \end{aligned}$	$\begin{aligned} & \hline 9.4768 \\ & 4.9141 \end{aligned}$	$\begin{aligned} & 9.4882 \\ & 4.8985 \end{aligned}$	$\begin{aligned} & \hline 8.5887 \\ & 6.3863 \end{aligned}$	$\begin{aligned} & 1.8662 \\ & 66.1671 \end{aligned}$	$\begin{aligned} & \hline 9.1851 \\ & 3.8660 \end{aligned}$	$\begin{aligned} & \hline 16.5041 \\ & 42.9826 \\ & \hline \end{aligned}$

Table 5. Simulation Estimates of the Standard Deviation σ from Normally Distributed Left-Censored Samples with a Single Detection Limit

Table 6. Simulation Estimates of the Mean μ and σ from Normally Distributed Left-Censored Samples with a Single Detection Limit and Censoring Levels $C L=0.75,0.90:(k, 25,10), \quad(k=$ $10,25,50,75,100)$

$(\mathbf{n}, \mu, \sigma)$	Methods Of Estimation								
			MLE			Replacement			
		EMA	ASAMLEOC	UMLE	HS	WSM	ZE	HDL	DL
$C L=0.75$									
$(10,25,10)$	$\hat{\mu}$	27.565	26.815	24.464	26.380	27.349	10.737	21.543	32.349
	MSE	21.380	34.594	42.150	34.912	26.146	205.140	19.480	72.169
$(25,25,10)$	$\hat{\mu}$	25.492	26.063	24.800	25.528	25.797	10.235	21.480	32.725
	MSE	11.982	14.436	16.016	14.680	11.949	218.58	14.862	65.793
$(50,25,10)$	$\hat{\mu}$	25.321	25.493	24.620	24.857	25.407	9.689	21.376	33.063
	MSE	6.356	6.912	7.578	7.245	6.216	234.71	14.493	68.410
$(75,25,10)$	$\hat{\mu}$	25.294	25.148	24.457	24.471	25.221	9.487	21.283	33.080
	MSE	4.253	5.072	5.826	5.801	4.392	240.82	14.641	67.417
(100, 25, 10)	$\hat{\mu}$	25.223	24.947	24.354	24.242	25.086	9.412	21.281	33.151
	MSE	3.434	3.905	4.632	4.850	3.474	243.12	14.450	68.053
$(10,25,10)$	$\hat{\sigma}$	8.464	7.742	10.099	7.880	8.114	16.589	9.635	3.133
	MSE	20.263	21.496	27.905	21.453	18.758	47.473	12.165	49.949
$(25,25,10)$	$\hat{\sigma}$	9.259	8.782	9.963	8.943	9.040	16.612	9.735	3.416
	MSE	11.333	11.516	12.918	11.534	10.770	45.296	7.948	44.854
$(50,25,10)$	$\hat{\sigma}$	9.548	9.451	10.167	9.640	9.499	16.532	9.734	3.469
	MSE	5.479	5.080	5.556	5.100	5.083	43.540	5.599	43.307
$(75,25,10)$	$\hat{\sigma}$	9.601	9.726	10.457	11.471	9.664	16.467	9.721	3.494
	MSE	3.588	3.637	5.826	5.801	3.485	42.344	2.422	42.789
(100, 25, 10)	$\hat{\sigma}$	9.748	9.970	10.394	10.179	9.859	16.483	9.756	3.543
	MSE	2.733	2.791	3.187	2.940	2.666	42.417	2.320	42.050
$C L=0.90$									
$(10,25,10)$	$\hat{\mu}$	NAN	24.304	16.853	24.244	23.178	4.080	20.178	36.276
	MSE		110.97	8.147	111.98	29.204	437.99	19.204	146.64
$(25,25,10)$	$\hat{\mu}$	30.247	27.918	25.236	27.246	28.366	4.916	21.211	37.506
	MSE	44.689	44.648	53.141	45.532	42.684	403.54	17.366	165.91
$(50,25,10)$	$\hat{\mu}$	29.900	24.606	22.926	23.866	27.251	4.214	20.983	37.751
	MSE	34.130	31.013	41.799	34.897	21.481	432.14	17.709	167.83
$(75,25,10)$	$\hat{\mu}$	29.811	25.967	24.815	25.164	26.881	4.465	21.179	37.894
	MSE	30.283	27.901	19.642	18.856	18.244	421.76	17.674	169.76
(100, 25, 10)	$\hat{\mu}$	29.637	24.944	24.116	24.138	27.290	4.213	21.053	37.892
	MSE	27.767	17.654	20.304	20.268	15.268	432.14	16.340	168.765
(10, 25, 10)	$\hat{\sigma}$	NAN	8.587	13.718	8.603	11.177	12.239	6.873	1.507
	MSE		52.124	141.74	52.263	3.453	8.032	11.582	73.601
$(25,25,10)$	$\hat{\sigma}$	7.251	7.784	9.649	7.951	7.816	13.367	7.390	1.654
	MSE	21.416	22.564	27.230	22.670	19.561	12.790	17.606	70.487
$(50,25,10)$	$\hat{\sigma}$	6.941	9.915	11.153	10.094	8.475	12.697	7.150	1.848
	MSE	17.354	13.288	18.132	13.751	11.657	7.945	8.526	66.917
$(75,25,10)$	$\hat{\sigma}$	6.935	9.207	9.991	9.398	8.791	12.984	7.257	1.842
	MSE	24.960	8.208	8.925	8.264	9.549	9.373	9.790	66.862
(100, 25, 10)	$\hat{\sigma}$	6.970	9.755	10.367	9.947	8.363	12.698	7.132	1.848
	MSE	13.718	7.583	8.631	7.832	8.131	7.606	8.736	66.734

The following observations and conclusions are made from an examination of the simulation results reported in Tables $6-8$. The new $W S M$ method appears to be superior to existing substitution methods for all censoring cases, and yields quite similar estimates to $E M A$ and $A S A M L E O C$ methods. The $H D L$ and the new WSM methods perform similarly for cases with censoring levels less than 50%.

In summary, the maximum likelihood estimators (ASAMLEOC), the new weighted substitution method estimators (WSM), and the EM algorithm estimators (EMA)

Table 7. Simulation Estimates of the Mean μ and σ from Normally Distributed Left-Censored Samples with a Single Detection Limit and Censoring Levels $C L=0.15,0.50:(k, 10,5),(k=10,25,50,75,100)$

perform similarly, and all are generally superior to the existing substitution method estimators.

7. Conclusions and Recommendations

This article has dealt with the problem of estimating the mean and standard deviation of a normal and/or lognormal populations in the presence of left-censored data. To avoid clumping of replaced values in cases where there are several leftcensored observations that share a common detection limit, a new replacement

TABLE 8. Simulation Estimates of the Mean μ and σ from Normally Distributed Left-Censored Samples with a Single Detection Limit and Censoring Levels $C L=0.10,0.90:(k, 20,3),(k=10,25,50,75,100)$

method called weighted substitution method is introduced. In this method leftcensored observations are spaced from zero to the detection limit according to weights assigned to these non-detected data. To facilitate the application of estimation methods described in this article, a computer program is presented. The computer program "SingleLeft.Censored.Normal", written in the R language, is an easy-to-use computerized tool for obtaining estimates and their standard deviations of population parameters of singly left-censored data using either a normal or lognormal distribution. The simulation results presented in Tables 3-4 show that the new $W S M$ and $H D L$ methods perform similarly for cases where the censoring
levels is less than 50%. The new $W S M$ method perform better than $E M A$ and $A S A M L E O C$ methods for cases where the censoring levels is less than 50%. For estimating the σ parameter the new $W S M$ method perform better than the existing methods for cases where the censoring levels is greater than or equal to 75%. Taken together, the suggested new $W S M$ method appear to work best for normally distributed censored samples, and lognormal versions of the estimator can be obtained simply by taking natural logarithm of the data and the detection limit.

Acknowledgements

The author is deeply indebted to the editor Professor Dr. Cem Kadilar and the referees for their useful comments and recommendations which enhanced the clarity of the results of this work.

References

[1] Aboueissa A. A.and Stoline M. R. (2004). Estimation of the Mean and Standard Deviation from Normally Distributed Singly-Censored Samples, Environmetrics 15: 659-673.
[2] Aboueissa A. A.and Stoline M. R. (2006). Maximum Likelihood Estimators of Population Parameters from Doubly-Left Censored Samples, Environmetrics 17: 811-826.
[3] Box G. E. P. and Cox D. R. (1964). An Analysis of Transformation (with Discussion), Journal of the Royal Statistical Society, Series B. 26(2): 211-252.
[4]Cohen A. C. JR. (1959). Simplified Estimators for the Normal Distribution When Samples Aare Singly Censored or Truncated, Technometrics 3: 217-237.
[5]Cohen A. C. (1991). Truncated and Censored Samples, Marcel Dekker, INC., New York.
[6]Dempster A. P., N. Laird M. and Rubin D. B. (1977). Maximum Likelihood from Incomplete Data via the EM Algorithm, The Journal Of Royal Statistical Society B 39: 1-38.
[7]El-Shaarawi A. H. and Dolan D. M. (1989). Maximum Likelihood Estimation of Water Concentrations from Censored Data, Canadian Journal of Fisheries and Aquatic Sciences 46: 1033-1039.
[8]El-Shaarawi A. H. and Esterby S. R. (1992). Replacement of Censored Observations by a Constant: An Evaluation, Water Research 26(6): 835-844.
[9]Krishnamoorthy, K., Mallick, A. and Mathew, T. (2011). Inference for the lognormal mean and quantiles based on samples with nondetetcts, Atmos. Technomterics, 53: 72-83.
[10]Kushner E.J. (1976). On Determining the Statistical Parameters for Pouplation Concentration from a Truncated Data set, Atmos. Environ. 10: 975-979.
[11]Lagakos S. W., Barraj L. M. and De Gruttola V. (1988). Nonparametric Analysis of Truncated Survival Data, With application to AIDS, Biometrika. 75, 3: 515-523.
[12]Gibbons, RD. (1994). Statistical Methods for Groundwater Monitoring, John Wiley and Sons, New York.
[13]Gilbert Richard O. (1987). Statistical Methods for Environmental Pollution Monitoring, Van Nostrand Reinhold: New York.
[14]Gilliom R. J. and Helsel D. R. (1986). Estimation of Distributional Parameters for Censored Trace Level Water Quality Data. I. Estimation Techniques, Water Resources Res. 22: 135-146.
[15]Gleit, A. (1985). Estimation for small normal data sets with Detection Limits, Environ. Sci. Technol. 19: 1201-1206.
[16]Gupta A. K. (1952). Estimation of the Mean and Standard Deviation of a Normal Population from a Censored Sample, Biometrika 39: 260-237.
[17]Hass and Scheff (1990). Estimation of the averages in Truncated Samples, Environmental Science and Technology. 24: 912-919.
[18]Hald A.(1952). Maximum Likelihood Estimation of the Parameters of a Normal Distribution which is Truncated at a Known Point, Scandinavian Actuarial journal. 32: 119-134.
[19]Helsel D. R. and Gilliom R. J. (1986). Estimation of Distributional Parameters for Censored Trace Level Water Quality Data. II. Verification and application, Water Resources Res. 22: 147-155.
[20]Helsel D. R. and Hirsch R. M. (1988). Statistical Methods in Water Ressources, Elsevier: New York.
[21]Hyde J. (1977). Testing Survival under right-censoring and Left-Truncation, Biometrika. 64: 225-230.
[22]Saw J. G. (1961). Estimation of the Normal Population Parameters Given a Type I Censored Sample, Biometrika 48: 367-377.
[23]Saw J. G. (1961b). The Bias of The Maximum Likelihood Estimates of the Location and Scale Parameters Given a Type II Censored Normal Sample, Biometrika 48: 448451.
[24]Schmee J., Gladstein D. and Nelson W. (1985). Confidence Limits of a Normal Distribution from Singly Censored Samples Using Maximum Likelihood, Technometrics 27: 119-128.
[25]Schneider H. (1986). Truncated and Censored Samples from Normal Population, Marcel Dekker: New York.
[26]Shumway R. H. , Azari A. S. and Johnson P. (1989). Estimating Mean Concentrations Under Transformation for Environmental Data With Detection Limit., Technometrics. 31: 347-357.
[27]Stoline Michael R. (1993). Comparison Oof Two Medians Using a Two-Sample Lognormal Model Iin Environmental Contexts, Environmetrics 4(3): 323-339.
[288]USEPA. (1989b). Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Final Guidance. EPA/530-SW-89-026. Office of Solid Waste, U.S. Environmental Protection Agency: Washington, D.C.
[29]Wei-Yann Tsai (1990). Testing the Assumption of independent of Truncation Time and Failure Time, Biometrika. 77, 1 : 169-177.
[30]Wolynetz, M. S. (1979). Maximum Likelihood Estimation from Confined and Censored Normal Data, Applied Statistics. 28, 185-195.

Appendix

The suggested weighted substitution method is based on replacing the left-censored observations that are less than the detection limit $D L$ by non-constant different values based on assigning a different weight for each observation. Some of the choices of the weights that were examined are:

$$
\begin{align*}
& w 1_{j}\left(=w_{j}\right)=\left(\frac{(m+j-1)}{n}\right)^{\frac{j}{j+1}}(P(U \geq D L))^{\ln (m+j-1)}, \tag{3.1givenabove}\\
& w 2_{j}=\left(\frac{(m+j-1)}{n}\right)^{\frac{j}{j+1}}[P(U \geq D L)] \\
& w 3_{j}=\left(\frac{(m+j-1)}{n}\right)^{\frac{j}{j+1}}(P(U \geq D L))^{m+j-1}, \\
& w 4_{j}=\left(\frac{(m+j-1)}{n}\right)^{\frac{\left(\frac{j}{j+1}\right)}{j}}(P(U \leq D L))^{\ln (m+j-1)}, \\
& w 5_{j}=\left(\frac{(m+j-1)}{n}\right)^{\frac{j}{j+1}}[P(U \leq D L)]^{(m+j-1)}, \\
& w 6_{j}=\left(\frac{(m+j-1)}{n}\right)(P(U \geq D L))^{\ln (m+j-1)}, \\
& w 7_{j}=\left(\frac{(m+j-1)}{n}\right)(P(U \geq D L)), \\
& \text { for } j=1,2, \ldots, m_{c}
\end{align*}
$$

where the probability $P(U \geq D L)$ is estimated from the sample data by:

$$
P(\widehat{U \geq D} L)=1-\Phi\left(\frac{D L-\bar{x}_{m}}{s_{m}}\right)
$$

An extensive simulation study was conducted on these weights in addition to other weights (not shown here). The simulation results indicate that the suggested weight in (3.1) leads to estimators that have the ability to recover the true mean and standard deviation as well as the existing methods such as maximum likelihood and EM algorithm estimators. More simulation results will be available in the web page of the author later on if needed.

Table 9. Simulation Estimates of the Mean μ and σ from Normally Distributed Left-Censored Samples with a Single Detection Limit and Censoring Levels $C L=0.75,0.90:(k, 25,10), \quad(k=$ $10,25,50,75,100)$

$(\mathbf{n}, \mu, \sigma)$	Methods Of Estimation								
		$M L E$	$W 1_{j}\left(=W_{j}\right)$	$W 2{ }_{j}$	$W 3_{j}$	$W 4{ }_{j}$	$W 5_{j}$	$W 6_{j}$	$W 7_{j}$
$C L=0.75$									
$(10,25,10)$	$\begin{gathered} \hat{\mu} \\ \mathrm{MSE} \end{gathered}$	26.820	$\begin{aligned} & 24.234 \\ & 12.401 \end{aligned}$	23.252	$\begin{aligned} & 19.329 \\ & 51.433 \end{aligned}$	$\begin{aligned} & 11.108 \\ & 194.777 \end{aligned}$	$\begin{aligned} & 10.741 \\ & 205.259 \end{aligned}$	$\begin{aligned} & 21.515 \\ & 21074 \end{aligned}$	$\begin{aligned} & 22.402 \\ & 15.600 \end{aligned}$
$(25,25,10)$	$\hat{\mu}$	26.063	23.465	20.810	13.064	10.320	10.235	19.899	22.433
	MSE	14.436	6.016	22.861	148.885	216.079	218.583	30.475	9.668
(50, 25, 10)	$\hat{\mu}$	25.493	24.206	19.842	10.692	9.706	9.689	19.339	21.544
	MSE	6.912	5.299	30.481	206.662	234.184	234.705	35.300	7.859
$(75,25,10)$	$\hat{\mu}$	25.148	24.521	19.296	9.883	9.493	9.487	18.920	21.625
	MSE	5.072	5.233	35.658	229.296	240.630	240.824	40.013	8.410
(100, 25, 10)	$\hat{\mu}$	24.980	24.113	18.714	9.571	9.416	9.413	18.997	22.970
	MSE	3.789	4.305	42.200	238.248	242.978	243.065	38.541	6.051
(10, 25, 10)	$\hat{\sigma}$	7.490	8.921	8.536	11.143	16.354	16.586	10.111	3.023
	MSE	22.999	3.664	4.216	6.978	44.455	47.441	2.020	51.492
$(25,25,10)$	$\hat{\sigma}$	8.782	10.168	9.342	14.902	16.560	16.612	11.266	10.379
	MSE	11.516	1.413	5.342	27.034	44.618	45.296	5.969	7.088
$(50,25,10)$	$\hat{\sigma}$	9.451	9.745	11.873	15.960	16.522	16.532	12.475	11.987
	MSE	5.080	0.576	3.077	36.846	43.411	43.540	5.094	4.726
$(75,25,10)$	$\hat{\sigma}$	9.726	9.912	11.267	16.245	16.463	16.467	11.611	11.945
	MSE	3.637	0.314	2.292	39.594	42.298	42.344	4.972	5.237
(100, 25, 10)	$\hat{\sigma}$	9.950	10.486	11.732	16.397	16.484	16.485	12.464	10.997
	MSE	2.791	1.468	4.555	41.318	42.428	42.448	3.102	2.250
$C L=0.90$									
$(10,25,10)$	$\hat{\mu}$	24.891	24.215	22.568	7.982	5.174	4.045	20.009	20.099
	MSE	108.321	99.875	114.827	387.340	393.543	439.447	121.432	132.093
$(25,25,10)$	$\hat{\mu}$	27.918	23.327	20.050	12.317	5.044	4.918	18.748	20.927
	MSE	44.648	42.724	45.861	191.703	398.446	403.496	48.107	41.091
($50,25,10$)	$\hat{\mu}$	24.606	23.938	18.526	8.797	4.245	4.214	17.937	20.844
	MSE	31.013	29.925	52.094	289.135	430.836	432.141	59.028	31.088
(75, 25, 10)	$\hat{\mu}$	25.967	23.983	16.584	5.541	4.485	4.465	15.983	20.569
	MSE	17.901	16.502	78.491	382.210	420.910	421.758	88.275	21.601
(100, 25, 10)	$\hat{\mu}$	24.944	23.896	16.544	5.135	4.222	4.213	16.188	21.690
	MSE	17.655	16.520	78.921	398.059	431.778	432.136	84.747	20.197
(10, 25, 10)	$\hat{\sigma}$	8.587	9.071	8.672	12.014	13.322	13.366	14.071	13.510
	MSE	52.124	50.071	55.982	67.803	84.007	58.602	55.341	52.762
(25, 25, 10)	$\hat{\sigma}$	7.784	9.771	9.585	11.906	16.560	16.612	12.647	12.993
	MSE	22.567	15.847	24.087	16.094	44.618	45.296	25.442	23.087
$(50,25,10)$	$\hat{\sigma}$	9.915	9.964	10.730	12.510	12.687	12.997	11.604	12.106
	MSE	13.288	10.487	11.522	13.951	14.890	13.944	15.604	12.106
(75, 25, 10)	$\hat{\sigma}$	9.207	10.156	11.415	12.656	12.977	12.984	10.938	11.048
	MSE	8.208	5.371	7.468	9.784	9.332	9.373	8.034	7.997
(100, 25, 10)	$\hat{\sigma}$	9.755	10.143	11.544	12.423	12.696	12.699	11.479	11.029
	MSE	7.583	5.264	6.514	7.486	8.591	8.606	6.479	8.029

Table 10. Simulation Estimates of the Mean μ and σ from Normally Distributed Left-Censored Samples with a Single Detection Limit and Censoring Levels $C L=0.15,0.50:(k, 10,5),(k=10,25,50,75,100)$

$(\mathbf{n}, \mu, \sigma)$	Methods Of Estimation								
			$W 1_{j}\left(=W_{j}\right)$	$W 2{ }_{j}$	$W 3_{j}$	$W 4_{j}$	$W 5_{j}$	$W 6_{j}$	$W 7_{j}$
$C L=0.15$									
$(10,10,5)$	$\begin{gathered} \hat{\mu} \\ \text { MSE } \end{gathered}$	$\begin{aligned} & 10.013 \\ & 2.669 \end{aligned}$	$\begin{aligned} & 10.327 \\ & 2.617 \end{aligned}$	$\begin{aligned} & 10.388 \\ & 2.988 \end{aligned}$	$\begin{aligned} & 11.072 \\ & 2.899 \end{aligned}$	$\begin{aligned} & 9.001 \\ & 3.120 \end{aligned}$	$\begin{aligned} & 9.105 \\ & 3.195 \end{aligned}$	$\begin{aligned} & 10.704 \\ & 3.560 \end{aligned}$	$\begin{aligned} & 11.264 \\ & 3.626 \end{aligned}$
$(25,10,5)$	$\begin{gathered} \hat{\mu} \\ \mathrm{MSE} \end{gathered}$	$\begin{aligned} & \hline 10.047 \\ & 1.013 \end{aligned}$	$\begin{aligned} & 10.073 \\ & 1.008 \end{aligned}$	$\begin{aligned} & 10.560 \\ & 1.788 \end{aligned}$	$\begin{aligned} & \hline 9.661 \\ & 1.843 \end{aligned}$	$\begin{aligned} & \hline 9.326 \\ & 1.848 \end{aligned}$	$\begin{aligned} & \hline 9.034 \\ & 1.901 \end{aligned}$	$\begin{aligned} & \hline 10.544 \\ & 1.196 \end{aligned}$	$\begin{aligned} & \hline 10.703 \\ & 1.934 \end{aligned}$
$(50,10,5)$	$\begin{gathered} \hat{\mu} \\ \text { MSE } \end{gathered}$	$\begin{aligned} & \hline 9.964 \\ & 0.492 \end{aligned}$	$\begin{aligned} & 10.084 \\ & 0.490 \end{aligned}$	$\begin{aligned} & 10.286 \\ & 0.553 \end{aligned}$	$\begin{aligned} & 9.570 \\ & 0.804 \end{aligned}$	$\begin{aligned} & 9.380 \\ & 0.638 \end{aligned}$	$\begin{aligned} & 9.294 \\ & 0.701 \end{aligned}$	$\begin{aligned} & 10.363 \\ & 0.781 \end{aligned}$	$\begin{aligned} & 10.565 \\ & 0.739 \end{aligned}$
$(75,10,5)$	$\begin{gathered} \hat{\mu} \\ \text { MSE } \end{gathered}$	$\begin{aligned} & 9.939 \\ & 0.373 \end{aligned}$	$\begin{aligned} & 10.164 \\ & 0.367 \end{aligned}$	$\begin{aligned} & 10.372 \\ & 0.426 \end{aligned}$	$\begin{aligned} & 9.618 \\ & 0.621 \end{aligned}$	$\begin{aligned} & 9.585 \\ & 0.438 \end{aligned}$	$\begin{aligned} & 9.275 \\ & 0.509 \end{aligned}$	$\begin{aligned} & 10.357 \\ & 0.470 \end{aligned}$	$\begin{aligned} & 10.470 \\ & 0.478 \end{aligned}$
(100, 10, 5)	$\begin{gathered} \hat{\mu} \\ \text { MSE } \end{gathered}$	$\begin{aligned} & \hline 9.991 \\ & 0.255 \end{aligned}$	$\begin{aligned} & 10.082 \\ & 0.270 \end{aligned}$	$\begin{aligned} & 10.298 \\ & 0.334 \end{aligned}$	$\begin{aligned} & 9.654 \\ & 0.375 \end{aligned}$	$\begin{aligned} & 9.542 \\ & 0.416 \end{aligned}$	$\begin{aligned} & 9.343 \\ & 0.493 \end{aligned}$	$\begin{aligned} & 10.165 \\ & 0.273 \end{aligned}$	$\begin{aligned} & \hline 10.380 \\ & 0.326 \end{aligned}$
$(10,10,5)$	MSE	$\begin{aligned} & 4.856 \\ & 1.703 \end{aligned}$	$\begin{aligned} & 4.609 \\ & 1.544 \end{aligned}$	$\begin{aligned} & 4.241 \\ & 1.973 \end{aligned}$	$\begin{aligned} & 4.065 \\ & 2.164 \end{aligned}$	$\begin{aligned} & 5.974 \\ & 2.218 \end{aligned}$	$\begin{aligned} & 6.746 \\ & 2.228 \end{aligned}$	$\begin{aligned} & 4.221 \\ & 1.986 \end{aligned}$	$\begin{aligned} & 4.244 \\ & 2.507 \end{aligned}$
$(25,10,5)$	MSE	$\begin{aligned} & 4.886 \\ & 0.617 \end{aligned}$	$\begin{aligned} & 4.772 \\ & 0.690 \end{aligned}$	$\begin{aligned} & 4.356 \\ & 0.842 \end{aligned}$	$\begin{aligned} & 5.209 \\ & 0.973 \end{aligned}$	$\begin{aligned} & 5.520 \\ & 0.908 \end{aligned}$	$\begin{aligned} & 5.728 \\ & 0.937 \end{aligned}$	$\begin{aligned} & 4.522 \\ & 0.690 \end{aligned}$	$\begin{aligned} & 4.409 \\ & 0.798 \end{aligned}$
$(50,10,5)$	MSE	$\begin{aligned} & 4.952 \\ & 0.329 \end{aligned}$	$\begin{aligned} & 4.885 \\ & 0.302 \end{aligned}$	$\begin{aligned} & 4.404 \\ & 0.585 \end{aligned}$	$\begin{aligned} & 5.456 \\ & 0.604 \end{aligned}$	$\begin{aligned} & 5.513 \\ & 0.698 \end{aligned}$	$\begin{aligned} & 5.743 \\ & 0.599 \end{aligned}$	$\begin{aligned} & 4.270 \\ & 0.603 \end{aligned}$	$\begin{aligned} & 4.417 \\ & 0.957 \end{aligned}$
$(75,10,5)$	MSE	$\begin{aligned} & 5.045 \\ & 0.237 \end{aligned}$	$\begin{aligned} & 4.829 \\ & 0.293 \end{aligned}$	$\begin{aligned} & 4.482 \\ & 0.434 \end{aligned}$	$\begin{aligned} & 5.496 \\ & 0.450 \end{aligned}$	$\begin{aligned} & 5.553 \\ & 0.500 \end{aligned}$	$\begin{aligned} & 5.729 \\ & 0.564 \end{aligned}$	$\begin{aligned} & 4.645 \\ & 0.375 \end{aligned}$	$\begin{aligned} & 4.510 \\ & 0.609 \end{aligned}$
(100, 10, 5)	MSE	$\begin{aligned} & 4.923 \\ & 0.161 \end{aligned}$	$\begin{aligned} & 4.772 \\ & 0.189 \end{aligned}$	$\begin{aligned} & 4.412 \\ & 0.458 \end{aligned}$	$\begin{aligned} & 5.431 \\ & 0.354 \end{aligned}$	$\begin{aligned} & 5.449 \\ & 0.377 \end{aligned}$	$\begin{aligned} & \hline 5.793 \\ & 0.386 \end{aligned}$	$\begin{aligned} & 4.589 \\ & 0.306 \end{aligned}$	$\begin{aligned} & 4.430 \\ & 0.414 \end{aligned}$
$C L=0.50$									
$(10,10,5)$	$\begin{gathered} \hat{\mu} \\ \text { MSE } \end{gathered}$	$\begin{aligned} & 10.093 \\ & 3.433 \end{aligned}$	$\begin{aligned} & 10.114 \\ & 2.506 \end{aligned}$	$\begin{aligned} & 10.490 \\ & 2.339 \end{aligned}$	$\begin{aligned} & 9.245 \\ & 3.189 \end{aligned}$	$\begin{aligned} & 6.897 \\ & 10.452 \end{aligned}$	$\begin{aligned} & 6.853 \\ & 10.724 \end{aligned}$	$\begin{aligned} & 9.706 \\ & 3.213 \end{aligned}$	$\begin{aligned} & 10.655 \\ & 3.233 \end{aligned}$
$(25,10,5)$	$\begin{gathered} \hat{\mu} \\ \text { MSE } \end{gathered}$	$\begin{aligned} & \hline 10.228 \\ & 1.533 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 9.975 \\ & 0.827 \\ & \hline \end{aligned}$	$\begin{aligned} & 10.593 \\ & 1.230 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.873 \\ & 5.163 \end{aligned}$	$\begin{aligned} & \hline 7.169 \\ & 8.352 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 7.162 \\ & 8.392 \\ & \hline \end{aligned}$	$\begin{aligned} & 9.560 \\ & 0.889 \end{aligned}$	$\begin{aligned} & \hline 10.445 \\ & 0.989 \\ & \hline \end{aligned}$
$(50,10,5)$	$\begin{gathered} \hat{\mu} \\ \text { MSE } \end{gathered}$	$\begin{aligned} & 10.020 \\ & 0.711 \end{aligned}$	$\begin{aligned} & 9.969 \\ & 0.561 \end{aligned}$	$\begin{aligned} & 10.493 \\ & 0.677 \end{aligned}$	$\begin{aligned} & 7.200 \\ & 8.130 \end{aligned}$	$\begin{aligned} & \hline 6.980 \\ & 9.288 \end{aligned}$	$\begin{aligned} & \hline 6.979 \\ & 9.288 \end{aligned}$	$\begin{aligned} & 9.620 \\ & 0.608 \end{aligned}$	$\begin{aligned} & 10.464 \\ & 0.664 \end{aligned}$
$(75,10,5)$	$\begin{gathered} \hat{\mu} \\ \text { MSE } \end{gathered}$	$\begin{aligned} & 10.054 \\ & 0.522 \end{aligned}$	$\begin{aligned} & 9.779 \\ & 0.517 \end{aligned}$	$\begin{aligned} & 10.573 \\ & 0.547 \end{aligned}$	$\begin{aligned} & \hline 7.078 \\ & 8.670 \end{aligned}$	$\begin{aligned} & 7.031 \\ & 8.931 \end{aligned}$	$\begin{aligned} & 7.957 \\ & 8.652 \end{aligned}$	$\begin{aligned} & 9.483 \\ & 0.690 \end{aligned}$	$\begin{aligned} & 10.950 \\ & 0.472 \end{aligned}$
(100, 10, 5)	$\begin{gathered} \hat{\mu} \\ \mathrm{MSE} \end{gathered}$	$\begin{aligned} & \hline 10.029 \\ & 0.339 \end{aligned}$	$\begin{aligned} & \hline 9.827 \\ & 0.366 \end{aligned}$	$\begin{aligned} & 10.469 \\ & 0.466 \end{aligned}$	$\begin{aligned} & \hline 6.996 \\ & 9.112 \end{aligned}$	$\begin{aligned} & \hline 6.982 \\ & 9.194 \end{aligned}$	$\begin{aligned} & \hline 6.982 \\ & 9.196 \end{aligned}$	$\begin{aligned} & 9.465 \\ & 0.627 \end{aligned}$	$\begin{aligned} & \hline 10.482 \\ & 0.769 \end{aligned}$
$(10,10,5)$	MSE	$\begin{aligned} & \hline 4.464 \\ & 2.744 \end{aligned}$	$\begin{aligned} & 4.310 \\ & 1.864 \end{aligned}$	$\begin{aligned} & \hline 3.741 \\ & 3.279 \end{aligned}$	$\begin{aligned} & 4.633 \\ & 2.321 \end{aligned}$	$\begin{aligned} & \hline 7.074 \\ & 5.166 \end{aligned}$	$\begin{aligned} & 7.115 \\ & 5.343 \end{aligned}$	$\begin{aligned} & \hline 4.370 \\ & 2.190 \end{aligned}$	$\begin{aligned} & 4.179 \\ & 2.320 \end{aligned}$
$(25,10,5)$	MSE	$\begin{aligned} & 4.659 \\ & 1.280 \end{aligned}$	$\begin{aligned} & 4.599 \\ & 0.668 \end{aligned}$	$\begin{aligned} & 3.968 \\ & 1.407 \end{aligned}$	$\begin{aligned} & \hline 6.502 \\ & 2.879 \end{aligned}$	$\begin{aligned} & \hline 7.200 \\ & 5.184 \end{aligned}$	$\begin{aligned} & 7.207 \\ & 5.217 \end{aligned}$	$\begin{aligned} & 4.705 \\ & 0.998 \end{aligned}$	$\begin{aligned} & 10.534 \\ & 1.093 \end{aligned}$
$(50,10,5)$	MSE	$\begin{aligned} & \hline 4.934 \\ & 0.586 \end{aligned}$	$\begin{aligned} & \hline 4.866 \\ & 0.267 \end{aligned}$	$\begin{aligned} & 4.118 \\ & 0.933 \end{aligned}$	$\begin{aligned} & 7.082 \\ & 4.565 \end{aligned}$	$\begin{aligned} & \hline 7.293 \\ & 5.565 \end{aligned}$	$\begin{aligned} & 7.294 \\ & 5.436 \end{aligned}$	$\begin{aligned} & 9.520 \\ & 0.703 \end{aligned}$	$\begin{aligned} & \hline 10.964 \\ & 0.864 \end{aligned}$
(75, 10, 5)	MSE	$\begin{aligned} & 4.868 \\ & 0.427 \end{aligned}$	$\begin{aligned} & 4.868 \\ & 0.179 \end{aligned}$	$\begin{aligned} & 4.116 \\ & 0.895 \end{aligned}$	$\begin{aligned} & 7.211 \\ & 5.021 \end{aligned}$	$\begin{aligned} & 7.257 \\ & 5.215 \end{aligned}$	$\begin{aligned} & 7.946 \\ & 6.012 \end{aligned}$	$\begin{aligned} & 4.658 \\ & 0.258 \end{aligned}$	$\begin{aligned} & 4.242 \\ & 0.683 \end{aligned}$
(100, 10, 5)	MSE	$\begin{aligned} & 4.924 \\ & 0.273 \end{aligned}$	$\begin{aligned} & 4.932 \\ & 0.118 \end{aligned}$	$\begin{aligned} & 4.148 \\ & 0.800 \end{aligned}$	$\begin{aligned} & 7.276 \\ & 5.275 \end{aligned}$	$\begin{aligned} & 7.290 \\ & 5.337 \end{aligned}$	$\begin{aligned} & 7.290 \\ & 5.338 \end{aligned}$	$\begin{aligned} & 5.311 \\ & 0.216 \end{aligned}$	$\begin{aligned} & 4.261 \\ & 0.617 \end{aligned}$

Table 11. Simulation Estimates of the Mean μ and σ from Normally Distributed Left-Censored Samples with a Single Detection Limit and Censoring Levels $C L=0.10,0.90:(k, 20,3),(k=10,25,50,75,100)$

$(\mathbf{n}, \mu, \sigma)$	Methods Of Estimation								
		MLE	$W 1_{j}\left(=W_{j}\right)$	$W 2{ }_{j}$	$W 3_{j}$	$W 4_{j}$	$W 5_{j}$	$W 6_{j}$	$W 7{ }_{j}$
$C L=0.10$									
(10, 20, 3)	$\begin{gathered} \hat{\mu} \\ \text { MSE } \end{gathered}$	$\begin{aligned} & 20.026 \\ & 0.895 \end{aligned}$	$\begin{aligned} & 20.008 \\ & 0.881 \end{aligned}$	$\begin{aligned} & 19.881 \\ & 0.892 \end{aligned}$	$\begin{aligned} & 19.067 \\ & 1.319 \end{aligned}$	$\begin{aligned} & 18.488 \\ & 3.016 \end{aligned}$	$\begin{aligned} & 18.482 \\ & 3.034 \end{aligned}$	$\begin{aligned} & 19.752 \\ & 0.913 \end{aligned}$	$\begin{aligned} & 19.375 \\ & 0.870 \end{aligned}$
(25, 20, 3)	$\begin{gathered} \hat{\mu} \\ \mathrm{MSE} \end{gathered}$	$\begin{aligned} & 19.948 \\ & 0.363 \end{aligned}$	$\begin{aligned} & 19.937 \\ & 0.353 \end{aligned}$	$\begin{aligned} & 19.762 \\ & 0.408 \end{aligned}$	$\begin{aligned} & 18.863 \\ & 1.735 \\ & \hline \end{aligned}$	$\begin{aligned} & 18.151 \\ & 3.693 \end{aligned}$	$\begin{aligned} & 18.151 \\ & 3.694 \end{aligned}$	$\begin{aligned} & 19.474 \\ & 0.538 \end{aligned}$	$\begin{aligned} & 19.683 \\ & 0.483 \end{aligned}$
(50, 20, 3)	$\begin{gathered} \hat{\mu} \\ \text { MSE } \end{gathered}$	$\begin{aligned} & 19.980 \\ & 0.176 \end{aligned}$	$\begin{aligned} & 19.984 \\ & 0.172 \end{aligned}$	$\begin{aligned} & 19.799 \\ & 0.217 \end{aligned}$	$\begin{aligned} & 18.736 \\ & 1.794 \end{aligned}$	$\begin{aligned} & 18.496 \\ & 2.404 \end{aligned}$	$\begin{aligned} & 17.968 \\ & 2.725 \end{aligned}$	$\begin{aligned} & 19.672 \\ & 0.238 \end{aligned}$	$\begin{aligned} & 19.754 \\ & 0.282 \end{aligned}$
(75, 20, 3)	$\begin{gathered} \hat{\mu} \\ \text { MSE } \end{gathered}$	$\begin{aligned} & 19.983 \\ & 0.124 \end{aligned}$	$\begin{aligned} & 19.990 \\ & 0.122 \end{aligned}$	$\begin{aligned} & 19.781 \\ & 0.175 \end{aligned}$	$\begin{aligned} & 18.531 \\ & 2.277 \end{aligned}$	$\begin{aligned} & 18.405 \\ & 2.646 \end{aligned}$	$\begin{aligned} & 17.998 \\ & 2.763 \end{aligned}$	$\begin{aligned} & 19.667 \\ & 0.0 .238 \end{aligned}$	$\begin{aligned} & 19.873 \\ & 0.195 \end{aligned}$
(100, 20, 3)	$\begin{gathered} \hat{\mu} \\ \mathrm{MSE} \end{gathered}$	$\begin{aligned} & 19.992 \\ & 0.087 \end{aligned}$	$\begin{aligned} & 19.999 \\ & 0.087 \end{aligned}$	$\begin{aligned} & \hline 19.783 \\ & 0.139 \end{aligned}$	$\begin{aligned} & 18.559 \\ & 2.157 \end{aligned}$	$\begin{aligned} & \hline 18.513 \\ & 2.286 \end{aligned}$	$\begin{aligned} & \hline 18.092 \\ & 14.109 \\ & \hline \end{aligned}$	$\begin{aligned} & 19.761 \\ & 0.147 \end{aligned}$	$\begin{aligned} & 19.072 \\ & 0.185 \end{aligned}$
(10, 20, 3)	MSE	$\begin{aligned} & 2.780 \\ & 0.554 \end{aligned}$	$\begin{aligned} & 3.026 \\ & 0.432 \end{aligned}$	$\begin{aligned} & 2.789 \\ & 0.455 \end{aligned}$	$\begin{aligned} & 4.218 \\ & 2.324 \end{aligned}$	$\begin{aligned} & \hline 6.579 \\ & 12.932 \end{aligned}$	$\begin{aligned} & \hline 6.595 \\ & 13.047 \end{aligned}$	$\begin{aligned} & 3.204 \\ & 0.543 \end{aligned}$	$\begin{aligned} & 2.772 \\ & 0.493 \end{aligned}$
(25, 20, 3)	MSE	$\begin{aligned} & 2.967 \\ & 0.220 \end{aligned}$	$\begin{aligned} & 2.953 \\ & 0.173 \end{aligned}$	$\begin{aligned} & 3.274 \\ & 0.292 \end{aligned}$	$\begin{aligned} & 5.311 \\ & 6.297 \end{aligned}$	$\begin{aligned} & \hline 7.090 \\ & 16.777 \end{aligned}$	$\begin{aligned} & \hline 7.390 \\ & 15.638 \end{aligned}$	$\begin{aligned} & 3.367 \\ & 0.427 \end{aligned}$	$\begin{aligned} & 3.245 \\ & 0.258 \end{aligned}$
(50, 20, 3)	MSE	$\begin{aligned} & 2.961 \\ & 0.102 \end{aligned}$	$\begin{aligned} & 2.928 \\ & 0.081 \end{aligned}$	$\begin{aligned} & 3.285 \\ & 0.187 \end{aligned}$	$\begin{aligned} & 5.951 \\ & 9.016 \end{aligned}$	$\begin{aligned} & \hline 6.614 \\ & 13.083 \end{aligned}$	$\begin{aligned} & \hline 7.025 \\ & 12.573 \end{aligned}$	$\begin{aligned} & 3.348 \\ & 0.218 \end{aligned}$	$\begin{aligned} & 2.790 \\ & 0.276 \end{aligned}$
$(75,20,3)$	MSE	$\begin{aligned} & 2.999 \\ & 0.067 \end{aligned}$	$\begin{aligned} & 2.960 \\ & 0.054 \end{aligned}$	$\begin{aligned} & 3.359 \\ & 0.204 \end{aligned}$	$\begin{aligned} & \hline 6.447 \\ & 12.022 \end{aligned}$	$\begin{aligned} & \hline 6.789 \\ & 14.377 \end{aligned}$	$\begin{aligned} & \hline 6.993 \\ & 12.948 \end{aligned}$	$\begin{aligned} & 3.408 \\ & 0.241 \end{aligned}$	$\begin{aligned} & 3.209 \\ & 0.187 \end{aligned}$
(100, 20, 3)	$\begin{gathered} \hat{\sigma} \\ \text { MSE } \end{gathered}$	$\begin{aligned} & 2.983 \\ & 0.052 \end{aligned}$	$\begin{aligned} & 2.945 \\ & 0.045 \end{aligned}$	$\begin{aligned} & 3.365 \\ & 0.194 \end{aligned}$	$\begin{aligned} & \hline 6.492 \\ & 12.238 \end{aligned}$	$\begin{aligned} & \hline 6.621 \\ & 13.129 \end{aligned}$	$\begin{aligned} & \hline 6.904 \\ & 12.839 \end{aligned}$	$\begin{aligned} & 3.405 \\ & 0.225 \end{aligned}$	$\begin{aligned} & 2.789 \\ & 0.098 \end{aligned}$
$C L=0.90$									
(10, 20, 3)	$\begin{gathered} \hat{\mu} \\ \text { MSE } \end{gathered}$	$\begin{aligned} & 19.398 \\ & 15.410 \end{aligned}$	$\begin{aligned} & 18.993 \\ & 16.107 \\ & \hline \end{aligned}$	$\begin{aligned} & 17.859 \\ & 17.703 \end{aligned}$	$\begin{aligned} & 14.982 \\ & 30.444 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.676 \\ & 282.441 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.462 \\ & 307.606 \end{aligned}$	$\begin{aligned} & 12.836 \\ & 51.858 \\ & \hline \end{aligned}$	$\begin{aligned} & 13.908 \\ & 47.054 \\ & \hline \end{aligned}$
$(25,20,3)$	$\begin{gathered} \hat{\mu} \\ \text { MSE } \end{gathered}$	$\begin{aligned} & \hline 20.830 \\ & 4.200 \end{aligned}$	$\begin{aligned} & 18.759 \\ & 6.295 \end{aligned}$	$\begin{aligned} & 17.983 \\ & 8.054 \end{aligned}$	$\begin{aligned} & 12.467 \\ & 77.596 \end{aligned}$	$\begin{aligned} & 11.050 \\ & 83.965 \end{aligned}$	$\begin{aligned} & 13.966 \\ & 92.837 \end{aligned}$	$\begin{aligned} & 11.658 \\ & 72.274 \end{aligned}$	$\begin{aligned} & 13.133 \\ & 57.946 \end{aligned}$
(50, 20, 3)	$\begin{gathered} \hat{\mu} \\ \mathrm{MSE} \end{gathered}$	$\begin{aligned} & 19.862 \\ & 3.364 \end{aligned}$	$\begin{aligned} & 18.699 \\ & 3.109 \end{aligned}$	$\begin{aligned} & 15.795 \\ & 5.895 \end{aligned}$	$\begin{aligned} & \hline 10.277 \\ & 8.973 \end{aligned}$	$\begin{aligned} & \hline 6.537 \\ & 12.948 \end{aligned}$	$\begin{aligned} & \hline 6.517 \\ & 56.666 \end{aligned}$	$\begin{aligned} & \hline 13.125 \\ & 10.102 \end{aligned}$	$\begin{aligned} & \hline 12.042 \\ & 41.033 \end{aligned}$
(75, 20, 3)	$\stackrel{\mu}{\text { MSE }}$	$\begin{aligned} & 20.217 \\ & 1.646 \end{aligned}$	$\begin{aligned} & 18.649 \\ & 2.017 \end{aligned}$	$\begin{aligned} & 16.972 \\ & 3.896 \end{aligned}$	$\begin{aligned} & \hline 9.683 \\ & 11.874 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.375 \\ & 13.874 \end{aligned}$	$\begin{aligned} & 7.047 \\ & 15.266 \end{aligned}$	$\begin{aligned} & 13.196 \\ & 11.551 \end{aligned}$	$\begin{aligned} & 12.972 \\ & 16.801 \end{aligned}$
(100, 20, 3)	$\begin{gathered} \hat{\mu} \\ \text { MSE } \end{gathered}$	$\begin{aligned} & 19.976 \\ & 3.706 \end{aligned}$	$\begin{aligned} & 19.274 \\ & 4.003 \end{aligned}$	$\begin{aligned} & 14.280 \\ & 8.604 \end{aligned}$	$\begin{aligned} & \hline 14.168 \\ & 16.173 \end{aligned}$	$\begin{aligned} & \hline 8.523 \\ & 21.403 \end{aligned}$	$\begin{aligned} & \hline 7.518 \\ & 23.619 \end{aligned}$	$\begin{aligned} & 13.138 \\ & 33.287 \end{aligned}$	$\begin{aligned} & 14.973 \\ & 49.818 \end{aligned}$
(10, 20, 3)	$\begin{gathered} \hat{\sigma} \\ \mathrm{MSE} \end{gathered}$	$\begin{aligned} & 2.609 \\ & 5.860 \end{aligned}$	$\begin{aligned} & 3.546 \\ & 6.027 \end{aligned}$	$\begin{aligned} & 4.013 \\ & 6.627 \end{aligned}$	$\begin{aligned} & 5.546 \\ & 7.182 \end{aligned}$	$\begin{aligned} & 7.470 \\ & 15.271 \end{aligned}$	$\begin{aligned} & \hline 7.387 \\ & 16.539 \end{aligned}$	$\begin{aligned} & 4.975 \\ & 5.048 \end{aligned}$	$\begin{aligned} & 4.998 \\ & 6.192 \end{aligned}$
$(25,20,3)$		$\begin{aligned} & 2.317 \\ & 2.027 \end{aligned}$	$\begin{aligned} & 3.402 \\ & 2.377 \end{aligned}$	$\begin{aligned} & 3.869 \\ & 3.094 \end{aligned}$	$\begin{aligned} & 5.678 \\ & 4.289 \end{aligned}$	$\begin{aligned} & 5.678 \\ & 7.286 \end{aligned}$	$\begin{aligned} & \hline 6.038 \\ & 11.494 \end{aligned}$	$\begin{aligned} & 4.812 \\ & 3.750 \end{aligned}$	$\begin{aligned} & 5.091 \\ & 10.700 \end{aligned}$
(50, 20, 3)	MSE	$\begin{aligned} & 2.936 \\ & 1.392 \end{aligned}$	$\begin{aligned} & 3.078 \\ & 1.973 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.948 \\ & 3.275 \end{aligned}$	$\begin{aligned} & 5.826 \\ & 5.749 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.553 \\ & 9.788 \end{aligned}$	$\begin{aligned} & \hline 6.560 \\ & 10.849 \end{aligned}$	$\begin{aligned} & 5.329 \\ & 8.188 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.958 \\ & 7.854 \end{aligned}$
(75, 20, 3)	MSE	$\begin{aligned} & \hline 2.797 \\ & 2.811 \end{aligned}$	$\begin{aligned} & 3.306 \\ & 2.913 \end{aligned}$	$\begin{aligned} & 3.972 \\ & 4.870 \end{aligned}$	$\begin{aligned} & \hline 8.522 \\ & 10.611 \end{aligned}$	$\begin{aligned} & \hline 7.738 \\ & 17.492 \end{aligned}$	$\begin{aligned} & \hline 6.803 \\ & 15.529 \end{aligned}$	$\begin{aligned} & \hline 5.028 \\ & 10.722 \end{aligned}$	$\begin{aligned} & 6.145 \\ & 9.321 \end{aligned}$
(100, 20, 3)	MSE	$\begin{aligned} & \hline 2.594 \\ & 4.628 \end{aligned}$	$\begin{aligned} & 3.514 \\ & 5.023 \end{aligned}$	$\begin{aligned} & 6.014 \\ & 6.286 \end{aligned}$	$\begin{aligned} & \hline 7.378 \\ & 13.307 \end{aligned}$	$\begin{aligned} & \hline 7.562 \\ & 15.009 \end{aligned}$	$\begin{aligned} & \hline 7.563 \\ & 14.721 \end{aligned}$	$\begin{aligned} & 6.235 \\ & 8.517 \end{aligned}$	$\begin{aligned} & \hline 6.663 \\ & 7.452 \end{aligned}$

[^0]: *Department of Mathematics and Statistics, University of Southern Maine, 96 Falmouth Street, P.O. Box 9300, Portland, Maine 04104-9300, USA , Email: aaboueissa@usm.maine.edu

