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On groups with relatively small normalizers
of nonprimary subgroups

Vladimir Antonov ∗

Abstract

We consider the structure of a finite nonsolvable group G in which for
any nonprimary subgroup A the index |NG(A) : A·CG(A)| is equal unit
or a prime number.

Keywords: finite group, subgroup, normalizer, centralizer.

If A is an arbitrary subgroup of a group G, then N(A) ≥ A·C(A), and the index
|N(A) : A ·C(A)| equals to the order of a subgroup of Out(A), which is induced
by elements of G. In this paper we consider the structure of finite groups G in
which for any nonprimary subgroup A the index |N(A) : A·C(A)| is a divisor of
a certain prime number, i.e., it is equal to 1 or a prime number. We’ll call these
groups NP -groups.

Note that any subgroup and factor-group of a NP -group is also a NP -group.
The aim of this article is to describe the structure of nonsolvable NP -groups.

1.1. Lemma. If a nonsolvable NP -group G is a central product of two subgroups
G1 and G2, then one of the factors is abelian.

Proof. Suppose that G1 is nonabelian. Then ([1], Corollary of Lemma 2) there
exists a subgroup A of G1 such that |NG1

(A) : A ·CG1
(A)|=p for a prime p.

If A is nonprimary and B is an arbitrary subgroup of G2, then from the fact
that |N(AB) : AB ·C(AB)| divides a prime number, it follows that NG2

(B) =
B ·CG2(B). Then G2 is abelian (see [1]). If A is primary and |A| = qn for a prime
q, then the equality NG2(B) = B ·CG2(B) holds for any q′-subgroup B of G2. By
Lemma 4 from [1], G2 = QhH, where H is an abelian Hall q′-subgroup of G2. i.e.
G2 is solvable. If G2 is nonabelian, then for any q′-subgroup A of G1, the equality
|NG1

(A) : A·CG1
(A)| holds too. But then the group G1 is also solvable, which is

impossible. �

1.2. Lemma. If Q is a Sylow q-subgroup of a NP -group G, C(Q) ≤ Q and
N(Q) = (Q h 〈a〉) h 〈b〉, where a 6= 1 6= b, then a and b are elements of prime
orders, and if N(Q) = Qh 〈x〉, then |x| is the product of no more than two prime
factors.
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Proof. In the first case, if we let A = Qh 〈a〉, we get that |b| = |N(A) : A·C(A)| is
a prime. And supposing A = Qh 〈c〉, where c is an element of prime order r from

〈a〉, then from the equality |N(A) : A·C(A)| = |a|
r |b| we get that |a| = r. In second

case, it’s sufficient to choose a subgroup A = Q h 〈y〉, where y is an element of
prime order from 〈x〉. �

Later on we will repeatedly use Frattini’s argument ([7], theorem 1.3.7): if H�G
and P is a Sylow p-subgroup of H, then G = H · N(P ). In a solvable group all
Hall π-subgroups are conjugate. Therefore a similar proposition is true in a case
where P is a Hall π-subgroup of a solvable group H. We will call this Frattini’s
argument as well.

1.3. Theorem. A finite nonabelian simple group G is a NP -group if and only if
G satisfies one of the following conditions:

1) G ∼= PSL(2, qn), qn−1
(2,qn−1) is either a prime or a product of two primes;

2) G ∼= PSU(3, 22n), and either n = 2 or each of the numbers (2n − 1) and
2n+1

3 are primes;
3) G ∼= Sz(2n), n ∈ {3, 5}.

Proof. Necessity. Let G be a finite nonabelian simple NP -group. It is known that
any nonabelian simple group is either an alternating group, a Lie type group, or
a sporadic simple group.

First, assume that G ∼= An. If n = 5, then G ∼= PSL(2, 4), and if n = 6, then
G ∼= PSL(2, 9). If, however, n > 6 then G contains a subgroup which is isomorphic
to A7. Let G = A7, a = (1 2)(3 4), b = (1 3)(2 4), c = (5 6 7), x = (1 2)(5 6),
y = (1 2 3) and A = 〈a〉 × 〈b〉 × 〈c〉. Then C(A) = A and N(A) = Ah (〈y〉h 〈x〉),
i.e. |N(A) : A·C(A)| = 6, which is impossible.

Now let G be a simple Lie type group over the Galois field GF (qn), where q is a
prime. Suppose that the Lie rank l of G is more than 2. If J is a parabolic subgroup
of G, corresponding to two nonadjoit nodes of the Dynkin diagram of G, then ([4],
Proposition 2.17) J = J/Oq(J) = (Y 1 × Y 2) ·H, where Y 1 and Y 2 are Lie type
groups of Lie rank 1 over GF (qn) and H is a Cartan subgroup of G. By Lemma 1.1
each of Yi is a solvable group. Since ([4], Theorem 2.13) solvable Lie type groups
are either A1(2), A1(3), 2A2(2) or 2B2(2), so qn ∈ {2, 3}. Let pi ∈ π(Y i) \ {q}, A1

and A2 be Sylow p1- and p2-subgroup from Y 1 and Y 2, respectively, then for the
nonprimary subgroup A = A1 · A2 the index |N(A) : A·C(A)| is divisible by q2,
which is impossible.

Therefore l ≤ 2. Let l = 2, i.e., G is isomorphic to one of the groups A2(qn),
B2(qn), 2A3(qn), 2A4(qn), 3D4(qn), 2F4(22n+1), n > 0, (2F4(2))′.

First suppose that the Cartan subgroup H of the group G is trivial. The group
(2F4(2))′ contains a subgroup K isomorphic to PSL(2, 25), which is not NP -
group, because it has a Cartan subgroup of order 12, which contradicts Lemma
1.2. Because of this, G is a group of classical type over the field GF (2), i.e., either
G ∼= A2(2) = PSL(3, 2), or G ∼= B2(2) = PSp(4, 2). It’s left to be noticed that
PSL(3, 2) ∼= PSL(2, 7), and that the group PSp(4, 2) ∼= S6 is not simple.

Therefore H 6= 1. Let J be a proper parabolic subgroup of G. Then J =
J/Oq(J) = Y ·H, where Y is a Lie type group of Lie rank 1. If G ∼= 2F4(22n+1),

n > 0, then subgroup J can be chosen so that Y ∼= 2B2(22n+1), and if A is a



subgroup of the order 22n+1+2n+1+1 from Y , then A is nonprimary and |NY (A) :
A·CY (A)| = 4, which is imposible. If G ∼= 2A4(qn), then Y ∼= PSL(2, q2n), and if
H1 is a Cartan subgroup of Y , then the index |N(H1) : H1 ·C(H1)| = 2 · |H/H1|
is not a prime.

In all the other cases, subgroup J may choosen in such a way that Y ∼= A1(qn).
If qn = 2 and A is a subgroup of order 3 of Y , then by Frattini’s argument we
assume that H ≤ N(A) which also leads to a contradiction. However, if qn 6= 2,
then as A we can take a Cartan subgroup of Y .

Therefore l = 1. If Q is a Sylow q-subgroup of G, then C(Q) ≤ Q and N(Q) =
QhH, where H is a Cartan subgroup of G. From the definition of an NP -group
and the fact that H is abelian, one of the following is true: |H| = 1, |H| is a prime
number or |H| = pr where p and r are primes. Since group A1(2) is solvable, then
the first case is impossible.

First, suppose that G is a twisted group. Let G ∼= 2A2(qn) = PSU(3, q2n).

Then |H| = q2n−1
(3,qn+1) = (qn−1) · qn+1

(3,qn+1) . If q > 2 then |H| is divisible by 8, which

is impossible. Therefore q = 2 and all of the numbers (2n − 1) and 2n+1
(3,2n+1) are

primes. The primarity of (2n − 1) implies that either n = 2 or n is an odd prime
and then (2n + 1, 3)=3, i.e., G is a group of type 2) from this Theorem.

The group 2B2(22n+1) contains, as subgroups, the Frobenius groups of orders
(22n+1 ± 2n+1 + 1) · 4. Therefore each of the numbers 22n+1 + 2n+1 + 1 and
22n+1 − 2n+1 + 1 must be powers of the primes. Because their product is equal
(22)2n+1 + 1 it is divisible by 5. But then either 22n+1 + 2n+1 + 1 = 5m, or
22n+1 − 2n+1 + 1 = 5m for some number m.

Consider the first case. If 22n+1+2n+1+1 = 5m, then either n = 4t or n = 4t−1
for some t > 0. Since 27+24+1 = 145 6= 5m, then n ≥ 4 in any case. Let m = 2kr,
where r is an odd number. Then from

2n+1(2n + 1) = 5m − 1 = 2k+2 · 5r − 1

4
·
k−1∏
i=0

52
ir + 1

2

it follows that k = n− 1 ≥ 3. But the inequality

k−1∏
i=0

52
ir + 1

2
> 2k+1 + 1 = 2n + 1

is true for k ≥ 3, which is impossible.
If, however, 22n+1 − 2n+1 + 1 = 5m, then either n = 4t + 1 or n = 4t + 2 for

some t ≥ 0. The equality

2n+1(2n − 1) = 5m − 1 = 2k+2 · 5r − 1

4
·
k−1∏
i=0

52
ir + 1

2

implies k = n− 1. If k > 1 then from k ∈ {4t, 4t+ 1} it follows that k ≥ 4 and we
have the contradiction again. Therefore, k ∈ {0, 1} and, consequently, n ∈ {1, 2},
i.e., G is a group of the type 3) from this Theorem.

Let G ∼= 2G2(32n+1). Since the group 2G2(3) is nonsimple, then n > 0. In
this case (see [8]) G has a subgroup H such that H = (V4 × D) h 〈b〉, where



|b| = 3, V4 = 〈a1〉 × 〈a2〉, |ai| = 2, and D is isomorphic to the dihedral group

of order 32n+1+1
2 . If a is an element of order 32n+1+1

4 from D, then the subgroup
A = V4 × 〈a〉 is nonprimary and |NH(A) : A · CH(A)| = 6, which is impossible.

Now suppose that G is a classical nontwisted group of Lie type rank 1, i.e.,

G ∼= A1(qn) ∼= PSL(2, qn). In this case |H| = qn−1
(2,qn−1) . Because of this qn−1

(2,qn−1)
is either be a prime, or a product of two primes, i.e., G is a group of the type 1)
from this Theorem.

Now using the survey [10] we can show that G cannot be a sporadic simple
group. To demonstrate this, it’s sufficient to show that any sporadic simple group
contains a subgroup, which is not NP -group. Let Gp denote a Sylow p-subgroup
of G for a prime p.

1) In the group M11 the subgroup G3 is self-centralizing and its normaliser has
a form N(G3) = G3 h K, where K is isomorphic to the semi-dihedral group of
order 16, again contrary with Lemma 1.2.

2) M12, M23, M24, Co3, Suz and McL contain M11.
3) M22 and M24 contain A7, F22 contains S10, and F23 and F ′24 contain S12.
4) The group O′N contains J1, and in the group J1 the subgroup N(G3) is a

direct product of two dihedral groups of orders 6 and 10. If A is a subgroup from
N(G3) of order 15, then |N(A) : A · C(A)| is divisible by 4.

5) In the group J2 we have N(G3) = G3 h 〈a〉, where C(G3) = G3 and |a| = 8.
6) In the groups J3 and He the subgroup N(G17) is a Frobenius group of order

17 · 8; in J4 and Co2 the subgroup N(G29) is a Frobenius group of order 29 · 28,
again contrary to Lemma 1.2 and Co1 and F2 contain Co2.

7) The group F1 contain an involution τ such that C(τ)/O2(C(τ)) ∼= Co2.
8) In the groups Ly and F3 the subgroups N(G37) and N(G19) are Frobenius

groups of orders 37 · 18 and 19 · 18, respectively.
9) The group F5 contains HS, and in the group HS the subgroup N(G3) is

isomorphic to S3 × S5, and if A3 × A5
∼= A ≤ N(G3), then |N(A) : A ·C(A)| is

divisible by 4.
10) The group Ru contains an involution τ such that C(τ) ∼= V4×Sz(8), and if

A ∼= V4×H, where H is a subgroup of order 5 from Sz(8) , then |N(A) : A ·C(A)|
is divisible by 4.

Sufficiency. If A is a proper nonprimary subgroup of G, then N(A) < G.
Therefore, it is sufficient to prove, that any maximal subgroup of G is a NP -
group.

Suppose first that G ∼= PSL(2, qn), where q is a prime. Since qn−1
(2,qn−1) is either

a prime or a product of two primes, then, it is not difficult to see, that either n = 1
or q ∈ {2, 3} and n is either a prime or the square of a prime (odd, if q = 3).From
Dickson’s Theorem ([6], Theorem 2.8.27) it follows that the maximal subgroups
of G are the groups from the following list: N(Q) = Qh 〈a〉, where Q is a Sylow

q-subgroup of G, |a| = qn−1
(2,qn−1) ; the dihedral groups of the orders 2 · qn±1

(2,qn−1) ; S4

for qn ≡ ±1(8), A4 for qn ≡ ±3(8), A5 for qn ≡ ±1(10); PSL(2, qp) for n = p2.
It’s not difficult to check that all these groups are NP -groups.

If G ∼= PSU(3, 22n), then since (2n − 1) is a prime, n is a prime too. From
[5] it follows that the maximal subgroups of G are the groups of the following



types: N(Q) = Q h 〈a〉, where Q is a Sylow 2-subgroup of G, |a| = 22n−1
(3,2n+1) ;

C(b) = 〈b〉 × B, where |b| = 2n+1
(3,2n+1) , B

∼= PSL(2, 2n); the Frobenius group

〈a〉h〈b〉, |a| = 22n−2n+1
(3,2n+1) , |b| = 3; the Frobenius groups (〈a〉×〈b〉)hC, |a| = 2n+1,

|b| = 2n+1
(3,2n+1) , C

∼= S3.

In the groups Sz(2, 22n+1) for a prime n, the maximal subgroups are the groups
of the following types (see [9]): N(Q) = Q h 〈a〉, Q is a Sylow 2-subgroup, |a| =
2n − 1; the dihedral group of order 2 · (2n − 1); the Frobenius groups 〈a〉 h 〈b〉,
|a| = 2n ± 2

n+1
2 + 1, |b| = 4. �

Below F and F ∗ denote the Fitting subgroup and the generalized Fitting sub-
group of G, respectively.

1.4. Theorem. Let G be a nonsolvable nonsimple NP -group. Then one of the
following holds:

1) subgroup F = F ∗ is a nontrivial p-group for some prime p, and G/F ∼=
PSL(2, 4);

2) G ∼= Aut(PSL(2, 2n)), n ∈ {2, 3};
3) G = Z(G) ·L, L ∼= PSL(2, qn) or SL(2, qn), the number qn−1

(2,qn−1) is a prime,

and if n = 1 then either q 6≡ ±1(8) or Z(G) is a 2-group;

4) G = Z(G) × L and either L ∼= PSL(2, qn), qn−1
(2,qn−1) is a product of the two

prime numbers and Z(G) is a q-group, or Z(G) is a 2-group and L ∼= PSU(2, 22n)
is a group from Theorem 1.3;

5) G = Z(G) · L, Z(G) is a 3-group and L is isomorphic to the covering group
for PSL(2, 9) with |Z(L)| = 3.

Proof. Let G be a group satisfiy conditions of this Theorem. Let’s assume first
that F = F ∗. Then C(F ) ≤ F . If F is a nonprimary group, then |G : F | is a prime
and G is a solvable group. Therefore, F is a p-group for some prime p. Moreover,
if A/F is a p′-subgroup of G/F , then |N(A) : A| divides a prime number.

Let G1/F is a minimal normal subgroup of G/F . Then G1 is a non-nilpotent
group, and consequently, is nonprimary. Therefore |G : G1| is a divisor of a prime.
Assume that G = G1. Then G/F is a simple NP -group. i.e., a group from
Theorem 1.3.

Let G/F ∼= PSU(3, 22n). If p 6= 2 and A/F is a Sylow 2-subgroup of G/F ,

then A is nonprimary, and |N(A) : A ·C(A)| = 22n−1
(3,2n+1) is not a prime. Therefore

p = 2. Then ([4], p.166), for subgroup H/F of order 22n−1
(3,2n+1) from NG/F (A/F ) the

equality CG/F (H/F ) = H/F ×L/F , where L/F ∼= PSL(2, 2n), is true. Therefore,
for the nonprimary subgroup H, the index |N(H) : H · C(H)| divides by |L/F |,
which is impossible.

In the case G/F ∼= Sz(8), a Sylow 2-subgroup of G/F has the order 26. Hence
p = 2. If A/F is a subgroup of order 5 from G/F , then |N(A) : A| = 4, which is
impossible. If G/F ∼= Sz(25), then by analogy p = 2 and if A/F is a subgroup of
order 25, then |N(A) : A| = 4.

Therefore, G/F ∼= PSL(2, qn). If q 6= p and Q/F is a Sylow q-subgroup of
G/F , then Q is nonprimary and the primarity of the number |NG/F (Q/F ) : Q/F |



implies that qn−1
(2,qn−1) is a prime. If aF is an element of order q from Q/F then the

index |N(〈a, F 〉) : 〈a, F 〉| divides a prime number and, therefore, n ≤ 2.

If n = 2 then from the primarity of q2−1
(2,q2−1) we get that q = 2, i.e. G/F ∼=

PSL(2, 4). Let n = 1. Since the groups PSL(2, 2) and PSL(2, 3) are solvable,
and PSL(2, 5) ∼= PSL(2, 4) then we can suppose that q > 5. Let A/F is a
subgroup of the prime order r, where r divides q+1

2 . If r 6= p then the primarity

of |N(A) : A| = 2 · q+1
2r implies r = q+1

2 . But the numbers q−1
2 and q+1

2 are
primes at the same time only when q = 5. Suppose now that r = p. Then by
the arbitrariness of r, the equation q+1

2 = pk is solvable. Since q > 5 then the

prime number q−1
2 is odd. But then q + 1 is divisible by 4. i.e. p = 2. Since one

of the numbers, either k or k + 1, is even, then the numbers q = 2k+1 − 1 and
q−1
2 = 2k − 1 cannot both be prime at the same time.

Assume now that q = p and aF is an element of prime order from a subgroup

of order qn±1
(2,qn−1) from G/F . Because NG/F (〈aF 〉) is isomorphic to the dihedral

group of order qn±1
(2,qn−1) · 2, and |N(〈a, F 〉) : 〈a, F 〉| is a prime, then the numbers

qn±1
(2,qn−1) are primes. If q is odd, then qn = 5. But PSL(2, 5) ∼= PSL(2, 4). If

q = 2, then because (2n − 1) is a prime it follows that n is a prime. But then in
the case n > 2 the number 2n + 1 is not prime. Therefore, G/F ∼= PSL(2, 4).

Suppose now that G1 < G. Then, by using what’s already been proved, G1/F ∼=
PSL(2, 4) and G/F = (G1/F )h 〈aF 〉, where aF is an automorphism of the group
G1/F . Let A/F be a subgroup of order 5 from G1/F . By Frattini’s argument we
can assume that aF ∈ NG/F (A/F ). But then |N(A) : A · C(A)| is divisible by 4.

Therefor, if F = F ∗, then by the theorem conditions, G is of type 1). Because
of this, we’ll further assume that F < F ∗. Then F ∗ = F · L, when L is the
layer of the group G. By Lemma 1.1, the subgroup F is abelian and F ∗/F is
a simple group, i.e., a group from Theorem 1.3. Moreover, one of the following
holds: F = 1, G = F ∗ or 1 < F < F ∗ < G.

In the first case F ∗ is a group from Theorem 1.3 and F ∗ < G ≤ Aut(F ∗). From
the definition of the NP -group it follows that |G/F ∗| is a prime. The structure
of the automorphism groups of Lie type groups (e.g. [4], theorem 4.238) implies
that in our case G = F ∗ h 〈a〉, a is a prime order automorphism of group F ∗. Set
|a| = p.

First assume that F ∗ ∼= PSL(2, qn). Let Q be a Sylow q-subgroup of F ∗and
B = Q h H be a Borel subgroup of group F ∗. By Frattini’s argument we can
assume that a ∈ N(Q). But then a ∈ N(NF∗(Q)) = N(B). Since C(Q) ≤ Q and

|N(Q) : Q| = |H| · p, then, by Lemma 1.2, the number |H| = qn−1
(2,qn−1) must be

a prime number. But then, as it was noted in the proof of Theorem 1.3, either

q ∈ {2, 3}, or n = 1. By analogy, for a subgroup A of order qn+1
(2,qn−1) from F ∗ the

equality |N(A) : A ·C(A)| = 2p implies that subgroup A must be a primary group.
Let q = 2. The primarity of the number (2n − 1) implies that n is a prime. If

n > 2, then 2n + 1 is divisible by 3 and, consequently, 2n + 1 = 3k for a number
k. Let k > 2. If k = 2r is even, then 2n = 3k − 1 = (3r − 1)(3r + 1), which is
impossible. However, if k = 2r + 1, then 3k − 1 = 2(1 + 3 + 32 + · · · + 32r) 6= 2n



where the second factor is odd. Therefor, if q = 2, then the group F ∗ is isomorphic
to one of the groups PSL(2, 4) or PSL(2, 8).

If q = 3 then the primarity of the number 3n−1
2 implies that n is an odd prime.

However, from that fact that 3n+1
2 is even and prime it follows that 3n+1

2 = 2k,

i.e., 3n = 2k+1 − 1 for a number k. Since the number 3n−1
2 = 2k − 1 is prime,

then k is an odd prime. But then k + 1 = 2r and 3n = (2r − 1)(2r + 1), which is
impossible for r > 1. However if r = 1, then k = 1. But then n = 1 as well, which
contradicts the primarity of the group F ∗.

Finally, let q and q−1
2 be primes. If q = 5, then F ∗ ∼= PSL(2, 4). However if

q > 5, then q−1
2 is odd. Because q+1

2 is primary, we obtain that q+1
2 = 2k, i.e.

q = 2k+1 − 1. But then q−1
2 = 2k − 1. Since one of the numbers k, k + 1 is

even, and k > 2, then the numbers (2k − 1) and (2k+1 − 1) can’t both be prime
simultaneously.

Suppose now that F ∗ ∼= PSU(3, 22n). If p 6= 2 and A is a Sylow 2-subgroup of

F ∗, then |N(A) : A ·C(A)| = p · (2n − 1) · 2n+1
(3,2n+1) , which is impossible. However,

if p = 2 and H is a Cartan subgroup of F ∗, then H is nonprimary and |N(H) :
H · C(H)| = 4.

If F ∗ ∼= Sz(23) or Sz(25) and A is a subgroup of order 5 or 25 of F ∗, respectively,
then |N(A) : A| = 4p, which contradicts Lemma 1.2.

Therefore, if F = 1, then G is of a type 2) from this Theorem.
Consider the case when G = F ∗, i.e., G = F ·L, where L is the layer of the group

G. By Lemma 1.1, the subgroup F is abelian, i.e., F = Z(G), and L is a quasi
simple group. Since the group G isn’t simple, then F 6= 1. If F is nonprimary,
then the index |NL(A) : A · CL(A)| divides a prime for any subgroup A ≤ L. By

theorem 4 from [2] L ∼= PSL(2, qn) or SL(2, qn), the number qn−1
(2,qn−1) is a prime

and if n = 1, then q 6≡ ±1(8), i.e., G is of type 3) from this Theorem.
Now suppose that F is a p-group for a prime p. Since the Schur multiplier of

group Sz(25) is trivial then either L is a group from Theorem 1.3 or L is isomorphic
to a covering of group PSL(2, qn), Sz(8) or PSU(3, 22n).

Let L/Z(L) ∼= Sz(8). Then L/Z(L) contains the subgroups A1/Z(L) and
A2/Z(L) of order 5 and 13, respectively, such that |NL(Ai) : Ai · C(Ai)| = 4.
Since p isn’t at least one of the numbers 5 or 13, then supposing A = F ·Ai, we get
a contradiction with the definition of NP -group. If L ∼= Sz(25) then subgroups of
order 25 and 41 should be taken as subgroups A1 and A2 in the group G.

Therefore, we can assume that L/Z(L) ∼= PSL(2, qn) or PSU(3, 22n).
First, assume that Z(L) = 1, i.e., G = Z(G)×L. If L ∼= PSL(2, qn) and p 6= q,

then the number qn−1
(2,qn−1) should be prime. Moreover, if n = 1 and q ≡ ±1(8),

then L/Z(L) contains a subgroup H/Z(L) ∼= S4. If V/Z(L) is a four-group from
H/Z(L), then the equality |NH/Z(L)(V/Z(L)) : V/Z(L)| = 6 implies that in this

case subgroup V is primary, i.e., p = 2. However, if p = q, then the number qn−1
(2,qn−1)

could be the product of two primes. But, if qn ≡ ±1(8), then when checking a
four-group V/Z(L) again, we get that p = 2. But then qn = 2n 6≡ ±1(8). If,
however L/Z(L) ∼= PSU(3, 22n) and p 6= 2, then for a Sylow 2-subgroup A of L,
the subgroup A · Z(L)) is nonprimary and again we get a contradiction with the
definition of NP -group.



Now suppose that Z(L) 6= 1. Since the Schur multiplier is trivial for groups
PSL(2, 2n) when n > 2, we can assume that in the case of L/Z(L) ∼= PSL(2, qn)
the number q is odd. Then the order of the Schur multiplier is equal to 2 (i.e.
L ∼= SL(2, qn)) for qn 6= 9 and 6 for qn = 9. Consider the second case. If |Z(L)| is
divisible by 2 and Q/Z(L) is a Sylow 3-subgroup of the group L/Z(L), then the
subgroup Q is nonprimary and |N(Q) : Q ·C(Q)| = 4, which is impossible. Hence,
when qn = 9 the order of Z(L) is equal to 3. In the case of L/Z(L) ∼= PSU(3, 22n)
the Schur multiplier order is equal to 3, and if A/Z(L) is a Sylow 2-subgroup of
L/Z(L), then subgroup A is nonprimary and |NL(A) : A · CL(A)| is not a prime.

Therefore, if G = F ∗ then G is a group of type 3) or 5) from this Theorem.
Finally, consider the case when 1 < F < F ∗ < G. Then, by using what’s already
been proved, F ∗ is a group of type 3) or 4), while G/F is a group of type 2) from
this Theorem. Let G = F ∗ · 〈a〉, ap ∈ F ∗. If A/F is a Sylow q-subgroup from
F ∗/F , then the fact that |N(A) : A · C(A)| is divisible by p · |H/F |, where H/F
is a Cartan subgroup of group F ∗/F , implies that subgroup F is a q-group for a
prime q. But then, for the nonprimary subgroup H, the index |N(H) : H ·C(H)|
is divisible by 2p, which is impossible. �

1.5. Note. It isn’t difficult to see that the groups type 2) and 5) of Theorem
1.4 are NP -groups. For type 1) groups, the proof of the sufficiency requires the
fulfillment of a number of additional restrictions. Let’s note some of them.

Let t be a p′-element from G, A be a t-invariant subgroup from F and H =
Fh〈t〉. Then the index |NH(Ah〈t〉) : (Ah〈t〉) ·CH(Ah〈t〉)| divides p. Looking at
the intersections of these subgroups with F and taking into account that NF (Ah
〈t〉) = A · (NF (A) ∩ C(t)), we get that

|A·(NF (A)∩C(t)) : A·(CH(A)∩C(t))| = |NF (A)∩C(t) : (CH(A)∩C(t))·(A∩C(t))|,

i.e., |CNF (A)(t) : CA(t) · CCF (A)(t)| divides p.
Let NG/F (〈tF 〉) = 〈tF 〉 h 〈hF 〉 and A be a 〈t, h〉-invariant subgroup from F .

Since h ∈ N(Ah 〈t〉), then in the same notation NH(Ah 〈t〉) = (Ah 〈t〉) ·CH(t).
But then CNF (A)(t) = CA(t) ·CCF (A)(t). Since the subgroup NF (A) is also 〈t, h〉-
invariant, then

CNF (NF (A))(t) = (NF (A) ∩ C(t)) · CCF (NF (A))(t) = CA(t) · CCF (A)(t).

Continuing this process and taking into account that F satisfies the normaliser
conditions, we get the equality CF (t) = CA(t) · CCF (A)(t).

Supposing that in this equation A = [F, a] and taking into account that F =
[F, a] · CF (a), we get that CF (a) = C[F,a](a) · CCF ([F,a])(a), i.e., F = [F, a] ·
CF ([F, a]).

By analogy we can prove, that if p 6= 2 and (〈aF 〉 × 〈bF 〉)h 〈cF 〉 is a subgroup
of order 12 from G/F and subgroup A ≤ F is 〈a, b, c〉-invariant, then CF (〈a, b〉) =
CA(〈a, b〉) · CCF (A)(〈a, b〉) and F = [F, 〈a, b〉] · CF ([F, 〈a, b〉]).

Note that all these properties hold if subgroup F is abelian, i.e., in this case G
is a NP -group.
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