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On groups with relatively small normalizers
of nonprimary subgroups

Vladimir Antonov *

Abstract

We consider the structure of a finite nonsolvable group G in which for
any nonprimary subgroup A the index |[Ng(A) : A-Cq(A)| is equal unit
or a prime number.
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If A is an arbitrary subgroup of a group G, then N(A) > A-C(A), and the index
IN(A) : A-C(A)| equals to the order of a subgroup of Out(A), which is induced
by elements of G. In this paper we consider the structure of finite groups G in
which for any nonprimary subgroup A the index |[N(A) : A-C(A)| is a divisor of
a certain prime number, i.e., it is equal to 1 or a prime number. We’ll call these
groups N P-groups.

Note that any subgroup and factor-group of a N P-group is also a N P-group.
The aim of this article is to describe the structure of nonsolvable N P-groups.

1.1. Lemma. If a nonsolvable N P-group G is a central product of two subgroups
G1 and Go, then one of the factors is abelian.

Proof. Suppose that G is nonabelian. Then ([1], Corollary of Lemma 2) there
exists a subgroup A of G; such that |Ng,(A4) : A-Cq, (A)|=p for a prime p.
If A is nonprimary and B is an arbitrary subgroup of Gs, then from the fact
that |[N(AB) : AB-C(AB)| divides a prime number, it follows that Ng,(B) =
B-Cg,(B). Then G is abelian (see [1]). If A is primary and |A| = ¢" for a prime
g, then the equality Ng,(B) = B-Cg,(B) holds for any ¢'-subgroup B of G3. By
Lemma 4 from [1], Go = QX H, where H is an abelian Hall ¢’-subgroup of G,. i.e.
Gs is solvable. If G5 is nonabelian, then for any ¢’-subgroup A of G, the equality
|Ng,(A) : A-Cg, (A)| holds too. But then the group G is also solvable, which is
impossible. (I

1.2. Lemma. If Q is a Sylow g-subgroup of a NP-group G, C(Q) < @ and
N(Q) = (Q X {(a)) N (b), where a # 1 # b, then a and b are elements of prime
orders, and if N(Q) = QX (x), then |z| is the product of no more than two prime
factors.
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Proof. In the first case, if we let A = QX (a), we get that |b] = |[N(A) : A-C(A)] is
a prime. And supposing A = Q X (c¢), where c¢ is an element of prime order r from
(a), then from the equality |[N(A) : A-C(A)| = %|b| we get that |a| = 7. In second
case, it’s sufficient to choose a subgroup A = Q X (y), where y is an element of
prime order from (z). O

Later on we will repeatedly use Frattini’s argument ([7], theorem 1.3.7): if H1G
and P is a Sylow p-subgroup of H, then G = H - N(P). In a solvable group all
Hall 7m-subgroups are conjugate. Therefore a similar proposition is true in a case
where P is a Hall w-subgroup of a solvable group H. We will call this Frattini’s
argument as well.

1.3. Theorem. A finite nonabelian simple group G is a N P-group if and only if
G satisfies one of the following conditions:
1) G2 PSL(2,q™), (2‘277;11) 1s either a prime or a product of two primes;

2) G = PSU(3,2%"), and either n = 2 or each of the numbers (2" — 1) and
2741

are primes;
3) G=S5z(2™), n € {3,5}.

Proof. Necessity. Let G be a finite nonabelian simple N P-group. It is known that
any nonabelian simple group is either an alternating group, a Lie type group, or
a sporadic simple group.

First, assume that G = A,,. If n = 5, then G = PSL(2,4), and if n = 6, then
G = PSL(2,9). If, however, n > 6 then G contains a subgroup which is isomorphic
to A7. Let G = A7, a = (12)(34),b=(13)(24),c=(567),z=(12)56),
y=(123)and A = (a) x (b) x (¢). Then C(A) = A and N(A) = AX ({y) N (x)),
ie. [N(A): A-C(A)| = 6, which is impossible.

Now let G be a simple Lie type group over the Galois field GF(¢™), where ¢ is a
prime. Suppose that the Lie rank [ of G is more than 2. If J is a parabolic subgroup
of G, corresponding to two nonadjoit nodes of the Dynkin diagram of G, then ([4],
Proposition 2.17) J = J/O,(J) = (Y1 x Y3) - H, where Y and Y are Lie type
groups of Lie rank 1 over GF(¢"™) and H is a Cartan subgroup of G. By Lemma 1.1
each of Y; is a solvable group. Since ([4], Theorem 2.13) solvable Lie type groups
are either A;(2), A1(3),2A42(2) or 2By(2), so ¢" € {2,3}. Let p; € n(Y;) \ {q}, A1
and A, be Sylow p;- and ps-subgroup from Y and Y, respectively, then for the
nonprimary subgroup A = A; - Ay the index |[N(A) : A-C(A)| is divisible by ¢2,
which is impossible.

Therefore | < 2. Let [ = 2, i.e., G is isomorphic to one of the groups As(g"),
Ba(q"), 2A5(q"), *As(g"), *Da(g"), *Fa(22"H), n > 0, (2Fy(2)).

First suppose that the Cartan subgroup H of the group G is trivial. The group
(2F4(2))" contains a subgroup K isomorphic to PSL(2,25), which is not N P-
group, because it has a Cartan subgroup of order 12, which contradicts Lemma
1.2. Because of this, G is a group of classical type over the field GF'(2), i.e., either
G = Ay(2) = PSL(3,2), or G = By(2) = PSp(4,2). It’s left to be noticed that
PSL(3,2) = PSL(2,7), and that the group PSp(4,2) = Sg is not simple.

Therefore H # 1. Let J be a proper parabolic subgroup of G. Then J =
J/O,(J) =Y - H, where Y is a Lie type group of Lie rank 1. If G & 2F,(22"+1)
n > 0, then subgroup J can be chosen so that Y = 2B5(22"*1) and if A is a



subgroup of the order 227+1 427+ 4 1 from Y, then A is nonprimary and | Ny (4) :
A-Cy (A)| = 4, which is imposible. If G =2 24,(¢"), then Y = PSL(2,¢?"), and if
H, is a Cartan subgroup of Y, then the index |N(Hy) : H;-C(Hy)| = 2 - |H/Hy|
is not a prime.

In all the other cases, subgroup J may choosen in such a way that Y = A;(¢").
If ¢ = 2 and A is a subgroup of order 3 of Y, then by Frattini’s argument we
assume that H < N(A) which also leads to a contradiction. However, if ¢" # 2,
then as A we can take a Cartan subgroup of Y.

Therefore [ = 1. If @ is a Sylow g-subgroup of G, then C(Q) < @ and N(Q) =
QX H, where H is a Cartan subgroup of G. From the definition of an N P-group
and the fact that H is abelian, one of the following is true: |H| =1, |H| is a prime
number or |H| = pr where p and r are primes. Since group A;(2) is solvable, then
the first case is impossible.

First, suppose that G is a twisted group. Let G = 2A,(q") = PSU(3,¢*").

Then [H| = (=25 = (¢" —1) ghils. It g > 2 then [H| is divisible by 8, which

is impossible. Therefore ¢ = 2 and all of the numbers (2" — 1) and %
primes. The primarity of (2" — 1) implies that either n = 2 or n is an odd prime
and then (2" 4+ 1,3)=3, i.e., G is a group of type 2) from this Theorem.

The group 2B5(22"*1) contains, as subgroups, the Frobenius groups of orders
(22n+1 4 27+l 4 1) . 4. Therefore each of the numbers 2271 4 27+1 + 1 and
22ntl _ontl 1 1 must be powers of the primes. Because their product is equal
(22)27*+1 + 1 it is divisible by 5. But then either 227+1 4 27+l 41 = 5™ or
22ntl _on+l 11 — 5™ for some number m.

Consider the first case. If 22" T1 +27*1 11 = 5™ then eithern = 4t orn = 4t—1
for some t > 0. Since 27 +2*+1 = 145 # 5™, then n > 4 in any case. Let m = 2Fr,
where 7 is an odd number. Then from

are

k—1 _oi
5" —1 527 41
2n+12n 1:m_1:2k}+2' .
2"+1)=5 ; 1}) 5
it follows that k =n — 1 > 3. But the inequality
k—1 _oi
527 +1
HT“L >kt L1 =97 41
i=0

is true for £ > 3, which is impossible.
If, however, 227+l — 97+l L 1 = 5™ then either n = 4t + 1 or n = 4t + 2 for
some t > 0. The equality

n+1l/9n _rm _ ok+2 5" —1 = 52’LT+1

2Rt — 1) =5 -1 =20 11) 5

implies k = n — 1. If k£ > 1 then from k € {4t,4¢ + 1} it follows that k£ > 4 and we

have the contradiction again. Therefore, k € {0, 1} and, consequently, n € {1,2},
i.e., G is a group of the type 3) from this Theorem.

Let G =2 2G5(3*"*1). Since the group 2G»(3) is nonsimple, then n > 0. In

this case (see [8]) G has a subgroup H such that H = (V4 x D) X (b), where




|| = 3, Vi = (a1) x {(a2), |a;] = 2, and D is isomorphic to the dihedral group
32n+1 41 g2n+1 ]

of order . If a is an element of order from D, then the subgroup
A =V x (a) is nonprimary and [Ny (A) : A-Cy(A)| = 6, which is impossible.

Now suppose that G is a classical nontwisted group of Lie type rank 1, i.e.,
G > Ai(q") = PSL(2,q™). In this case |H| = (2‘71;7,7_11). Because of this (2‘,1;7,7_11)
is either be a prime, or a product of two primes, i.e., G is a group of the type 1)
from this Theorem.

Now using the survey [10] we can show that G cannot be a sporadic simple
group. To demonstrate this, it’s sufficient to show that any sporadic simple group
contains a subgroup, which is not IV P-group. Let G}, denote a Sylow p-subgroup
of G for a prime p.

1) In the group Mj; the subgroup Gj is self-centralizing and its normaliser has
a form N(Gs3) = G3 N K, where K is isomorphic to the semi-dihedral group of
order 16, again contrary with Lemma 1.2.

2) ]\4127 M23, ]\4247 003, Suz and MecL contain Mll-

3) M22 and M24 contain A7, FQQ contains 5107 and F23 and F2/4 contain 812.

4) The group O'N contains Jq, and in the group J; the subgroup N(G3) is a
direct product of two dihedral groups of orders 6 and 10. If A is a subgroup from
N(Gs) of order 15, then |[N(A) : A- C(A)| is divisible by 4.

5) In the group J we have N(G3) = G35 X (a), where C(G3) = G5 and |a| = 8.

6) In the groups J3 and He the subgroup N(Gy7) is a Frobenius group of order
17 -8; in J4 and Coy the subgroup N(Gog) is a Frobenius group of order 29 - 28,
again contrary to Lemma 1.2 and C'o; and F5 contain Cos.

7) The group Fj contain an involution 7 such that C(7)/O2(C(7)) = Cos.

8) In the groups Ly and F3 the subgroups N(Gs7) and N(G19) are Frobenius
groups of orders 37 - 18 and 19 - 18, respectively.

9) The group F5 contains HS, and in the group HS the subgroup N(G3) is
isomorphic to S5 x S5, and if Az x A5 =2 A < N(G3), then [N(A) : A-C(A4)| is
divisible by 4.

10) The group Ru contains an involution 7 such that C(7) 2 V4 x Sz(8), and if
A2V, x H, where H is a subgroup of order 5 from Sz(8) , then [N(A) : A-C(A)]
is divisible by 4.

Sufficiency. If A is a proper nonprimary subgroup of G, then N(A) < G.
Therefore, it is sufficient to prove, that any maximal subgroup of G is a N P-
group. ’

Suppose first that G = PSL(2,¢"), where ¢ is a prime. Since %
a prime or a product of two primes, then, it is not difficult to see, that either n = 1
or g € {2,3} and n is either a prime or the square of a prime (odd, if ¢ = 3).From
Dickson’s Theorem ([6], Theorem 2.8.27) it follows that the maximal subgroups
of G are the groups from the following list: N(Q) = @Q X (a), where @ is a Sylow
g-subgroup of G, |a| = (2"’;%1); the dihedral groups of the orders 2 - (J:;%ll); Sy
for ¢" = £+1(8), Ay for ¢" = £3(8), A5 for ¢" = £1(10); PSL(2,¢P) for n = p?.
It’s not difficult to check that all these groups are N P-groups.

If G = PSU(3,2%"), then since (2" — 1) is a prime, n is a prime too. From
[5] it follows that the maximal subgroups of G are the groups of the following

is either



types: N(Q) = Q ™ (a), where Q is a Sylow 2-subgroup of G, |a| = -Zo=L-;

EFRESVE
C(b) = (by x B, where |b] = (32;17111) B = PSL(2,2™); the Frobenius group
(a) > (b > \a| WT%LH |b| = 3; the Frobenius groups ({a) x (b)) NC, |a| = 2" +1,
|b] = ma C=5;.

In the groups Sz(2,22"*1) for a prime n, the maximal subgroups are the groups
of the following types (see [9]): N(Q) = Q X {a), Q is a Sylow 2-subgroup, |a| =
2™ — 1; the dihedral group of order 2 - (2" — 1); the Frobenius groups (a) X (b),
o] =27 £ 2" +1, |b| = 4. 0

Below F' and F* denote the Fitting subgroup and the generalized Fitting sub-
group of G, respectively.

1.4. Theorem. Let G be a nonsolvable nonsimple N P-group. Then one of the
following holds:

1) subgroup F = F* is a nontrivial p-group for some prime p, and G/F =
PSL(2,4);

2) G = Aut(PSL(2,2™)), n € {2,3};

3)G=Z(G)-L, L= PSL(2,q") or SL(2,q™), the number
and if n =1 then either ¢ £ £1(8) or Z(G) is a 2-group;

4) G = Z(G) x L and either L = PSL(2,q"), Gty
prime numbers and Z(G) is a g-group, or Z(G) is a 2-group and L = PSU(2,2%")
is a group from Theorem 1.3;

5) G=Z(G)- L, Z(GQ) is a 3-group and L is isomorphic to the covering group
for PSL(2,9) with |Z(L)| = 3.

~1 . .
m 8 a prime,

s a product of the two

Proof. Let G be a group satisfiy conditions of this Theorem. Let’s assume first
that FF = F*. Then C(F) < F. If F is a nonprimary group, then |G : F| is a prime
and G is a solvable group. Therefore, F is a p-group for some prime p. Moreover,
if A/F is a p’-subgroup of G/F, then |N(A) : A| divides a prime number.

Let G1/F is a minimal normal subgroup of G/F. Then G; is a non-nilpotent
group, and consequently, is nonprimary. Therefore |G : G| is a divisor of a prime.
Assume that G = G;. Then G/F is a simple NP-group. i.e., a group from
Theorem 1.3.

Let G/F = PSU(3,22"). If p 7é 2 and A/F is a Sylow 2-subgroup of G/F,
then A is nonprimary, and |[N(A): A-C(A)| = & 2;+1) is not a prime. Therefore

p = 2. Then ([4], p.166), for subgroup H/F of order W from Ng,p(A/F) the
equality Cq/p(H/F) = H/F x L/F, where L/F = PSL(2,2"), is true. Therefore,
for the nonprimary subgroup H, the index |N(H) : H - C(H)| divides by |L/F|,
which is impossible.

In the case G/F = Sz(8), a Sylow 2-subgroup of G/F has the order 2. Hence
p=2. If A/F is a subgroup of order 5 from G/F, then [N(A) : A| = 4, which is
impossible. If G/F = Sz(2°), then by analogy p = 2 and if A/F is a subgroup of
order 25, then |[N(A) : A| = 4.

Therefore, G/F = PSL(2,q"). If ¢ # p and Q/F is a Sylow g-subgroup of
G/F, then @ is nonprimary and the primarity of the number |[Ng,p(Q/F) : Q/F|



implies that ﬁ is a prime. If aF is an element of order ¢ from @/F then the

index |N({(a, F)) : {a, F)| divides a prime number and, therefore, n < 2.

If n = 2 then from the primarity of (2‘1;27__11) we get that ¢ = 2, i.e. G/F &
PSL(2,4). Let n = 1. Since the groups PSL(2,2) and PSL(2,3) are solvable,
and PSL(2,5) = PSL(2,4) then we can suppose that ¢ > 5. Let A/F is a

subgroup of the prime order r, where r divides %. If r # p then the primarity
of IN(A) : Al = 2- % implies r = 5. But the numbers 51 and £ are

primes at the same time only when ¢ = 5. Suppose now that » = p. Then by
the arbitrariness of r, the equation ﬂl = p”* is solvable. Since ¢ > 5 then the
prime number q%l is odd. But then ¢ —|— 1 is divisible by 4. i.e. p = 2. Since one
of the numbers, either k or k + 1, is even, then the numbers ¢ = 25+t — 1 and
q;zl = 2F — 1 cannot both be prime at the same time.

Assume now that ¢ = p and aF' is an element of prime order from a subgroup
of order m from G/F. Because N r((aF)) is isomorphic to the dihedral
group of order % , and |N({(a, F)) : {(a, F)| is a prime, then the numbers
ﬁ are primes. If ¢ is odd, then ¢" = 5. But PSL(2,5) & PSL(2,4). If
q = 2, then because (2™ — 1) is a prime it follows that n is a prime. But then in
the case n > 2 the number 2" + 1 is not prime. Therefore, G/F = PSL(2,4).

Suppose now that G; < G. Then, by using what’s already been proved, G;/F &
PSL(2,4) and G/F = (G1/F)X (aF), where aF is an automorphism of the group
G1/F. Let A/F be a subgroup of order 5 from G;/F. By Frattini’s argument we
can assume that aF' € Ng,p(A/F). But then [N(A): A-C(A)| is divisible by 4.

Therefor, if F = F*, then by the theorem conditions, G is of type 1). Because
of this, we’ll further assume that F < F*. Then F* = F - L, when L is the
layer of the group G. By Lemma 1.1, the subgroup F' is abelian and F*/F is
a simple group, i.e., a group from Theorem 1.3. Moreover, one of the following
holds: F=1,G=F*orl< F < F* <.

In the first case F** is a group from Theorem 1.3 and F* < G < Aut(F*). From
the definition of the N P-group it follows that |G/F*| is a prime. The structure
of the automorphism groups of Lie type groups (e.g. [4], theorem 4.238) implies
that in our case G = F* X (a), a is a prime order automorphism of group F*. Set
la| =p

First assume that F* = PSL(2,¢"). Let Q be a Sylow g-subgroup of F*and
B = Q X H be a Borel subgroup of group F*. By Frattini’s argument we can
assume that a € N(Q). But then a € N(Ng+(Q)) = N(B). Since C(Q) <@ and
IN(Q) : Q| = |H| - p, then, by Lemma 1.2, the number |H| = m
a prime number. But then, as it was noted in the proof of Theorem 1.3, either
q € {2,3}, or n = 1. By analogy, for a subgroup A of order h from F* the
equality |[N(A) : A-C(A)| = 2p implies that subgroup A must be a primary group.

Let ¢ = 2. The primarity of the number (2" — 1) implies that n is a prime. If
n > 2, then 2" + 1 is divisible by 3 and, consequently, 2" + 1 = 3* for a number
k. Let k > 2. If k = 2r is even, then 2" = 3¥ —1 = (3" — 1)(3T + 1), which is
impossible. However, if k = 2r + 1, then 3 — 1 =2(1+3 432+ ... +3%") #£ 2"

must be



where the second factor is odd. Therefor, if ¢ = 2, then the group F* is isomorphic
to one of the groups PSL(2,4) or PSL(2,8).

If ¢ = 3 then the primarity of the number 2"~
However, from that fact that L;l is even and prime it follows that 3"2—“ = 2k,

3"—1 _ ok
5 = 2

implies that n is an odd prime.

ie., 3" = 281 — 1 for a number k. Since the number — 1 is prime,
then k is an odd prime. But then k¥ + 1 = 2r and 3" = (2" — 1)(2" + 1), which is
impossible for » > 1. However if r = 1, then k = 1. But then n = 1 as well, which
contradicts the primarity of the group F™*.

Finally, let ¢ and % be primes. If ¢ = 5, then F* = PSL(2,4). However if
q > 5, then %1 is odd. Because %1 is primary, we obtain that %1 =2F je.
q = 21 — 1. But then % = 2k — 1. Since one of the numbers k, k + 1 is
even, and k > 2, then the numbers (2¥ — 1) and (2¥*! — 1) can’t both be prime
simultaneously.

Suppose now that F* = PSU(3,22"). If p # 2 and A is a Sylow 2-subgroup of
F* then [IN(A): A-C(A)|=p-(2"-1)- (32;%1), which is impossible. However,
if p=2 and H is a Cartan subgroup of F*, then H is nonprimary and |N(H) :
H-C(H)| =4.

If F* = §2(23) or Sz(2°) and A is a subgroup of order 5 or 25 of F'*, respectively,
then |N(A) : A| = 4p, which contradicts Lemma 1.2.

Therefore, if F' =1, then G is of a type 2) from this Theorem.

Consider the case when G = F*,i.e., G = F'-L, where L is the layer of the group
G. By Lemma 1.1, the subgroup F is abelian, i.e., F' = Z(G), and L is a quasi
simple group. Since the group G isn’t simple, then F' # 1. If F' is nonprimary,
then the index |Np(A) : A- CL(A)| divides a prime for any subgroup A < L. By
theorem 4 from [2] L = PSL(2,¢"™) or SL(2,¢™), the number (2‘,1;17__11)
and if n = 1, then ¢ # £1(8), i.e., G is of type 3) from this Theorem.

Now suppose that F' is a p-group for a prime p. Since the Schur multiplier of
group Sz(2%) is trivial then either L is a group from Theorem 1.3 or L is isomorphic
to a covering of group PSL(2,q"), Sz(8) or PSU(3,2%").

Let L/Z(L) = Sz(8). Then L/Z(L) contains the subgroups A;/Z(L) and
A2/Z(L) of order 5 and 13, respectively, such that |Np(4;) : A; - C(4;)| = 4.
Since p isn’t at least one of the numbers 5 or 13, then supposing A = F'- A;, we get
a contradiction with the definition of N P-group. If L = S2(2%) then subgroups of
order 25 and 41 should be taken as subgroups A; and As in the group G.

Therefore, we can assume that L/Z(L) = PSL(2,q") or PSU(3,2%").

First, assume that Z(L) =1, ie., G = Z(G)x L. f L 2 PSL(2,q"™) and p # q,
then the number % should be prime. Moreover, if n = 1 and ¢ = +1(8),
then L/Z(L) contains a subgroup H/Z(L) = S,. If V/Z(L) is a four-group from
H/Z(L), then the equality |Ng/z1)(V/Z(L)) : V/Z(L)| = 6 implies that in this

case subgroup V is primary, i.e., p = 2. However, if p = ¢, then the number (2‘1;7__11)

is a prime

could be the product of two primes. But, if ¢ = £1(8), then when checking a
four-group V/Z(L) again, we get that p = 2. But then ¢" = 2™ # £1(8). If,
however L/Z(L) = PSU(3,2%") and p # 2, then for a Sylow 2-subgroup A of L,
the subgroup A - Z(L)) is nonprimary and again we get a contradiction with the
definition of N P-group.



Now suppose that Z(L) # 1. Since the Schur multiplier is trivial for groups
PSL(2,2™) when n > 2, we can assume that in the case of L/Z(L) =2 PSL(2,q")
the number ¢ is odd. Then the order of the Schur multiplier is equal to 2 (i.e.
L 2 SL(2,q9™)) for ¢" # 9 and 6 for ¢" = 9. Consider the second case. If |Z(L)| is
divisible by 2 and Q/Z(L) is a Sylow 3-subgroup of the group L/Z(L), then the
subgroup @ is nonprimary and |N(Q) : Q- C(Q)| = 4, which is impossible. Hence,
when ¢" = 9 the order of Z(L) is equal to 3. In the case of L/Z(L) = PSU(3,2%*")
the Schur multiplier order is equal to 3, and if A/Z(L) is a Sylow 2-subgroup of
L/Z(L), then subgroup A is nonprimary and |Np(4) : A- CL(A)| is not a prime.

Therefore, if G = F* then G is a group of type 3) or 5) from this Theorem.
Finally, consider the case when 1 < F' < F* < G. Then, by using what’s already
been proved, F* is a group of type 3) or 4), while G/F is a group of type 2) from
this Theorem. Let G = F* - (a), a? € F*. If A/F is a Sylow g-subgroup from
F*/F, then the fact that [N(A) : A-C(A)| is divisible by p - |H/F|, where H/F
is a Cartan subgroup of group F*/F, implies that subgroup F is a g-group for a
prime g. But then, for the nonprimary subgroup H, the index |N(H) : H - C(H)|
is divisible by 2p, which is impossible. (|

1.5. Note. It isn’t difficult to see that the groups type 2) and 5) of Theorem
1.4 are N P-groups. For type 1) groups, the proof of the sufficiency requires the
fulfillment of a number of additional restrictions. Let’s note some of them.

Let ¢t be a p’-element from G, A be a t-invariant subgroup from F and H =
FX(t). Then the index [Ny (AXN(t)) : (AXN(t))-Cu(AX(t))| divides p. Looking at
the intersections of these subgroups with F' and taking into account that Np(A X
) =A-(Np(A)NC(t)), we get that

[A-(Np(A)NC(1)) : A-(Ca(A)NC(H))| = [Np(A)NC(H) : (Ca(A)NC(1))-(ANC(?))],

i.e., |CNF(A)(t) . CA(t) : CCF(A)(t)| divides p-

Let Ng/p((tF)) = (tF) X\ (hF') and A be a (t, h)-invariant subgroup from F.
Since h € N(A X (t)), then in the same notation Ny (A X (t)) = (AXN(t)) - Cu(t).
But then Cy,.(a)(t) = Ca(t) - Ccp(ay(t). Since the subgroup Np(A) is also (t, h)-
invariant, then

CNp(Np(a) (1) = (Np(A) N C1)) - Copnpay (t) = Ca(t) - Copa)(t).

Continuing this process and taking into account that F' satisfies the normaliser
conditions, we get the equality Cr(t) = Ca(t) - Coy(a)(t).

Supposing that in this equation A = [F,a] and taking into account that F =
[F,a] - Cr(a), we get that Cp(a) = C[F,a](a) . CCF([F)Q])(OJ), ie, F = [F,a] -
Cr([F.al).

By analogy we can prove, that if p # 2 and ({(aF) x (bF)) N (cF) is a subgroup
of order 12 from G/F and subgroup A < F'is {a, b, ¢)-invariant, then Cp({a, b)) =
CA(<0'7 b)) - CCF(A)(<O'7 b)) and F' = [F, <a‘7 b>] ’ CF([F7 <a7 b>])

Note that all these properties hold if subgroup F' is abelian, i.e., in this case G
is a N P-group.
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