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SPECTRAL EXPANSION OF STURM-LIOUVILLE PROBLEMS
WITH EIGENVALUE-DEPENDENT BOUNDARY CONDITIONS

NIHAL YOKUŞ AND ESRA KIR ARPAT

Abstract. In this paper, we consider the operator L generated in L2(R+) by
the differential expression

l(y) = −y′′ + q(x)y, x∈R+ := [0,∞)
and the boundary condition

y′(0)

y(0)
= α0 + α1λ+ α2λ

2,

where q is a complex valued function and αi ∈ C, i = 0, 1, 2 with α2 6= 0. We
have proved that spectral expansion of L in terms of the principal functions
under the condition

q ∈ AC(R+), lim
x→∞

q(x) = 0, sup
x∈R+

[eε
√
x|q′(x)|] <∞, ε > 0

taking into account the spectral singularities. We have also proved the con-
vergence of the spectral expansion.

1. INTRODUCTION

The spectral analysis of a non-selfadjoint differential operators with continuous
and discrete spectrum was investigated by Naimark [1]. He showed the existence of
spectral singularities in the continuous spectrum of the non-selfadjoint differential
operator L0, generated in L2(R+), by the differential expression

l0(y) = −y′′ + q(x)y, x ∈ R+ := [0,∞) (1.1)

with the boundary condition y′(0)−hy(0) = 0, where q is a complex valued function
and h ∈ C. If the following condition
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∫
eεx|q(x)|dx <∞, ε > 0

satisfies, then L0 has a finite number of eigenvalues and spectral singularities with
finite multiplicities. Lyance investigated the effect of the spectral singularities in the
spectral expansion in terms of the principal functions of L0 [2]. The Laurent expan-
sion of the resolvents of non-selfadjoint operators in neigbourhood of spectral sin-
gularities was investigated by Gasymov-Maksudov [3] and Maksudov-Allakhverdiev
[4]. They also studied the effect of spectral singularities in the spectral analysis of
these operators.
Using the boundary uniqueness theorems of analytic functions, the structure of

the eigenvalues and the spectral singularities of a quadratic pencil of Schrödinger,
Klein-Gordon, discrete Dirac and discrete Schrödinger operators was investigated
in [5]-[10]. The effect of the spectral singularities in the spectral expansion of a
quadratic pencil of Schrödinger operators was obtained in [9]. In [10] the spectral
expansion of the discrete Dirac and Schrödinger operators with spectral singularities
was derived using the generalized spectral function (in the sense of Marchenko [11])
and the analytical properties of the Weyl function.
Spectral analysis of the quadratic pencil of Schrödinger operators was done in

[9]. Spectral expansion of a non-selfadjoint differential operator on the whole axis
was studied in [12]. The other expansion of the non-selfadjoint Sturm-Liouville
Operator with a singular potential was studied in [13].
Let us consider the operator L generated in L2(R+)by the differential expression

l(y) = −y′′ + q(x)y, x∈R+ (1.2)

and the eigenvalue-dependent boundary condition

y′(0)

y(0)
= α0 + α1λ+ α2λ2 (1.3)

where q is a complex-valued function and αi ∈ C, i = 0, 1, 2 with α2 6= 0. In
([14]) it has been proved that the operator L has of a finite number and spectral
singularities, each of them is of finite multiplicity under the conditions

q ∈ AC(R+), lim
x→∞

q(x) = 0, sup
x∈R+

[eε
√
x|q′(x)|] <∞, ε > 0 (1.4)

In this paper, which is a continuation of ([15]), we find a spectral expansion of L
in terms of the principal functions under the conditions (1.4) taking into account
the spectral singularities using a contour integral method, and the regularization of
divergent integrals, using summability factors. We also investigate the convergence
of the spectral expansion.
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2. SPECIAL SOLUTIONS

Let us consider the equation

−y′′ + q(x)y = λ2y, x ∈ R+ (2.1)

We have previously considered in [15] that the only complex valued function, q is
almost everywhere continuous in R+ and satisfies the following condition∫ ∞

0

x|q(x)|dx <∞ (2.2)

Let ϕ(x, λ) and e(x,λ) denote the solutions of (2.1) satisfying the conditions

ϕ(x, λ) = 1, ϕ′(x, λ) = α0 + α1λ+ α2λ
2, lim
x→∞

e(x, λ)e−iλx = 1, λ ∈ C (2.3)

respectively. The solution e(x, λ) is called Jost Solution of (2.1). Note that, under
the condition (2.2), the solution ϕ(x, λ) is an entire function of λ and the Jost
Solution is an analytic function of λ in C+ := {λ : λ ∈ C, Imλ > 0} and continuous
in C+ := {λ : λ ∈ C, Imλ > 0} ([14]).
Moreover, Jost Solution has a representation ([11])

e(x, λ) = eiλx +

∫ ∞
x

K(x, t)eiλt dt, λ ∈ C+ (2.4)

where the kernel K(x, t) satisfies

K(x, t) =
1

2

∫ ∞
x+t
2

q(s) ds+
1

2

∫ x+t
2

x

∫ t+s−x

t+x−s
q(s)K(s, u) duds

+
1

2

∫ ∞
x+t
2

∫ t+s−x

s

q(s)K(s, u) duds

(2.5)

and K(x, t) is continuously differentiable with respect to x and t.

|K(x, t)| 6 cw
(x+ t

2

)
(2.6)

|Kx(x, t)|, |Kt(x, t)| 6
1

4

∣∣∣q(x+ t

2

)∣∣∣+ cw
(x+ t

2

)
(2.7)

where w(x) =
∫∞
x
|q(s)|ds and c > 0 is a constant.

Let e±(x, λ) denote the solutions of (2.1) subject to the conditions

lim
x→∞

e±iλxe±(x, λ) = 1, lim
x→∞

e±iλxe±x (x, λ) = ±iλ, λ ∈ C± (2.8)

Then
W [e(x, λ), e±(x, λ)] = ±2iλ, λ ∈ C±

W [e(x, λ), e±(x,−λ)] = −2iλ, λ ∈ R = (−∞,∞)
(2.9)

where W [f1, f2] is the Wronskian of f1 and f2 ([14]).
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We will denote the Wronskian of the solutions with e(x, λ) and e(x,−λ) by
E+(λ) and E−(λ), respectively, where

E+(λ) := e′(0, λ)− (α0 + α1λ+ α2λ
2)e(0, λ), λ ∈ C+ (2.10)

E−(λ) := e′(0,−λ)− (α0 + α1λ+ α2λ
2)e(0,−λ), λ ∈ C− (2.11)

Therefore, E+and E− are analytic with respect to λ in C+ = {λ : λ ∈ C, Imλ>0}
and C− = {λ : λ ∈ C, Imλ<0}, respectively, and continuous up to real axis, and

E+(λ) = −α2λ
2 + β+λ+ δ+ + o(1), λ ∈ C+, |λ| → ∞ (2.12)

E−(λ) = −α2λ
2 + β−λ+ δ− + o(1), λ ∈ C−, |λ| → ∞ (2.13)

where

β+ = i− α1 − iα2K(0, 0)

δ+ = −K(0, 0)− α0 − iα1K(0, 0) + α2Kt(0, 0) (2.14)

f+(t) = Kx(0, t)− α0K(0, t)− iα1Kt(0, t) + α2Ktt(0, t)

hold [14].

3. THE SPECTRUM OF L

We have previously shown ([14]) that

σd(L) = {λ : λ ∈ C+, E+(λ) = 0} ∪ {λ : λ ∈ C+, E−(λ) = 0}
σss(L) = {λ : λ ∈ R∗, E+(λ) = 0} ∪ {λ : λ ∈ R∗, E−(λ) = 0}

(3.1)

where R∗ = R�{0}, by σd(L) and σss(L) we denote the eigenvalues and spectral
singularities of L, respectively.
Let

G(x, t, λ) =

{
G+(x, t, λ), λ ∈ C+

G−(x, t, λ), λ ∈ C−
(3.2)

be the Green Function of L, where

G+(x, t, λ) =

{
−ϕ(t,λ)e(x,λ)

E+(λ) , 0 6 t 6 x
−ϕ(x,λ)e(t,λ)

E+(λ) , x 6 t <∞

}
(3.3)

G−(x, t, λ) =

{
−ϕ(t,λ)e(x,−λ)

E−(λ) , 0 6 t 6 x
−ϕ(x,λ)e(t,−λ)

E−(λ) , x 6 t <∞

}
(3.4)

Under the conditions (1.4), we know that L has a finite number of eigenval-
ues and spectral singularities, and each of them is finite multiplicity ([14]). Let
λ1, . . . , λj and λj+1, . . . , λk denote the zeros of E+in C+and E−in C−(which are
the eigenvalues of L) with multiplicitiesm1, . . . ,mj andmj+1, . . . ,mk, respectively.
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We will also need the Hilbert Spaces

Hm =

{
f :

∫ ∞
0

(1 + x)2m|f(x)|2 dx <∞
}
, m = 0, 1, . . .

H−m =

{
g :

∫ ∞
0

(1 + x)−2m|g(x)|2 dx <∞
}
, m = 0, 1, . . .

with

‖f‖2m =

∫ ∞
0

(1 + x)2m|f(x)|2 dx, ‖g‖2m =

∫ ∞
0

(1 + x)−2m|g(x)|2 dx

respectively. It is obvious that H0 = L2(R+) and

Hm+1 $ Hm $ L2(R+) $ H−m $ H−(m+1), m = 1, 2, . . .

and H−m is isomorphic to the dual of Hm : H ′m ∼ H−m
We have previously shown that ([15]):

Un,p ∈ L2(R+), n = 0, 1, ..., mp − l, p = 1, 2, ..., α (3.5)

Un,p ∈ H−(n+1), n = 0, 1, ..., mp − l, p = α+ 1, ..., k (3.6)

where

Un,p(x) =

{
∂n

∂λn
ϕ+(x, λ)

}
λ=λp

=

n∑
β=0

An−β(λ)

{
∂β

∂λβ
e(x, λ)

}
λ=λp

Un,p(x) =

{
∂n

∂λn
ϕ−(x, λ)

}
λ=λp

=

n∑
β=0

An−β(λ)

{
∂β

∂λβ
e(x,−λ)

}
λ=λp

(3.7)

The functions Un,p(x), n = 0, 1, . . . ,mp− 1, p = 1, 2, . . . , α and p = α+ 1, . . . , k
are the principal functions corresponding to the eigenvalues and the spectral sin-
gularities of L, respectively.

4. SPECTRAL EXPANSION

Let C∞0 (R+) denote the set of infinitely differentiable functions in R+with com-
pact support. Evidently,

ψ(x) = R(L)R−1(L)ψ(x) = R(L)(L− λ2I)ψ(x)

ψ(x) =

∫ ∞
0

G(x, t, λ)
[
−ψ′′ + q(t)ψ(t)− λ2ψ(t)

]
dt

for each ψ ∈ C∞0 (R+). We obtain

ψ(x)

λ
=

1

λ

∫ ∞
0

G(x, t, λ)θ(t) dt−D(x, λ) (4.1)

where

θ(t) = −ψ′′ + q(t)ψ(t), D(x, λ) =

∫ ∞
0

λG(x, t, λ)ψ(t) dt
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Figure 4.1

Let γr denote the contour with center at the origin having radius r; let ∂γr be the
boundary ofγr. r will be chosen so that all eigenvalues and spectral singularities
of L are in γr. Prη denotes the part of γr lying in the strip |Imλ| ≤ η and
γrη = γ+

rη ∪ γ−rη, where γ+
rη and γ

−
rη are the parts of γr\Prη in the upper and the

lower half-planes, respectively (see Figure 4.1). We chose η so small that Prη does
not contain any eigenvalues of L.

So we easily see that

∂γr = ∂γrη ∪ ∂Prη (4.2)

From (4.1) we get

ψ(x) =
1

2πi

∫
∂γr

{
1

λ

∫ ∞
0

G(x, t, λ)θ(t) dt

}
dλ− 1

2πi

∫
∂γr

D(x, λ) dλ (4.3)

Using (2.12), (2.13), (3.2) and Jordan’s lemma, we see that the first term of the
right hand side of (4.3) vanishes as r → ∞. The same result holds for the second
term. Then considering (4.2) we find

ψ(x) = − lim
r→∞
η→0

1

2πi

∫
∂γrη

D(x, λ) dλ− lim
r→∞
η→0

1

2πi

∫
∂Prη

D(x, λ) dλ (4.4)
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Figure 4.2

We easily obtain that the first integral in (4.4) gives

lim
r→∞
η→0

∫
D(x, λ) dλ =

α∑
i=1

Res
λ=λ

+
i

[
D+(x, λ)

]
+

α∑
i=1

Res
λ=λ
−
i

[
D−(x, λ)

]
where

D±(x, λ) =

∫ ∞
0

G±(x, t, λ)ψ(t) dt.

Let Γ be the contour which isolates the real zeros of E+ by semicircles with
centers at λi, i = 1, 2, . . . , ν having the same radius δ0 in the upper-half plane.
Similarly, let Γ− be the corresponding contour for the real zeros of E− in the lower
half-plane. The radius of semicircles being chosen so small that their diameters are
mutually disjoint and do not contain the point λ = 0 (see Figure 4.2).
From Figure 4.1, we obtain

lim
r→∞
η→0

1

2πi

∫
∂Prη

D(x, λ) dλ =
1

2πi

∫
Γ−

D−(x, λ) dλ− 1

2πi

∫
Γ+

D+(x, λ) dλ

Therefore (4.4) can be written as

ψ(x) = −
α∑
i=1

Res
λ=λ

+
i

[
D+(x, λ)

]
−

α∑
i=1

Res
λ=λ
−
i

[D−(x, λ)]

+
1

2πi

∫
Γ+

D+(x, λ) dλ− 1

2πi

∫
Γ−

D−(x, λ) dλ (4.5)

Theorem 1. For every ψ ∈ C∞0 (R+)

ψ(x) =

α∑
i=1

{(
∂

∂λ

)m+
i −1 [

a+
i (λ)U (x, λ)U (ψ, λ)

]}
λ=λ+i

+

α∑
i=1

{(
∂

∂λ

)m−i −1 [
a−i (λ)U (x, λ)U (ψ, λ)

]}
λ=λ+i

+
1

2πi

∫
Γ+

e+
x (0, λ)

E+(λ)
U (x, λ)U (ψ, λ) dλ

− 1

2πi

∫
Γ−

e−x (0, λ)

E−(λ)
U (x, λ)U (ψ, λ) dλ

(4.6)
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0 =

α∑
i=1

{(
∂

∂λ

)m+
i −1 [

b+i (λ)U (x, λ)U (ψ, λ)
]}

λ=λ+i

+

α∑
i=1

{(
∂

∂λ

)m−i −1 [
b−i (λ)U (x, λ)U (ψ, λ)

]}
λ=λ−i

+
1

2πi

∫
Γ+

e+
x (0, λ)

E+(λ)
U (x, λ)U (ψ, λ) dλ

− 1

2πi

∫
Γ−

e−x (0, λ)

E−(λ)
U (x, λ)U (ψ, λ) dλ

(4.7)

where

a+
i (λ) = − (λ− λ+

i )mie+
x (0, λ)

(mi − 1)!E+(λ)
, i = 1, ..., α (4.8)

a−i (λ) =
(λ− λ−i )mie−x (0, λ)

(mi − 1)!E−(λ)
, i = 1, ..., k

b+i (λ) = − (λ− λ+
i )mie+

x (0, λ)

(mi − 1)!E+(λ)
, i = 1, ..., α (4.9)

b−i (λ) = − (λ− λ−i )mie−x (0, λ)

(mi − 1)!E−(λ)
, i = 1, ..., k

and

U (ψ, λ) =

∫ ∞
0

ψ(t)U(x, λ) dt.

Proof. Let B(x, λ) be the solution of (2.1) subject to the initial conditions

B(0, λ) = 1, B′(0, λ) = α0 + α1λ+ α2λ
2.

Then

G±(x, t, λ) =
e±x (0, λ)

E±(λ)
U (x, λ)U (t, λ) + a(x, t, λ) (4.10)

where

a (x, t, λ) =

{
B(x, λ)U (t, λ) , 0 < t 6 x
B(t, λ)U (x, λ) , x ≤ t <∞

and a (x, t, λ) is an entire function of λ. From (4.5) and (4.10) we obtain (4.6).
Writing (4.1) as

ψ(x)

λ2 =
1

λ2

∫ ∞
0

G(x, t, λ)θ(t) dt−D(x, λ)

and repeating the calculation as we done for (4.1), we have (4.7). �
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Since the contour Γ+ and Γ− in (4.6) and (4.7) do not coincide with the contin-
uous spectrum of L, these formulae contains non-spectral objects. The aim of this
article is to transform (4.6) and (4.7) into two-fold spectral expansion with respect
to the principal functions of L.

Theorem 2. For any ψ ∈ C∞0 (R+) there exists a constant c > 0 so that∫ ∞
−∞
|λU (ψ, λ)|2 dλ ≤ c

∫ ∞
0

|ψ(x)|2 dx (4.11)

Proof. From (3.7) we get

U (ψ, λ) =

n∑
β=0

Mn−β(λp)
1

β!

{
∂β

∂λβ
e± (ψ, λ)

}
λ=λp

(4.12)

where

e± (ψ, λ) =

∫ ∞
0

ψ(x)e± (x, λ) dx.

Using (2.4), we obtain

e± (ψ, λ) =

∫ ∞
0

{
eiλx +

∫ ∞
x

K(x, t)eiλt dt

}
ψ(x) dx

=

∫ ∞
0

ψ(x)eiλx dx+

∫ ∞
0

∫ ∞
x

ψ(x)K(x, t)eiλt dtdx

Changing the order of integration, we get

e±(x, λ) =

∫ ∞
0

{(I +K)ψ(t)} eiλt dt (4.13)

in which the operator I is the unit operator, and K is the operator defined by

Kψ(t) =

∫ ∞
0

K(x, t)ψ(x) dt.

From (2.6) we understand K is a compact operator in L2 (R+). Thus (I +K) is a
continuous and one-to-one on L2 (R+). Using the Parseval’s equality for the Fourier
transforms and (4.13) we get∫ ∞

−∞

∣∣e±(ψ, λ)
∣∣2 dλ ≤ c

∫ ∞
0

|ψ(x)|2 dx (4.14)

where c > 0 is a constant.
The proof of the theorem is completed by (2.12),(2.13) and (4.14). �

By the preceding theorem, for every function ψ ∈ L2 (R+) the limit

U (ψ, λ) = lim
N→∞

∫ N

0

ψ(x)U (x, λ) dx
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exists in the sense of convergence in the mean square, relative to the measure λ2dλ
on the real axis; that is,

lim
N→∞

∫ ∞
−∞

∣∣∣∣∣U (ψ, λ)−
∫ N

0

ψ(x)U (x, λ) dx

∣∣∣∣∣
2

λ2 dλ = 0 (4.15)

Since C∞0 (R+) is dense in L2 (R+), the estimate (4.11) may be extended onto
L2 (R+) for any ψ ∈ L2 (R+) as∫ ∞

−∞
|λU(ψ, λ)|2 dλ ≤ c

∫ ∞
0

|ψ(x)|2 dx (4.16)

where U(ψ, λ) must be understood in the sense of (4.15). We shall need a general-
ization of this estimate.

Theorem 3. If ψ ∈ Hm, then U(ψ, λ) has a derivative of order (m − 1) which is
absolutely continuous of every finite subinterval of the real axis and satisfies∫ ∞

−∞

∣∣∣∣( d

dλ

)n
[U(ψ, λ)] dλ

∣∣∣∣2 ≤ cn ∫ ∞
0

(1 + x)
2n |ψ(x)|2 dx (4.17)

where cn > 0 are constants, n = 1, . . . ,m.

The proof is similar to that of Theorem 2.
To transform (4.6) and (4.7) into the spectral expansion of L, we have to reform

the integrals over Γ+ and Γ− onto the real axis.
Since the spectral singularities of L are the zeros of E±, the integrals over the real

axis are divergent in the norm of L2 (R+). Now we will investigate the convergence
of these integrals in a norm which is weaker than the norm of L2 (R+). For this
purpose we will use the technique of regularization of divergent integrals. So we
define the following summability factor:

F+
pβ(λ) =

{
(λ−λp)β

β! , |λ− λp| < δ , p = 1, . . . , n

0 , |λ− λp| > δ , p = 1, . . . , n
(4.18)

F−pβ(λ) =

{
(λ−λp)β

β! , |λ− λp| < δ , p = n+ 1, ..., k

0 , |λ− λp| > δ , p = n+ 1, ..., k
(4.19)

with δ > δ0. We can choose δ > 0 so small that the δ−neighborhoods of λp,
p = 1, ..., n, n+ 1, ..., k have no common points and do not contain the point λ = 0.
Define the functions
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F+ {g1(λ)} =g1(λ)−
n∑
p=1

mp−1∑
β=0

{(
d

dλ

)β
g1(λ)

}
λ=λp

F+
pβ(λ) (4.20)

F− {g2(λ)} =g2(λ)−
k∑

p=n+1

mp−1∑
β=0

{(
d

dλ

)β
g2(λ)

}
λ=λp

F−pβ(λ) (4.21)

where g1 and g2 is chosen so that the right hand side of the above formulae is mean-
ingful. It is evident from (4.18)-(4.19) that λ1, ..., λn are the roots of F+ {g1(λ)} =
0 and λn+1,...,λkare the roots of F− {g2(λ)} = 0 at least of orders m1, ...,mnand
mn+1, ...,mk, respectively.
In the following, we will use the operators

P+ψ(x) =
1

2πi

∫
Γ+

λe+
x (0, λ)

E+(λ)
U (x, λ)U (ψ, λ) dλ (4.22)

P−ψ(x) =
1

2πi

∫
Γ−

λe−x (0, λ)

E−(λ)
U (x, λ)U (ψ, λ) dλ (4.23)

and

I+ψ(x) =
1

2πi

n∑
p=1

mp−1∑
β=0

{(
∂

∂λ

)β
[U (x, λ)U (ψ, λ)]

}
λ=λp

×
∫

Γ+

λe+
x (0, λ)

E+(λ)
F+
pβ(λ)dλ

+
1

2πi

∫ ∞
−∞

λe+
x (0, λ)

E+(λ)
F+ {U (x, λ)U (ψ, λ)} dλ

I−ψ(x) =
1

2πi

k∑
p=n+1

mp−1∑
β=0

{(
∂

∂λ

)β
[U (x, λ)U (ψ, λ)]

}
λ=λp

×
∫

Γ−

λe−x (0, λ)

E−(λ)
F−pβ(λ)dλ

+
1

2πi

∫ ∞
−∞

λe−x (0, λ)

E−(λ)
F− {U (x, λ)U (ψ, λ)} dλ

Since under the condition (1.4) e+(x, λ) and e−(x, λ) have an analytic continuation
to the half-planes Imk > − ε

2 and Imk <
ε
2 , respectively, we get

P±ψ = I±ψ

for ψ ∈ C∞0 (R+).
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Theorem 4. For each ψ ∈ H(m0+1), there exist a constant c > 0 such that∥∥I±ψ∥∥−(m0+1)
≤ c1 ‖ψ‖(m0+1) (4.24)

where m0 = max {m1, ...,mn,mn+1, ...,mk} .

Proof. Define
Λ+
p = (λp − δ, λp + δ), p = 1, ..., n (4.25)

Then 0 /∈ Λ+
p , p = 1, ..., n. Using the integral form of remainder in the Taylor

formula, we get

F+ {U(x, λ)U(ψ, λ)}

=

{
U(x, λ)U(ψ, λ) , λ ∈ Λ+

0

1
(mp−1)!

∫ λ
λp

(λ− ξ)mp−1
{(

∂
∂ξ

)mp[
U(x, ξ)U(ψ, ξ)

]}
dξ, λ ∈ Λ+

p

(4.26)

where Λ+
0 = R�

{
n⋃
p=1

Λ+
p

}
. If we use the notation

I+
p ψ(x) =

1

2πi

∫
Λ+
p

λe+
x (0, λ)

E+(λ)

{
U(x, λ)U(ψ, λ)

}
dλ, p = 1, ..., k

Ĩ+ψ(x) =
1

2πi

k∑
p=1

mp−1∑
β=0

(
∂

∂λ

)β [
U(x, λ)U(ψ, λ)

]
λ=λp

×
∫

Γ

λe+
x (0, λ)

E+(λ)
F+
pβ(λ) dλ

we obtain
I+ = I+

0 + ...+ I+
k + Ĩ+ (4.27)

from (4.25) and (4.26). We now show that each of the operators I+
0 , ..., I

+
p and Ĩ+

is continuous from H(m0+1) into H−(m0+1). We start from with Ĩ+. From (4.18)
we find the absolute convergence of∫

Γ+

λe+
x (0, λ)

E+(λ)
F+
pβ(λ) dλ

Using (3.6) and the isomorphism H−m0
∼ H ′m0

we see that Ĩ+ is continuous from
Hm into H−m0

or from H(m0+1) into H−(m0+1). Hence there exists a constant c̃ > 0
such that ∥∥∥Ĩ+ψ(x)

∥∥∥−(m0+1) 6 c̃
∥∥∥ψ∥∥∥(m0+1) (4.28)

for any ψ ∈ H(m0+1).
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Next we want to show the continuity of I+
p , p = 1, ..., n from H(m0+1) into

H−(m0+1). From (4.26) we see that

I+
p ψ(x) =

1

2πi(mp − 1)!

∫
Λ+
p

λe+
x (0, λ)

E+(λ)

∫ λ

λp

(λ− ξ)mp−1

×
{(

∂

∂ξ

)mp
[U(x, λ)U(ψ, λ)]

}
dξdλ (4.29)

Interchanging the order of integration, we get

I+
p ψ(x) =

1

2πi(mp − 1)!


λp+δ∫
λp

λp+δ∫
ξ

{(
∂

∂ξ

)mp
[U(x, λ)U(ψ, λ)]

}

× (λ− ξ)mp−1λe
+
x (0, λ)

E+(λ)
dλdξ

−
λp∫

λp−δ

ξ∫
λp−δ

{(
∂

∂ξ

)mp
[U(x, λ)U(ψ, λ)]

}

× (λ− ξ)mp−1λe
+
x (0, λ)

E+(λ)
dλdξ.

Since λp is a zero of E+(λ) order mp, there exists a continuous function E+
p (λ)

such that E+
p (λp) 6= 0 and E+(λ) = (λ− λp)mpE+

p (λp). On the other hand,∣∣∣∣∣∣∣
λp+δ∫
ξ

(λ− ξ)mp−1λe
+
x (0, λ)

E+(λ)
dλ

∣∣∣∣∣∣∣ ≤ h(1)
p (ξ) [ln δ − ln(ξ − λp)] (4.30)

if ξ > λp, and∣∣∣∣∣
∫ ξ

λp−δ
(λ− ξ)mp−1λe

+
x (0, λ)

E+(λ)
dλ

∣∣∣∣∣ ≤ h(2)
p (ξ) [ln(λp − ξ)− ln δ] (4.31)

if ξ < λp, where

h(1)
p (ξ) = max

λ∈[ξ,λp+δ]

∣∣∣∣λe+
x (0, λ)

E+
p (λ)

∣∣∣∣ , h(2)
p (ξ) = max

λ∈[λp−δ,ξ]

∣∣∣∣λe+
x (0, λ)

E+
p (λ)

∣∣∣∣ .
(4.30) and (4.31) show that I+

p , p = 1, ..., n are integral operators with kernels
having logarithmic singularities.
(4.29) can be written as

I+
p ψ(x) =

∫
Λp

mp∑
s=0

b+sp(x, ξ)

{(
d

dξ

)s
U(ψ, ξ)

}
dξ.
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Define

Bsp =

∞∫
0

∫
Λp

∣∣∣∣ b+sp(x, ξ)

(1 + x)m0+1

∣∣∣∣2 dξdx.
We see that Bsp <∞, by (3.6), (4.30) and (4.31). Since

∥∥I+
p ψ
∥∥2

−(m0+1)
=

∞∫
0

∣∣∣∣ I+
p ψ(x)

(1 + x)m0+1

∣∣∣∣2 dx
≤

mp∑
s=0

∞∫
0

∫
Λ+
p

∣∣∣∣ b+sp(x, ξ)

(1 + x)m0+1

∣∣∣∣2 dξdx ∫
Λ+
p

∣∣∣∣( d

dξ

)s
U (ψ, ξ)

∣∣∣∣2 dξ
=

mp∑
k=0

Bsp

∫
Λ+
p

∣∣∣∣( d

dξ

)s
U (ψ, ξ)

∣∣∣∣2 dξ

Utilizing (4.16) and (4.17) we obtain∥∥I+
p ψ
∥∥
−(m0+1)

≤ cp ‖ψ‖m0
≤ cp ‖ψ‖(m0+1) , p = 1, ..., n (4.32)

where cp are constants.
We consider the operator I+

0 which is defined by

I+
0 ψ =

1

2πi

∫ ∞
−∞
κ+

0 (λ)
λe+
x (0, λ)

E+(λ)
[U(x, λ)U(ψ, λ)] dλ (4.33)

where κ+
0 is the characteristic function of the interval Λ+

0 . From (4.33), similar to
the proof of Theorem 4.2, we get

∞∫
0

∣∣I+
p ψ(x)

∣∣2 dx ≤ c0 ∞∫
0

|ψ(x)|2 dx,

where c0 > 0 is a constant. Since

H(m0+1) $ L2 (R+) $ H−(m0+1),

we find

‖I0ψ‖−(m0+1) ≤ c0 ‖ψ‖(m0+1) (4.34)

From (4.27), (4.28),(4.32) and (4.34) we have∥∥I+ψ
∥∥
−(m0+1)

≤ c ‖ψ‖(m0+1)

�
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In a similar way it follows that∥∥I−ψ∥∥−(m0+1)
≤ c ‖ψ‖(m0+1)

Then for every ψ ∈ H(m0+1),

I+ψ(x) =
1

2πi

n∑
p=1

mp−1∑
β=0

{(
∂

∂λ

)β
[U(x, λ)U(ψ, λ)]

}
λ=λp

(4.35)

×
∫
Γ

λe+
x (0, λ)

E+(λ)
F+
pβ(λ) dλ

+
1

2πi

∞∫
−∞

λe+
x (0, λ)

E+(λ)
F+ {U (x, λ)U (ψ, λ)} dλ

and

I−ψ(x) =
1

2πi

k∑
p=n+1

mp−1∑
β=0

{(
∂

∂λ

)β
[U(x, λ)U(ψ, λ)]

}
λ=λp

(4.36)

×
∫

Γ−

λe−x (0, λ)

E−(λ)
F−pβ(λ) dλ

+
1

2πi

∞∫
−∞

λe−x (0, λ)

E−(λ)
F− {U (x, λ)U (ψ, λ)} dλ

Let ap(λ) denote any function which is defined and differentiable in a neighbourhood
of λp, and which satisfies the condition

{(
d

dλ

)mp−1−β
ap(λ)

}
λ=λp

=


1

2πi

(
mp−1
β

) ∫
Γ+

λe+x (0,λ)
E+(λ) F

+
pβ(λ) dλ, p = 1, ..., n

− 1
2πi

(
mp−1
β

) ∫
Γ−

λe−x (0,λ)
E−(λ) F

−
pβ(λ) dλ, p = n+ 1, ..., k

(4.37)
Then (4.35) and (4.36) can be written as

I+ψ(x) =

n∑
p=1

{(
∂

∂λ

)mp−1

[ap(λ)U (x, λ)U (ψ, λ)]

}
λ=λp

+
1

2πi

∞∫
−∞

λe+
x (0, λ)

E+(λ)
F+ {U (x, λ)U (ψ, λ)} dλ (4.38)
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I−ψ(x) =

k∑
p=n+1

{(
∂

∂λ

)mp−1

[ap(λ)U (x, λ)U (ψ, λ)]

}
λ=λp

(4.39)

+
1

2πi

∞∫
−∞

λe−x (0, λ)

E−(λ)
F− {U (x, λ)U (ψ, λ)} dλ

we shall also use the following integral operator (see (4.7)):

Q+ψ(x) =
1

2πi

∫
Γ+

λe+
x (0, λ)

E+(λ)
F+ [U(x, λ)U(ψ, λ)] dλ (4.40)

Q−ψ(x) =
1

2πi

∫
Γ−

λe−x (0, λ)

E−(λ)
F− [U(x, λ)U(ψ, λ)] dλ (4.41)

J+ψ(x) =
1

2πi

n∑
p=1

mp−1∑
β=0

{(
∂

∂λ

)β
[U(x, λ)U(ψ, λ)]

}
λ=λp

×
∫
Γ

λe+
x (0, λ)

E+(λ)
F+
pβ(λ)dλ

+
1

2πi

∞∫
−∞

λe+
x (0, λ)

E+(λ)
F+ [U(x, λ)U(ψ, λ)] dλ

J−ψ(x) =
1

2πi

n∑
p=1

mp−1∑
β=0

{(
∂

∂λ

)β
[U(x, λ)U(ψ, λ)]

}
λ=λp

×
∫
Γ

λe−x (0, λ)

E−(λ)
F−pβ(λ)dλ

+
1

2πi

∞∫
−∞

λe−x (0, λ)

E−(λ)
F− [U(x, λ)U(ψ, λ)] dλ

It is evident that

Q±ψ = J±ψ,

for ψ ∈ C∞0 (R+).

Theorem 5. For every each ψ ∈ H(m0+1), there exist a constant c > 0 such that∥∥J±ψ∥∥−(m0+1)
≤ c ‖ψ‖(m0+1) .
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It is evident that, for every ψ ∈ H(m0+1)

J+ψ(x) =

n∑
p=1

{(
∂

∂λ

)mp−1

[bp(λ) [U(x, λ)U(ψ, λ)]]

}
λ=λp

(4.42)

+
1

2πi

∞∫
−∞

λe+
x (0, λ)

E+(λ)
F+ {U (x, λ)U (ψ, λ)} dλ

where

{(
d

dλ

)mp−1−β
bp(λ)

}
λ=λp

=


1

2πi

(
mp−1
β

) ∫
Γ+

λe+x (0,λ)
E+(λ) F

+
pβ(λ) dλ p = 1, .., n

− 1
2πi

(
mp−1
β

) ∫
Γ−

λe−x (0,λ)
E−(λ) F

−
pβ(λ) dλ p = n+ 1, .., k

(4.43)

Theorem 6. Under the condition (1.4) the following two-fold spectral expansion
in terms of the principal functions of L holds,

ψ(x) =

p∑
i=1

{(
∂

∂λ

)m+
i −1

[ai(λ) [U(x, λ)U(ψ, λ)]]

}
λ=λi

+

n∑
i=p+1

{(
∂

∂λ

)mp−1

[ap(λ) [U(x, λ)U(ψ, λ)]]

}
λ=λp

(4.44)

+
1

2πi

∞∫
−∞

λe+
x (0, λ)

E+(λ)
F+ {U(x, λ)U(ψ, λ)} dλ

− 1

2πi

∞∫
−∞

λe−x (0, λ)

E−(λ)
F− {U(x, λ)U(ψ, λ)} dλ
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0 =

p∑
i=1


(
∂

∂λ

)m+

i −1

[bi(λ) [U(x, λ)U(ψ, λ)]]


λ=λi

+

n∑
i=p+1

{(
∂

∂λ

)mp−1

[bp(λ) [U(x, λ)U(ψ, λ)]]

}
λ=λp

(4.45)

+
1

2πi

∞∫
−∞

λe+(0, λ)

E+(λ)
F+ {U(x, λ)U(ψ, λ)} dλ

− 1

2πi

∞∫
−∞

λe−x (0, λ)

E−(λ)
F− {U(x, λ)U(ψ, λ)} dλ

for every function ψ ∈ H(m0+1). The integrals in (4.44) and (4.45) converge in the
norm of H−(m0+1) where ai, bi, F , ap and bp defined by (4.8), (4.9), (4.20), (4.21),
(4.37), and (4.43) respectively.

Proof. We obtain (4.44) and (4.45) for ψ ∈ C∞0 (R+) ⊂ H(m0+1), by use of (4.6),
(4.7), (4.22), (4.23) and (4.38)-(??). The convergence of the integrals appearing
in (4.44) and (4.45) in the norm of H−(m0+1), has been given in Theorem 4 and
Theorem 5. As C∞0 (R+) is dense in H(m0+1), the proof is finished. �
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