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Abstract: In this study, we considered the (3+1) dimensional a B-typedfmtsev-Petviashvili (KP) equation. Using the Lie group
analysis, the symmetry reductions and exact analyticisolsitvere obtained. Traveling wave solutions were also dedlu_astly, local
conservation laws were constructed by using the multipliet Ibragimov’s nonlocal conservation method.
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1 Introduction

Almost all of physical processes which occurs in the natoeenaodeled by nonlinear evolution equations (NLEES). We
witness these instances in the all brances of physics, eaditgs and applied mathematics. Therefore, there have bee
intensive studies not only modeling of these equations g abtaining their solutions. In the open literature we
observe some analytical and numerical methods such asegeattering transform (IST), Hirota bilinear method, the
variational iteration method, the Riccati equation exp@msnethod, the pseudo-spectral method, the sine—cosine
method, the tanh—-sech methd®,/G method, Adomian decomposition method, exponential foncthethod, He's
variational principle, Lie symmetry method and many more.

The first studies on the soliton theory starts with the Koeigsde Vries equation. This equation models the the motion of
waves in the shallow-water surfaces. The Kadomtsev-Pstvikh (KP) equation and its extensions such as
Boussinesq-Kadomtsev-Petviasvili (BKP) or cylindrikddomtsev-Petviasvili (CKP) types are very intensively
investigated in the context of soliton theory. Even though, observe a plenty of studies for obtaining the soliton
solutions (topological or nontopological) of many impattél+1) dimensional integrable NLEES, there exist rekdiv
small amount of studuies for multi-component systefis [

In this paper, we will study the following (3+1) dimensiortype Kadomtsev-Petviashvili partial differential etjoa
(PDE) which describes the processes of interaction of exipitaily localized structureL]

Uz — 3UxxUy — 3UxUxy + Uk — Uxxy = 0. (1)

We observe a lot of works in the literature for Ef.(For instance in J],the author found the bilinear form, bilinear
Backlund transformation and Lax pair for EQ) (ising the binary Bell polynomials approach. Based on Hisdbilinear
form and three-wave method, multi-soliton solutions wédse deduced. Darvishi et.all]} investigate the some physical
importance changes of anti-kink solutions of By iy invoking the multiple exp-function method (see, al8p[[7]). We
also observe some very well written works related with variarm of Eq.Q) (see, B]-[17]). In these works, authors
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investigate mainly the soliton and other exact solutions.

The remainder of this paper is organized as follows. Se@imndevoted to Lie point symmetry generators of Egvia

Lie group analysis. With the help of Lie group generatorssyetry reductions and invariant solutions were constdicte
In Section 3, we get exact analytic solutions by power seniethod. In Section 4, we obtain traveling wave solutions by
using the simplest equation method. We prefer Riccati éguads simplest equation. Section 5 is related with
conservation laws of EdL]. In order to obtain local conservation laws, we exploit tiplier and new conservation
theorem method. In the final section we give some concludingarks and the main findings of the paper.

2 Liegroup analysis

In this section, we present the notations and some of theitiefis below. For the details see e.dl9] and [20].The
symmetry group of the B-type Kadomtsev-Petviashvili equefl) will be generated by the vector field of the form

7} 7} 7} 7} 7}
X = T(vavzvtau) E +E(Xayazat7u) a_x+u(xayazat7u) a_y+p(xayazat7u) a_z+r’ (X7y727t5u> % (2)

Applying the fourth order prolongatiopr¥X to (1) results in an overdetermined system of linear PDEs.The
corresponding vector fields of) are

7] 0 7] 7]
=G0 =g Ty M= gy
7] 0 0 0 0
o= (U=Y)g; — 3 —Xox %6 = "5 T2y
0 7] 0
X =15 e Yoy 3

To obtain the group transformation which is generated byrtfieitesimal generator¥; fori = 1,2,...7, we need to solve
the following initial problems (9] and [21]),

W) _+ xyzio, fo)—t @
wheree is a parameter. So we can obtain the Lie symmetry group
g: (xy,zt,u) = (X¥,zt,0).
We can build the one-parameter grogpgenerated by fori = 1,2,...7. For instance, thgg(&) generated bs is

96(€) : (X,Y,zt,u) = (x,y,€ *z€"t,u). (5)
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Transformation §) corresponds to scaling symmetry.uf= f(x,y,zt) is a solution of fourth-order EdL}, so is the
function
gs(e)-F(x,y,2t) = f(xy,e *z€). (6)

If taking the following periodic kink-wave solution of EdL) (see, L)),

2a11/03sinh(&7 + In/&3) — axd; sin(&>) _

u(x,y,zt) =2 2/33cosHE; +INy/33) + 81.c09 &)
where
£ = agx+ ay(—30b83 i-za%bz — 6ay) ,
&2 = axe by + cat + (AL D% +C32a§bza2 34,
and

1 67(a? + bya3 + a2byay)
4 a2

xR=

one can obtain show that exact solution of Ei.iy applyinggs(¢) is as follows

2a;1/d3sinh(&7 + In\/83) — a8, sin(&>)
2\/&cosh(é1+In\/83) + &1 cog &)

ux,y,zt) =2

where

81(73bza% + a%bz — 6&2) (eﬁEZ)
C2

3a§ — bza% + 3a%b2a2 — 3a§
C2

&1 =aix+

e ¢z

&> = apX+ byy + coeft + (

Now we obtain some symmetry reductions and invariant smhstfor the B-type KP equation based on the vector fields
).
(1) Xy, For this case, we obtained the following invariant solution

1 4¢3x+ 4CoCaz+ 4C1Cr + 3
u(x7y7z7t) =2C2tanl‘(‘—1 2 +4c2 4CZ+ 1C2 + 3y

)+¢Cs

wherecy, ¢y, C3,C4 andcs are arbitrary constants. This solution is invariant withpect to time translation of the
considered equatior).
(2) X, For this case, we obtained the following invariant solution

U(Xaya Zat) = f(yv Z) + g(yat)

wheref andg are arbitrary functions of the indicated arguments.
(3) X4, For this case, we obtained the following invariant solution

1 4c3x 4 4coCat + 4CiCo + 3
U(X,y,Z,t)ZZCztanr(Zr X+ 2402+ 1C2 + 3y

)+Cs

wherecy, ¢y, C3,C4 andcs are arbitrary constants.
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(4) Xs, For the generatoXs, we get

uixyzt) = YLD @

wheref =y, g=2z h= X% are the group invariants. Substituting {nto (1), we get
— 272y s — 27Ty Dep + 270> Drpng — 63N D — 9D Ds + 114Dy + 6D + Bpg = 0. (8)

(5) X7, Inthis case, one can obtain
u(xy,zt) =y+ @(f,g,h) )

wheref =x, g=2z h= %, are the group invariants. Substitutir@) (nto (1), we get
3n®¢t By + 3Dt Dty + Byt + Prg = 0. (10)

We can also obtain different type reductions and solutibirst we make use of the symmey= X + X3+ X4 and
reduce the B-type Kadomtsev-Petviashvili equatihrt¢ a PDE in three independent variabl2g][

The symmetry yields the following four invariants:
f=z—y,g=t,h=x-y, 8=u. (112)

Treatingd as the new dependent variable and andh as new independent variables, the B-type Kadomtsev-Rétvila
equation {) transforms to

Btg + Bhnnt + Bhnnh + 36n6th + 66h6hh + 365 B + 36hh = 0 (12)

which is an nonlinear partial differential equation (NLPDE three independent variables. We now further redd@ (
using its symmetries. It can be shown that equatid®) kas the following seven Lie point symmetries:

17} 0 0 0 17}

Y:_7Y3:%7Y4:0_97Y5:F1(g)%5

Yl.:ﬁ72 ag

0 7]
%= (h-2f) 25+ 39

0 0 17} 0

The symmetryys + Y3 yields the three invariants
r=f,s=g—hep=20
which gives a group-invariant solutigm= ¢(r, s) that satisfies an NLPDE in two independent variables

Brs— P + Psss+ 30sPs — 6P+ 3¢ s+ 3 =0 (13)
The symmetry algebra ol.8) is generated by the vector fields

9 G, 9 2 10 .9 9 0
o 227 5023 = 5524 = (@ st T

5= = = _
! as’ ap 37 3 )(3qo "or ~5s
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The combinatiorr >3 + >, of the two symmetrieg; and>; yields the following invariants
E=r—as, ¥Y=9¢

and consequently using these invariaritd) (s transformed to the fourth-order nonlinear ordinaryetiéntial equation
(NLODE)
—a¥ + a3V 4 gtV 4 6a2Y' Y+ 6aPY Y 302y = 0. (14)

Integration of (4) with respect t&f two times leads to a second-order variable separable ODEhwhn be integrated
easily ( taking the constants of integration to be zero ).nTieverting back to the original variables, we can obtain the
following solution of the B-type Kadomtsev-Petviashvijeation ()

u(x,y,zt) (3a - Dsin(zer “gg”;ll) —3(z-y—alt=x+y) agg’;llﬂ +c
sy Hhoel) = 2
a(a+1) aggaj—l} COS(%CJ.\/ aggafl) - %(Z*y*a(tf)(ij)) agga:l_l))
wherec; andc;, are arbitrary integration constants.
3 Power series solution of Eq.(1)
Our aim is to investigate a solution df4)
3, 2wV ¥ QAW —
(@’ +a )¢V +(Ba-1)¥ +(6a+a“ )P ¥ =0 (15)
in a power series of the form4§])
W= Z)Cnfn:00+le+szz+0353+...+cnfn+... (16)
n=
Substituting 16) into (15), one can get
24(a®+ a?)cs+ (a z (n+4)(n+3)(n+2)(N+1)Cn1a€ ]
+2(3a—1)c;+ (3a —1) [ (N+2)(n+1)ch 28" | +2(6a + a?)cico
n=1
+ (6a + a?) z Z)nJrl (n+1—j)(n+2—j)cnricnio—jE" =0. a7)
1]
Next, from (7), for the case oh = 0, one gets
~ (1-3a)c;— (6a + a?)cic,
4= 12(ad+a?) (18)
Generally, fom > 1, one obtains
Cria = 1 (1—3a)(n+2)(n+ 1)
"4 @3+ a?)(n+4)(n+3)(n+2)(n+1) 2
— (6a +a?) Za(n+ D(N+1—j)(N+2—j)Cns1Cniz—j)- (19)
J:
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Thus, the power series solution dff) is as follows

W(E) = co+ 1€ +Co&%+ &>+ Cal’ + 5 Cnia™ = ot Cr& + 0287 + 038
n=1

(1-3a)c;— (6a +a?)cic, > 1
12(a 1 a?) E4+n; @ nT AT 2ne D LN +2)(n+ 12
~ (6a+a?) i<n+ (041 )(n+2— f)nicaiz )EM (20)
i=

Consequently, the exact power series solutiorLlpEan be written as follows

U(XY,2t) = Co+Co(z—y—a(t —x+y)) +Ca(z—y—alt—x+y))*+ca(z—y—a(t—x+y))°
1

+c4(z—y—or(t—x+y))4+n§1 (a3+az)(n+4)(n+3)(n+2)(n+1)((1_30)(n+2)(n+ 1)chi2

(o)

— (6a+a?) Zo(n+ 1(n+1—j)(N+2— j)Cns1Cniz—j)(z—y—a(t—x+y))"* (21)
=

wherec; (i =0,1,2,3,4) are arbitrary constants, the other coefficiemtén > 4) also can derived.

4 Traveling wave solutions of Eq.(1) by using simplest equation method

Now, we intend to derive traveling wave solutions of B.{or this goal, we use the following general Riccati ecurati
¢’ =a+bp +cp? (22)
as auxiliary equation whei b, c are real constants. The general solution28) {s

VAac— b2 Cies V42 _ e §Vac-2 4
B 2b Cleg Viac—b? | o e 9\/4ac—12 2

¢

whereCy,C, are arbitrary constant28]. By balancing the highest derivative and nonlinear tenm@ b), we assume the
solution of @) of the form
f(0) =ap+a1¢ (23)

whereag, a; are constants to be determined. Substituting the angdtalong with @2) into (15), collecting coefficients
of monomials ofu with the aid of Maple, and then setting each coefficients Egueero, one gets

—3(a%a®+a?%a?+3a -1 lo3a?+a%a?+3a—-1
( i + ) o =a,a=a, b=- i i ,c=C (24)
ac(a +6)

8 =ap, a1 =

3

4 a’cla+1)

From the ansat2@) and making use of Eq26), one can get the explicit solution af)(

U(X7y7 Z7t) =

—3(a%a2+ a2a? + 30 — 1) [ VAac— b2 Cieb Vet _Cye$ a
ac(a +6) 2b Clegm +C2efg\/4ﬂ 2b

_ 1a%?+a2a?43a-1 e
whereb = 7 a2c(a i) andé =r—as.
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In particular, if we se€; = 1, andC, = 1 4ac — b2 > 0, one can derive

—3(a%a%2+ a2a?+3a—1) [ VAac—b? a
ux,y,zt) = ( i i ) < 5 tanr(%\/4acfb2) - %> +ap.

ac(a+6)

5 Conservation laws of Eqg. (1)

Consider ak th-order system of PDEs af independent variables = (x',x?,...,x") and m dependent variables =
(u,u?,...,u™), namely
Ea (X,U,U),.,Ugy) =0, a=1,..m (25)

whereuy), U), ..., Uy denote the collections of all first, second, k th order partial derivatives, i. ey = Dj(u?),
uﬂ = D;Dj(u”), ..., respectively, with the total derivative operatortwiéspect tod is given by

. , 0 .
Dizﬁwf’ﬁwﬁmjt..., j=1..n (26)

where the summation convertion is used whenever apprepWith A is the differential function space, tietuple vector
T=(TLT%..,T"), TleA j=1..n

is a conserved vector o2§) if T' satisfied
DiT'|(25 =0 (27)

the equationZ7) is called a local consevation law of syste?®).In the following calculations, we will accegt = x, X% =
3
yxC=zxt=t.

5.1 Multiplier method

It can be shown that every admitted consevation laws anises fultipliersQ“ (x, U, Ugy), ) such that
Q“Eq =DiT', (28)
holds identically 19]. In the multiplier approach for conservation laws, onestathe variational derivative 028) that is,

o

SuB (Qa EC!) =0, (29)

holds for arbitrary functions af (xl,xz, ...,x“) (see alsoZ4] for the software of the computation of conservation laws).

Here, we use a combination of the multiplier and homotopyeg@gh (fL9],[20],[24]), to obtain the multipliers and their
corresponding conservation laws for B-type KP equatin (

We consider the multipliers of the for@(x,y,zt,u, uy, uy, U, u;) for the equation). The determining equatio29) for
the multipliers takes the form

o
30 [Q (Uz — BuxxUy — BUyUxy + SUxx — Uxoy = 0)] = 0. (30)

(© 2016 BISKA Bilisim Technology
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Expanding 80),
Qz=0, Qu =0, Qu, =0, Qa, =0, Quu =0, =0, Qu=0, Q;,=0, Qu =0, Q=0
we find that the multiplie@ takes the form
Q=cu+F(t,y) +G(y,2 (31)

whereF andG are arbitrary functions of indicated arguments. The careskvector(T?, T2, T3,T4) of (1) satisfies the
divergence relation given by

Q Uz — 3UUy — SUxUyy + 3Uyx — Uyoy] = DxTL+ Dy T2+ D, T3+ D T# (32)
y ky hoocy y

for all arbitrary functionsu(x,y,zt). If we choosec; = 1, F = 0,G = 0, from (31) and @32), we have

3 1
Uy [Uzt — BUoclly — Bl + Uy — Usooey] = D[ — Uiy — 2U2Uy + = UZ — 5 Uylhoox

2
1 1 1 1 1 1 1
+ Euxyuxx - Euxuxxy‘f' Euutz— éuuxxxy] + Dy | UlxUyx + éuuxxxx +D, —EUUIX + Dy EUZUX .
Thus wheneveu(x,y, z t) is a solution of {), we have
5 3, 1 1 1 1 1
Dy | —UUxUyy — 2Us Uy + Eux — Euyuxxer EuxyuXX — EUxenyr Euutz— Euuxxxy
1 1 1
+ Dy | UlxUyx + éuuxxxx +D; —EUUIX + Dy EUZUX =0 (33)
Hence we derive the following conserved vector forftom (33):
3 1 1
Td = — Uty — 2U2Uy + Eu)% — 5 Uyboo + 5 Uy Ui
1 1 1
— EUxexy-i— EUUtz— EUUxxxw
1
Ty =UlyUy + 5 Ulbooex,
1 1
Tr=— Euutx,'l'tl = 5Ual, (34)

Now, we takeG as arbitrary functiong; = 0, andF = 0 then the following conserved vectors are deduced:
TX2 = 73UXUYG(ya Z) + 3UXG(y7 Z)vaZ = 07 TZZ = Oa Tt2 = UZG(ya Z)
On the other hand, if we choosg= 0, andG = 0 then we yield the the following conserved vectors:

Tx3 - *3UnyF (tay) + 3l-'IXF (tvy)aTys = 07T23 = 7UFt(t7y)5Tt3 = uZF (tvy)

(© 2016 BISKA Bilisim Technology
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5.2 New conservation theorem method

It is shown in R5] (see also27]-[29]) that, the system and its adjoint equation

F(X,U,U(1),Uz);---Ug) =0, (35)
F (X, U,V U(1), V(1), U(2), V(2)5 -+ Ugs), Vis)) = O (36)
has a formal Lagrangian, namely
L =VF(X,Y,Zt,u,uz1),Ue),.-Ug)) (37)
where adjoint equatior8() is defined as
y oL
F* (X, U,V U(1), V(1) U2), V(2)5 -+ Ugs) V) = 50 (38)
Where% is variational derivative
o 18 .0
50" + Z Dll'"Dlsﬁuil---is' (39)

The equation35) is said to be nonlinearly self-adjoint if for some arbiyréunction ¢(t, x,y,z) # 0, we have
Filv=p = A (X, u,uy),...)F,
whereA is an indeterminate variable coefficie@6] (see also @1] and [23)).

In [25], Ibragimov proved that, every Lie point, Lie-Backlund damon-local symmetry of EB5) provides a
conservation law for Eq.36) and the adjoint equatior86). Then the elements of conservation vecdiT2, T3 T4, ...
are given by

T :EiHWa[g_;fD-(B_LHD Di(z2 ) D,—DkDm(Bijka...]
dL
+Dj (W) [ — Di(5) + DiDm( 50 ——) + ..
g OUjjkm
oL oL oL
+DjDx(W?) [— — +...] + DjDkDm (W) [(=——) +...]. 40
DKW [ = Do) ]+ DD (W) (o) . (40)
First, we will discuss nonlinear self-adjointness of B}.(
For (1), the adjoint equation has the form
and the formal Lagrangian has the following form
L = v(Uz — SuxUy — 3UyUyxy -+ Sl — Uooy) (42)

If we substituteu instead ofvin Eq. (33), one can find that Eq. (1) is not recovered. Theesfwe can say Eqlj is not
self adjoint. Next,we look for an explicit form a@f(x,y,z t,u) # O for Eq. (L) that holds Eq.41).

—BUyyVx + (—3Uy + 3)Vix — BUxVy + Vat — Viooy = A (Ut — SUxUy — 3y -+ Uy — Uy ) (43)

(© 2016 BISKA Bilisim Technology
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If we plugging themvy, v, Vyx, V2 @ndvyy into (43), one can arrive first from the coefficient of

A=q

Note that the other coefficients ofand all of the derivative yields

@Qu=0, (44)
=9, — 6@uu = —3Qu;,
7% = 7%Ua

—3@yu+ 3 = 3@,
3P+ P2 — Pooy =0,

—6@u — 3@uuw = 0,

—6¢ — 3o =0,

3@ — 3@u — 3@yuu =0,

¢ =0,

@u =0,

@u=0,

Goou = 0.

Solve them, one can get the solution

P(x,y.zt) =Fi(y,t) + F2(y,2) (45)

whereF; andF, are arbitrary functions of arguments.

Therefore, the B-type Kadomtsev-Petviashvili equationaslinearly self-adjoint with the substitution= ¢ and ¢ is
given by @5).

Now, we will study the conservation laws by using the adj@qtiation and symmetries o45). For @45), the adjoint
equation has the form E(41) and the Lagrangian in the symmetrized form4g)(

Let us consider the vector fiel@)corresponding to conserved vector.The operAtgrelds the conservation law
D(T") + Dy(T*) 4+ Dy(TY) + Dz(T%)(1) =0 (46)
where the conserved vector= (T!, T, TY,T?) is given by ¢0) and has the components

Tt = E'L+W[—Dy(V)] + Do(W) V], (47)
T* = E*L +W [—3vuyy — Dy(—3vuy + 3v) — DZDy(—V) — Dy(—3vuy) — DyDZ(~V)]
+ Dy(W) [(—3VUy + 3v) 4 DuDy(—V)] + Dy(W) [3vux + D2(—V)]

+DE(W) [~Dy(—V)] + DyDx [~ Dx(—V)] + DyD(W) (), (48)
TY = &YL +W [~ Dx(—3vuy) — D3(—V)] + Dx(W) [(—3vuy) + DZ(—V)]

+DZ(W) [—Dy(—V)] + DIW)(—v), (49)
T?= &% +W[-Dy(V)] +Dt(W) [V]. (50)

(© 2016 BISKA Bilisim Technology
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Therefore, 47)-(50) define the corresponding components of a non-local coaseraw for the system ofl§ and @1)

corresponding to any operatoX admitted by {). Now, let us make calculations for the operator

Xs = (u—y) L —3t2 —x£ in detail.

For this operator, one can g&t= u—y+ 3tu; + Xuy, we can get the conservation vector of Ep. (

T' = —3tv(Uz — Suykly — 3Uxlyy + 3Uxx — Usxy) + (U— Y+ 3t + XUy) [~D(V)] + D (u—y+3tu +xuy) [V],  (51)
T% = —xv(Uz — Uy — BUxUxy + SUxx — Uory) + (U — Y+ 3tU + XUy ) [—3VUyy

— Dx(—3vUy + 3)] — DZDy (V) — Dy(—3vty) — DyDZ(~V)]

+ Dy(U— Y+ 3t + Xuy) [(—3Vuy + 3v) + DyDy(—V)] + Dy(U — Y+ 3tu; + Xuy) [~ 3V + DZ(—V)]

+ DZ(U— Y+ 3ttt +Xt) [~ Dy(—)] + DyDx [~ Dx(—V)] -+ DyDZ(U— y+ 3ttt +Xthe) (—V), (52)
TY = (U—y+ 3tu + XUx) [—Dx(—3Vuy) — D3(—V)] + Dx(u—y+ 3tu; -+ Xuy) [(—3vuy) + D3(—V)]

+ DZ(u—y+ 3tu 4 Xuy) [~ Dy (—V)] + D3(u— y+ 3tu + xuy) (—V), (53)
T? = (U— Y+ 3tu + XUyx) [~ Dt (V)] + Dt (U — y+ 3tu + Xuy) [V] - (54)

Substituting the solutionglp) of adjoint equation Eqlj), one can get infinite number of conservation laws of Bq.(

6 Conclusions

In this paper, we investigated exact solutions and consendaws of (3+1) dimensional a B-type Kadomtsev Petvidshv
equation {). The invariant solutions, exact anaytic power seriestanis and traveling wave solutions were constructed.
The obtained solutions can be utilized a numerical benckinathe studies of numerical works for Edj)( In addition,
local and independent conservation laws were obtainedéuth distinct methods. The obtained conservation laws can
be utilized in the constructing of numerical schemas, Btalainalysis of solutions and symmetry reductions for igett
the new type exact solutions.
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