c.—/
NTMSCI 4, No. 4, 213-238 (2016) BISKA <3

© NewTrendsinMathematcal Sciences

http://dx.doi.org/10.20852/ntmsci.2016.108

The renewed limit theorems for the discrete-time
branching process and its conditioned limiting law
Interpretation

Azam Abdurakhimovich Imomov

State Testing Center, Under the Cabinet of Ministers of teeuRlic of Uzbekistan and Institute of Mathematics at theidal
University of Uzbekistan.

Received: 3 May 2016, Accepted: 10 August 2016
Published online: 12 November 2016.

Abstract: Our principal aim is to observe the Markov discrete-timecess of population growth with long-living trajectory. tir
we study asymptotical decay of generating function of Galidatson process for all cases as the Basic Lemma. Afteswaedget a
Differential analogue of the Basic Lemma. This Lemma plagémnole in our discussions throughout the paper. Hereupoimprove

and supplement classical results concerning Galton-Watsocess. Further we investigate properties of the pdpulgirocess so
called Q-process. In particular we obtain a joint limit lafw@process and its total state. And also we prove the analo§liaw of

large numbers and the Central limit theorem for total sthte-process.
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1 Introduction

The Galton-Watson branching process (GWP) is a famousicddssodel for population growth. Although this process
is well-investigated but it seems to be wholesome to deeigeusls and improve some famed facts from classical theory
of GWP. In first half part of the paper, Sections 2 and 3, we @élelop discrete-time analogues of Theorems from the
paper of the authoi5]. These results we will exploit in subsequent sections scuks properties of so-called Q-process
as GWP with infinite-living trajectory.

Let a random functionZ, denotes the successive population size in the GWP at the ntome Ng, where;
No={0}UNandN = {1,2,...}. The state sequend&,,n € No} can be expressed in the form of

Zn+1 = Enl+fn2+"'+fn2na

whereén, n,k € Ny, are independent variables with general offspring faw= P{&11 = k}. They are interpreted as a
number of descendants kith individual inn-th generation. Owing to our assumpti¢f,,n € Np} is a homogeneous
Markov chain with state spac# C Ny and transition functions

Ri=P{Zni1=]j|Zn=i}= > PP Py 1)
- Thi=

for anyi, j € ./, wherepj = Pij andy jc » pj = 1. And on the contrary, any chain satisfying to property €jresents
GWP with the evolution law{ px, k € .#}. Thus, our GWP is completely defined by setting the distidng py}; see [L,
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pp.1-2], B, p.19]. From now on we will assume thpt £ 1 andpy > 0, po+ p1 < 1.

A probability generating function (GF) and its iteratiossmportant analytical tool in researching of propertieSu¥P.
Let
F9)= 5 ms, for 0<s<1.
ke
Obviously thatA := E&11 = F/(s1 1) denotes the mean per capita number of offspring providedéehiesy . - kpx is
finite. Owing to homogeneous Markovian nature transitiarcfions

Ri(M):=Pi{Zn=j} =P{Znr=]j| Z =i}, forany reNp
satisfy to the Kolmogorov-Chapman equation

Riln+1)= % Rk(nR, forije.s.
ke
Hence | |
B = 3 R = [Fa(s)]' @)
jes

where GFF,(s) = E1s% is n-fold functional iteration of (s); see B, pp.16-17].
Throughout this paper we writé andP instead of£; andP; respectively.

It follows from (2) thatEZ, = A". The GWP is classified as sub-critical, critical and suptcat, if A< 1, A=1 and
A> 1, accordingly.

The event{Z, = 0} is a simple absorbing state for any GWP. The limit lim,_,. Pio(n) denotes the process starting
from one individual eventually will be lost and called thdiegtion probability of GWP. It is the least non-negativetro
of F(q) = q <1 and thatg = 1 if the process is non-supercritical. Moreover the conerag lim_.. Fn(S) = g holds
uniformly for 0 < s<r < 1. An assertion describing decrease speed of the fun®igs) := q— Fy(s), due to its
importance, is called the Basic Lemma (in fact this nameusliyg used for the critical situation).

In Section 2 we follow on intentions of papeg fnd [5] and prove an assertion about asymptote of the fund¥gs)
as Differential Analogue of Basic Lemma. This simple assarfand its corollaries, Theorem 1 and 2) will lays on the
basis of our reasoning in Section 3.

We start the Section 3 with recalling the Lemma 3 provedLjrp[15]. Until the Theorem 6 we study ergodic property of
transition functions{Ry;(n)}, having carried out the comparative analysis of known tesWe discuss a role of
Hj = limn_e P1j(n) /P11(n) qua the invariant measures and seek an analytical form of/GB) = ¥ jc & ;s and also
we discussZ-classification of GWP. Further consider the varia# denoting an extinction time of GWP, that is
A = min{n: Z,=0}. An asymptote ofP{.” =n} has been studied inlP] and [20. The event{n < 7 < o}
represents a condition ofZ, # 0} at the momenin and {Z,,x =0} for somek € N. By the extinction theorem
P, {# <o} = d. Therefore in non-supercritical cad {n < /# < o} = P;{# >n} — 0. Hence,Z, — 0 with
probability one, so in these cases the process will evdgtdia out. We also consider a conditional distribution

PV {4} i=Pi{ |n< A <},
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in the section. The classical limit theorems state that] if O then under certain moment assumptions the limit
ﬁj (n) = IP’;"/(”){Zn = j} exists always; se€l[ p.16]. In particular, Senetd §] has proved that iA # 1 then the set
{Vj =1liMpe Islj(n)} represents a probability distribution and, limiting GHs) = 5 jc » vjs satisfies to Schroeder
equation

17 (F32) —p. 1), ©)

where 8 = F/(q). The equation (3) determines an invariant property of numl@ej} with respect to the transition
functions{ﬁlj(n)} and, the se{vj} is calledZ-invariant measure with parametet = B~1; see [L7]. In the critical

case we know the Yaglom theorem about a convergence of gomalitlistribution of Z,/F”(1)n given that{.7" > n}
to the standard exponential law. In the end of the Sectionnwestigate an ergodic property of probabilitféﬁ(n) and
we refine above mentioned result of Seneta, having exptigit fof 7/(s).

More interesting phenomenon arises if we observe the Iifri]lq%d("“){*} letting k — o and fixedn € N. In Section 4
we observe the conditioned limit lin.e IED‘i%’d(”Jrk){Zn = j} which represents an honest probability measures
Q= {Zij(n)} and defines homogeneous Markov chain called the Q-proceséjLbe the state at the moment N in
Q-Process. TheWogZo andP; {Wn = j} = Zjj(n). The Q-process was considered first by Lamperti and NBJ §ee,

also [1, pp.56—-60]. Some properties of it were discussed by Pak&s[[L8], and in [6], [8]. The considerable part of the
paper of Klebaner, Rosler and Sagitad\3][ is devoted to discussion of this process from the viewpoinibranching
transformation called the Lamperti-Ney transformationnthuous-time analogue of Q-process was considered by the

author [7].

Section 5 is devoted to classification properties of Maerin{Wn, ne N}. Unlike of GWP the Q-process is classified
on two types depending on value of positive parampgtdt is positive-recurrent if3 < 1 is transient if3 = 1. The set
{uj = liMn_e Qij(n)/Qil(n)} is an invariant measure for Q-process. The section studimsepies of the invariant
measure.

Sections 6 and 7 are devoted to examine of structure andtioregbehaviors of the total staf = y—2Wk in Q-process
until time n. First we consider the joint distribution of the cumulatpmcesﬁwn,&}. As a result of calculation we will
know that in case o < 1 the variable®\l, andS, appear asymptotically not dependent. But in the ¢hsel we state
that under certain conditions the normalized cumulativecess (Wn/EW,; S/ES,) weakly converges to the
two-dimensional random vector having a finite distributi@omparing results of old researches we note that in case of
B = 1 the properties 0§, essentially differ from properties of the total progeny whgle GWP. In this connection we
refer the reader to2], [10] and [11] in which an interpretation and properties of total progefyGWP in various
contexts was investigated. In casefk 1, in accordance with the asymptotic independence propéiy, andS, we
seek a limiting law ofS, separately. So in Section 7 we state and prove an analoguawbf.Large Numbers and the
Central Limit Theorem fo&,.

2 Basic lemma and its differential analogue

In this section we observe an asymptotic property of thetfand?,(s) := q— Fy(s) and its derivative. In the critical
situation an asymptotic explicit expansion of this funatie known from the classical literature which is given in the
formula (4) below.

Let A+ 1. First we consides € [0; g). The mean value theorem gives

Ru+1(8) = F'(&n(9)) Rn(9), 4)
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whereén(s) = q— R, (s), 0 < 8 < 1. We see tha§,(s) < g. Since the GF and its derivatives are monotonically non-
decreasing then consecutive application of (4) leRds) < gB". Collecting last finding and seeing that< 1 we write
following inequalities:

FR(g1—-B") < F®(&(s) <F®(qg), for k=1,2. (5)

In (5) the top index means derivative of a correspondingodensidering together representation (4) and ineqaaliti

(5) we take relations

Rnt1(s) Rn+1(s)
5 <Ry(9) < Pl B (6)

In turn, by Taylor formula and the iteration f&i(s) we have expansion

Rova(8) = BR(9) — — ger) as v "

where and throughout this sectiég(s) is such for which are satisfied relations (5). Assertions(B)yield:

Fla-pm) __B 1 Pl
28 Real® Ra(9  2F(q1—p") X

Repeated application of (8) leads us to the following:

inil " _nk k Bn _ 1 F//(q) nt Bk
22, PR <R s 2 P9

k= k

Taking limit asn — o from here we have estimation

A . [ B 1 Ay

2 T noow

where c ( a Bk))
o S k o k
A= ke%o B B and YAV ke%o F'(q(l— Bk)) B .

We see that last two series converge. Designating

L1 4 g 1.1 %
Ai(s) gq-s 2 Axs) gq-s 2
we rewrite the relation (9) as following:
. pn 1
< lim < . 10
A9 = RS Al 4o
Clearly that
11 M4
Az(S) Al(S) B 2

So there is a positivéd = d(s) such thatd; < d <A, and the limitin (10) is equal to

(11)

N O

IES
(s) q-s

Having spent similar reasoning fere [g; 1) as before, we will be convinced that the limit inx, 8" /Ra(s) = <(s)
holds for alls€ [0; 1).

(© 2016 BISKA Bilisim Technology
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So we can formulate the following basic lemma.

Lemma 1. The following assertions are true for alks[0; 1):
(i) ifA#£1andF'(qg) < e, then
Ra(s) = /(s)-B"(1+0(1)) as n— e, (12)
where the functior (s) is defined in (11);
(i) (see[1,p.19])if A=1and2B:=F"(1) < o, then

1-s

m(pro(l)), as n— oo, (13)

Rn(s) =

The following lemma is discrete-time analogue of Lemma 21i{8].

Lemma 2. The following assertions hold for alls [0; 1):
(i) ifA#£2landF'(qg) < e, then

Ri(s)=—2(s)-B"(1+0(1)), as n— e, (14)

where 7 (s) = exp{—93-47(s)} andd = d(s) € [A1; A;
(i) ifA=1and2B:=F"(1) < , then

Ru(s) = RA(S) (1+0(1), @s n—, (15)

where F(s) < h(s) < 1 and Ry(s) has the expression (2.10).

Proof. Concerning the first part of the lemma we have equality

Rha(9) _
Ri(s)

Let at firsts € [0;q). As the functionR,(s) monotonously decreases lythen its derivativeR,(s) < 0 and, hence
R.1()/R;(s) > 0. Therefore, taking the logarithm and after, summarizioggn, we transform the equality (16) to the

B—F"(&n(s))Rn(s), (16)

form of
wﬂ Sin |1 P ES) i
In|— = n|jl——= = InL 17
n[ Bn k%n[ 5 R«(s) k;)n k(s), (17)
where ,
L) =1 ('Z‘(S)) Ru(9).
Using elementary inequalities
b—a b b-a
5 <In5< = where0<b< a,

for L(s) (a relevance of the use is easily be checked), we write

LkL(fg L) <Li(s) -1 (18)
In accordance with (5) )
_F (q)Rk(s) <Lg(s)—1< —F(q(lf_ﬁ))l?k(s) <0. (19)
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On the other hand &@&(s) < q- 8", thenFy(s) > q- (1— ") and hence

BL(s) = F'(R(9) > F'(q(1—BY)). (20)

Combining of relations (18)—(19) yields

F"(q)
WRK(S) <Inkg(s) < —

Using this relation in (17) we obtain

n-1 F”(q(l—Bk)) B Bn n-1 F”(q)
3R <in| ] < 5 e
Hence in our designations
Ax(9)- 21 < lim In { Rf(s)} < Au(S) -2, (21)
SinceA; < 6 < Ay, owing to (10)—(12)
(o) < im B (9 < (s (22)

Considering together the estimations (21) and (22) we cuiec!

A < Iim%<A

e /() O @3)

The functionﬁ”/R’n(s) is continuous and monotone Isyfor eachn € Ny. Inequalities (23) entail that the functions
In[—B"/Ry(s)] converge uniformly for 0< s < z< g asn — . From here we get (14) for & s < g. By similar
reasoning we will be convinced that convergence (14) iddeais € [g; 1) and ergo for all values &f such that 0< s< 1.

Let's prove now the formula (15). The Taylor expansion aadition ofF(s) produce
Fa(F(9)) — Fn(s) = BRA(S) (1+0(1)), as n— o. (24)

In the left-side part of (24) we apply the mean value Theorathtave

Fa(e(s) = o RA(S) (L+0(1)), as n-ros, (25)

(s)—s
wheres < ¢(s) < F(s). If we use a derivative’s monotonicity property of any GFuadtional iteration of (s) entails

Fr4+1(3)
F'(s)

Fa(s) < Fa(c(9) <
From here, using iteration again we have

i FH(E(9) < Fits) < R e(9). (26)

(© 2016 BISKA Bilisim Technology
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It follows from relations (25), (26) and the fagi(s) 1 1, that
, _ (F(s9)—9)Fi(9)
PO gy <t
Designatindn(s) the mid-part of last inequalities leads us to the representgl5). Lemma 2 is proved.

RemarkThe functione(s) plays the same role, as the akin function in the Basic Lemmg&continuous-time Markov
branching process established &j; [see also T]. Really, it can check up that in the conditions of the Lemma® &
o (0) < o, o7(q) =0, 2/’ (q) = —1, and also it is asymptotically satisfied to the Schroedaaggn:

o/ (Fa(as)) = B"- 7 (a9) (1+0(1)), as n— o,

forall0<s< 1.

Now due to the Lemma 2 we can calculate the probability ofrreta an initial stateZy = 1 in timen. So since=;(0) =
Pi1(n), puttings= 0 in (14) and (15) we directly obtain the following two locahit theorems.

Theorem 1.Let A# 1and F'(q) < ». Then
B"Py(n) = ¢ (0)(1+0(1)), as n—w, 27)

where the functioon# (s) is defined in (14).

Theorem 2.1f A = 1 and the second moment &) =: 2B is finite, then

-~

PPl = 5 (1+0(1), s noe, (28)

whenever p< p1 < 1.

3 An ergodic behavior of transition functions {Rj(n) } and invariant measures

We devote this section to ergodicity property of transifmnx:tions{Rj (n)}. Herewith we will essentially use the Lemma
2 with combining the following ratio limit property (RLPL].

Lemma 3.[see [1, p.15]] If p1 # 0, then forall i j € . the RLP holds:

Ri(M) i1
— j <o, ~as N— oo, 29
PL(n) a “Hj (29)
whereplj = limp_e Pyj(n) /Pr1(n).
Denoting
| Pi(n)
) (s) = Sl
n ( ) Jezy Pll(n)
we see that a GF analogue of assertion (29) is
AN (8) ~ gL ln(s) — ig L (5) <0, @S N oo, (30)

here .#n(s) = Y (s) and Z(s) = Y jcr pjs'. The properties of numberby;} are of some interest within our
purpose. In view of their non-negativity the limiting GF (s) is monotonously not decreasing byAnd according to
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the assertion (30) in studying of behaviorRyf(n) /P11(n) is enough to consider functiowy(s).
It has been proved irl[ pp.12—-14] the sequenc{c—;uj} satisfies to equation

Buj= 3y R, forall je., (31)
ke

whereR;j = P; {Z1 = j}. Therewith the GE/ (s) satisfies to the functional equation
M (F(S)) = BA(8)+ A4 (po), (32)
wheneves andpg are in the region of convergence.@f (s).

The following theorem describes main properties of thisfiom.

Theorem 3.Let p; # 0. Then.Z (s) converges foP < s< 1. Furthermore

(i) if A+ land F'(g) < e, then
M(s) =L (33)

whenever (s) and.# (s) are functions in (12) and (14) respectively;
(i) ifA=1and2B:=F"(1) < o, then.Zn(s) = .#(s) + rn(s), where

_Po _S
//(S)— ﬁlB 1_31 (34)
and p < P1<1,1n(s) =0 (1/n) asn— o,

Proof. The convergence property of G# (s) was proved in1, p.13].

In our designations we write

Fn(s) —Fn(0) ( Rn(s)) Ra(0)
Ma(S) = ——~—=(1- . . 35
T R(0) ) Pua(n) (%9
In caseA # 1 it follows from (12) that
Ra(s) . #(9) o
Ri0) 0
and, considering (27) implies
Rn(0) (0)
. 36
P Z(0) (36)
Combining (35) and (36) we obtaiw (s) in form of (33).
Let's pass to the case= 1. Due to statement of (2.10) appears
Ra(S) s .
1- Ra(0) ~ A-sBnil as n— oo, (37)
In turn according to (28)
Ra(0)  po ©
Pra(n) ~ an, as n— oo, (38)
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Considering together relations (35), (37) and (38) we obtai

AMn(S) ~ Po l as n— o,

P (1—s)Bn+1'
Taking limit from here we find the limiting GF in the form of (B4The proof is completed.

Remark.The theorem above is an enhanced form of Theorem 2 frhnp.fL3] in sense that in our case we get the
information on analytical form of limiting GBZ (s).

The following assertions follow from the theorem provedwaho

Corollary 1. Let pp #0. Then

(i) ifA#£1andF'(qg) < e, then

(0)
A(Q) =Y pig = < oo (39)
jes : '%/(O)
(i) ifA=1and2B:=F"(1) < o, then
n
Po
j;uj ~ ﬁTE%n’ as n— . (40)

Proof. The relation (39) follows from (33). In cage= 1 as shown in (34)
1
%(S)N—'Tsa aSSTl.

According to the Hardy-Littlewood Tauberian theorem thst t&lation entails (40).

Now from the Lemma 3 and Theorems 1 and 2 we get complete atabant asymptotic behaviors of transition functions
Rj(n). Following theorems are fair.

Theorem 4.Let p # 0. If A 1and F'(g) < o, then

B"Rj(n) = %iqilm (1+0(1)), as n— .

Theorem 5. Let py # 0. If in critical GWP the second moment’fR) =: 2B is finite then for transition functions the
following asymptotic representation holds:

n’Rj(n) = &iuj (1+0(1)), as n— oo
PoB
Further we will discuss the role of the sfpj } as invariant measures concerning transition probatsil{t®; (n)}. An
invariant (or stationary) measure of the GWP is a set of ngatie number{ uJ*} satisfying to equation

W=Y WA (41)
ke
If 3 jco Hj <o (orwithout loss of generality ;- -y = 1) then it is called as invariant distribution. Rgo(n) = 1 then
according to (41)u; = 0 for any invariant measure{ uJ*} If Pio(n) = 0 then condition (41) becomes
Hj = th<:1 HgFj(n). If Pig(n) > 0 thenRp(n) > 0 and hencerj > 0.
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In virtue of Theorem 4 in non-critical situation the trafmit functionsR; (n) exponentially decrease to zeroms-+ oo.
Following a classification of the continuous-time Markowgess we characterize this decrease by a "decay parameter”

% = — tim MR

n—o00 n

We classify the non-critical Markov chafz,,, n € No} as#-transient if

///npli (n) < o0
neN

andZ-recurrent otherwise. This chain is called4spositive if limp_c e”"p; (n) > 0, andZ -null if last limit is equal
to zero.

Now assertion(39) and Theorem 4 yield the following statetne

Theorem 6.Let pp # 0. If A# 1 and F'(q) < o, thenZ = |In B3| and the chain{Z,} is Z-positive. The set of numbers
{uj} determined by GF (33) is the unique (up to multiplicativestant)Z-invariant measure for GWP.

In critical situation the se{;.lj} directly enters to a role of invariant measure for the GW&ebd, in this casg = 1 and
according to (31) the following invariant equation holds:

pi= Y WA, forall je.,
ke.”

and owing to (40 jc.» Mj = .

Remark As shown in Theorems 4 and 5 hit probabilities of GWP to angestéhrough the long interval time depend on
the initial state. That is ergodic property fif,,n € Ng} is not carried out.

Our further reasoning is connected with earlier introduaaihble
A =min{neN: Z, =0},
which denote the extinction time of GWP. Let as before
PV (s} i=Pi{# |n< A < o},

Put into consideration probabilitid (n) = P;* " {z, = j} and denote

79 =3 Ryms
jes

to be the appropriate GF. As it has been noticed in the inttolusection that i) > 0, then the limitvj := limp I51j (n)
always exists. In case & # 1 the set{ Vj} represents a probability distribution. And limiting GF(s) = ¥ jc » Vij
satisfies to Schroeder’s equation (1.3) fox@ < 1. But if A= 1 thenv; = 0; see 9] and [1, p.16]. In forthcoming two
theorems we observe the limit g}fj (n) asn — o for anyi, j € .. Unlike aforementioned results of Seneta we get the
explicit expressions for the appropriate GF.

Theorem 7.Let p; # 0. If A= 1and F'(qg) < «, then

lim Bj(n)=v;, forall jc.7,

n—co

(© 2016 BISKA Bilisim Technology



NTMSCI 4, No. 4, 213-238 (2016)www.ntmsci.com BISKA 223

and suitable GF/(s) = 5 jc.» vjs has a form of

_ 4,9
Y(s)=1- 7(0)’ (42)
where the function? (s) is defined in (11).
Proof. We write
_ P{Zn=],n<H <o}
P- n) = . 43
IJ() ]P’i{n<%<°°} ( )
Inturn
P{Zn=j,n<H <w}=P{n<# <w|Zy=j} Rj(n).
Since the vanishing probability gfparticles is equal tg then from last form we receive that
Pi{Zo=],n< A <o} =d-Pj(n) (44)
Using relation (44) implies
P{n< A <ol=3 P{Zy=j,n< A <o}= S Rj(nd. (45)

jes jes

Now it follows from (43)—(45) and Lemma 3 that

Rj(n)
~ PIJ ((n)) ) qJ .al .ql
Bi(n) = 11 Hi-q = Hia™ . vi,
5 Pk(n) o Skes MO (0)
ke Pll(n)

asn — oo, It can be verified the limit distributiodv; } defines the G/ (s) = .#(qs)/.#(q). Applying here equality
(33) we getto (42).

RemarkThe mean of distribution measug (n)

5 q
Z jHj(h)—)W, as n— o

& ©)

and, the limit distribution{ vj } has the finite meatt’(st 1) = q/.«(0).

Further consider the cage= 1. In this cas@ {77 < »} = 1, therefore

Ri(n) 1 1-Fi(s)

v (e = § P{Zy=j| #>nlsd=F 1 o -,
n () Jezyi I{ n J’ } jgiy/Pi{ZH>O} 17Fr|1(0>

We see that & F/(s) ~ iR,(s) asn — «. Hence considering (35) obtains

Rn(s) _ Pu(n)
Ra(0)  Ra(0)

# () ~ 1 - Mn(S), as N— oo, (46)

Combining expansions (2.10), (28), (34) and (46), we staddllowing theorem.
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Theorem 8.Let A= 1. If 2B:=F" (1) < o, then

S

N (s) = 1 s

+pn(3)a

W~

wherepn(s) = ¢ (1/n) as n— «.
Remarklt is a curious fact that in last theorem we managed to be safveddefined variabl@; € [p1;1].

Now define the stochastic proce&swith the transition matrix B (n)}. It is easy to be convinced tha} represents a
discrete-time Markov chain. According to last theoremsgtaperties of its trajectory lose independence on initiates
with growth the numbers of generations.

In non-critical case, according to the Theorem 7, for G&fPthere is (up to multiplicative constant) unique set of
nonnegative numbersy; } which are not all zero an§f . - v; = 1. Moreover as# (qs) = .#(q) - ¥ (s) then using the
formula (32) we can establish the following invariant edorat

B-7(9=7(F(9) -7 (F(9).
where? (s) =5 jc.» vjs andF(s) = F(a9)/q.

So we have the following

Theorem 9.Let A% 1 and F’(q) < c. Then

where transition function®}; (n) have an ergodic property and their limitg = limn_, P (n) present|In B|-invariant
distribution for the Markov chail{fn}.

In critical situation we have the following assertion whitinectly implies from Theorem 8 and taking into account the
continuity theorem for GF.

Theorem 10.If in critical GWP 2B := F"(1) < o, then

~ 1 1
nRj(n)§+ﬁ(ﬁ), as n— oo,

4 Limiting interpretation of P}%ﬂ(”*k){*}

In this section, excepting casps = 0 andq = 0, we observe the distributidﬂ”i%’”(mrk){Zn = j}. It has still been noticed
by Harris (] that its limit ask — oo always exists for any fixed € N. By means of relations (43)—(45) it was obtained in
[1, pp.56—60] that o
(K N :
lim B9z, = j} = S () = 2 ().
SinceF/(q) = [F'(q)]" = B", then by (1.2)

jo!”! 1 .
2 TR0 g 2 PO,
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So we have an honest probability meas@re- { 2;(n) }. The stochastic proceg¥\h,n € No} defined by this measure
is called the Q-process.

By definition
Q= {ym Pi{x ] n+k<j‘f<oo}} = {Pi{« ‘ H =o}},
—00
that the Q-process can be considered as GWP with a non-degjegdrajectory in remote future, that is it conditioned

on event{.# = oo}. Harris [4] has established that &= 1 and B := F”(1) < « the distribution 0fZ, /Bn conditioned
on {7 = «} has the limiting Erlang’s law. Thus the Q-proce¥4,,n € N} represents a homogeneous Markov chain

with initial statevvogzo and general state space which will henceforth denotefl asN. The variablé\, denote the
state size of this chain in instanwith the transition matrix

. 17|
Qij(n):]P’i{Wn+k:j}:%F’lj(n), forall i,j €&, andforany nkeN, (47)
and foranyn,k e N .

Put into consideration a GF _
Yi(s) = S 2ij(n)s.

je&
From (1.2) and (47) we have
(i) jgi ™! i gt's j-1_ 9s d (Fn(x)>i
Yn'(s) = ——hRjn)s’ === Rjn)(gs ==
Vo= 3 Tgrhind =Tgr 3 e =g (Tg) |
Therefore 1
W= ") v, (48)
where GFYp(s) := Y\ (s) = E [s"hWp = 1] has the form of
!
Yn(S) :siﬂs’). forall neN. (49)

As Fq(s) — g owing to (48) and (49).2;j (n) /241j(n) — 1, at infinite growth of the number of generations. Using (48)
and iteratind~ (s) produce a following functional relation:

(9 = =2 (F(9)). (50)

whereF (s) = F(gs)/qandY(s) := Yi(s). We see that Q-process is completely defined by GF

Y(s) = s—F/(qS)

B
and, its evolution is regulated by the positive paramgdern fact, if the first momento := Y’(1) is finite then
differentiating of (49) ins= 1 gives
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and
1+y(1-8", when 8 < 1,
EWh = (51)
(a—1)n+1 , when 3 =1,

wherey := (a —1)/(1— B) anda = 1+ ﬁ”(l)/ﬁ > 1.

5 Classification and ergodic behavior of states of Q-process

The formula (51) shows that§ < 1, then
EWh,— 14y, as n—

and, provided thgB = 1
EWh ~ (o —1)n, as n— oo,

The Q-Process has the following properties:

() if B <1, thenitis positive-recurrent;
(ii) if B =1, thenitis transient.

In the transient caséf, — oo with probability 1; seel, p.59].

Let’s consider first the positive-recurrent case. In thisecaccording to (14), (48), (49) the limifs) := Iim,HooYrSi)(s)
exists provided thatr < «. Then owing to (50) we make sure that Giks) = 5 jc» rrjsj satisfies to invariant equation
1(s)-F(as)/a=Y(s)- m(F(qs)/q). Applying this equation reduces to

n(s) = ;8 n(Fx). (52)

whereFy(s) = Fn(09) /0. A transition function analogue of (52) is form @ = yic, .2;j(n). Taking limit in (52)
asn — oo it follows that n(lfn(s)) ~ Fn(s) and it in turn entailsy jco 1 =1 sinceR(s) — 1. So in this case the set
{m,j € &} represents an invariant distribution. Differentiatio@f&nd taking into account (51) we easily compute that

M) =Y .im=1+y, (53)
where as beforg:= (a —1)/(1-B).
Further we note that owing to (14) and (48)
1(s) = sexp{ —3(qs)- (9},
where the function” (s) looks like (11). Sincet(1) = 1 and</(qs) = & (1—s) ass1 1 itis necessary to be
(g9 =0 ((1-9)79)
with o < 1. On the other hand for feasibility of equality (53) is equ@nt to that

2[5(qs)- ./ (q9)]

ds - Y

st
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If we remember the form of functior/ (s) the last condition becomes

im {09 [a(1-9) - 2301 -92| ~as(as | = . (54)

For the functiond = 4(s) all cases are disregarded except for the unique gas® for the following simple reason. All
functions having a form of1 — s)~? monotonically increase to infinity asf" 1 when 0< g < 1 and this fact contradicts
the boundedness of functian= 4(s). In the caser < 0 cannot be occurred (54) since the limit in the left-hand [sar
equal to zero whilgy # 0. In unique case = 0 the limit is constant and in view of (54)

5=1.
q

We proved the following theorem.

Theorem 11.If B < 1landa :=Y'(1) < o, thenfor0<s< 1

lim Ynm(s) =1(s), (55)

n—oo

whereri(s) is probability GF having a form of

n(s) = sexp{ — #_18)3) } .

The set{m,j€ &} coefficients in power series expansion mfs) = Yijees ms are invariant distribution for the
Q-process.

In transient case the following theorem hold.

Theorem 12.1f B =1anda :=Y’(1) < o, thenforall0 <s< 1
n?Ye(s) = u(s) (14 1n(s)), as n—w, (56)
where k(s) = o(1) for 0 < s< 1 and the GFu(s) = 5 jcs ;s has a form of

2sh(s)

H(S) = (@ 1D(F(5 9

with Y(s) < sh(s) < s. Nonnegative numbefg;, j € &} satisfy to invariant equation

Hj = o Hi2ij(n). (57)

Moreovery jcs Hj = .

Proof. The convergence (56) immediately follows as a result of daation of (15), (48) and (49). Taking limit in (50)
reduces to equatiop(s)Fn(s) = Ya(s)u (Fn(s)) which equivalent to (57) in the context of transition protiibs. On the
other hand it follows from (56) that (Fn(s)) ~ n?Fq(s) asn — o, Hencey jee Hj = o .

As limg|o {Yrﬁi)(s)/s} = Zi1(n), the following two theorems imply from (55) and (56).
Corollary 2. If B <1anda :=Y’'(1) < «, then

2i1(n)=e Y@ (14 0(1)), as n— o, (58)
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Corollary 3. If B=1anda :=Y’(1) < », then
29

T = g

(1+0(1)), as n— oo, (59)

hertel(l) < éj_ <1
Theorem 13.Let =1anda :=Y'(1) < ». Then

.1
rggrgo@[ul+uz+---+un]=(a_l)z- (60)
Proof. By Taylor formulaF (s) —s~ B(1—s)? ass? 1. Therefore since lig A(s) = 1 for GF yi(s) we have
4 1
S) ~ » as stl. 61
According to Hardy-Littlewood Tauberian theorem each tdtiens (60) and (61) entails another.
Another invariant measure for Q-process are numbers
. Zij(n)
= | , 62
vj = lim (62)

which don't depend one &. In fact a similar way as in GWP (see Lemma 3) case it is easgéddlsat this limit exists.
Owing to Kolmogorov-Chapman equation

e@ij (n+ 1) Qil(n+ 1) . Qik(n)
,@il(n—l— 1) ,@il(n) o k;ﬁa ,@il(n)

(1)

Last equality and (62), taking into account tk (n+ 1)/ 2i1(n) — 1 gives us an invariant relation

Uj:ZieﬁuiQij(l)' (63)

In GF context the equality (63) is equivalent to Schroedpetfiunctional equation

w (F(s)) =T %9
wherefq(s) = Fa(gs) /g and _
U(S) =7 s Vi¥

with v, = 1.

Note that in conditions of Theorem 11
U (s) = m(s)e2H)).

Hence, considering (62), we generalize the statement (58):
2ij(n) — 1 = vje V@) as n— o,

foralli,je&.
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By similar way forf3 = 1 it is discovered that

22
n’2ij(n) — yj = Ujrll)po, as n— w,

where.2; is defined in (59).

Providing thatY”(1) < = it can be estimated the convergence speed in Theorem 12.pitoieed in [L6] that if

C:=F"(1) <, then
1 _Inbn(s) +K(s)

Rn(s) = (S +A (bn(s))z (1+o(1)), (64)
asn — o, where , ,
bn(s) = F 2(1)n+ 1%5 and A= —SFS(l) _F 2(1),

andK(s) is some bounded function depending on formFdk). Since the finiteness & is equivalent to condition
Y”(1) < o then from combination of relations (15), (48), (49) and (84) receive the following theorem for the case

B=1.
Theorem 14.1f together with conditions of Theorem 12 we suppose tHét)Y< o, then for the error term in asymptotic

formula (56) the following estimation holds:

S

(1+0(1)), as n—o,

whereA is constant depending on the momefitY) and

9= S, L

Corollary 4. In conditions of Theorem 14 the following representatioldbp

n?.2i; (n) = y; <1+r-7(1+0(1))) , as n— oo,

6 Joint distribution law of Q-process and its total state

Consider the Q-proceg®\h,n € Np} with structural parametgd = F’(q). Let's define a random variable
SI=Wo+Wi+ - +Why,
a total state in Q-process until tinmeLet

hisx)=35 5 P{Wh=j,S= 1}s/%

jes1eN

be the joint GF of\, andS, on a set of

K = {(s;x) eR?: |9 <1, X <1, \/(s— 1)24 (x—1)2>r >O}.
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Lemma 4.For all (s;x) € K and any ne N a recursive equation
0 Y (Ere
Jnt1(sx) = @Jn (XF (s),x) (65)

holds, where Ys) = sF'(gs) /B andF (s) = F(q9) /a.

Proof. Let's consider the cumulative proce%Wn,&} which is evidently a bivariate Markov chain with transition
functions
PMWhi1=J,Sw1=1|Wa=i,Si=k} =Pi{Wi =}, S =1}3,x

whered;j is the Kronecker’s delta function. Hence we have

B [ | §=k| = 3 5 Pi{Wh = |, S =1}8 48X (66)
je&leN
=3P Wy = jleIx Tk =yl (g). Xk
je&

Using this result and the formula of composite probabditige discover that

bt [0 5] -5 i o
=E (A(S))Wnl,y(s)-x""ﬁ&]
:% E[(xlf(s))wn xS"]

The formula (4.2.) is used in last step. The last equationceslto (65).

Now by means of relation (65) we can take an explicit expoes®r GFJ,(s;x). In fact, sequentially having applied it,
taking into account(50) and, after some transformationbave

N1 7 (He(s; X)) S OHn(s,X)
I(sx)=s —_— | == 68
where the sequence of functiofidy(s, x) } is defined for(s,x) € K by following recurrence relations:
Ho(s;x) =S5,
Hni1(8X) = XF (Hn(sX)). (69)
Since
0dn(sX) _Es,
9% lisn=1:1)
then provided thatr :=Y’(1) it follows from 6.2) and (67) that
n
(1+ y)n—y%, when 3 < 1,
ES = (70)

agln(nfl)Jrn, when g =1,

where as beforg:= (a —1)/(1- B).
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Remark.It is known from classical theory that if an evolution law dfnple GWP{fr,,n € No} is generated by GF

F(s) = F(gs)/q, then a joint GF of distribution ot{fr,,vn}, whereV, = ZL‘;&ZAk is the total number of individuals
participating until timen, satisfies to the recurrent equation (67); see eld,,d.126]. SoHx(s;X), (s;X) € K, represents
the two-dimensional GF for all € N and has all properties Es[sznx"“} .

In virtue of the told in Remark 6, in studying of functidf(s;x) we certainly will use properties of GE {sznx""}. As

well asF’(1) = B < 1 and hence the proces&,,n € Ny | is mortal GWP. So there is an integer valued random variable
V = limp,0 Vi, — @ total number of individuals participating in the proctssall time of its evolution. Hence there is a
limit

h(x) := ExY = lim Ex" = lim Hn(1;x)

n—oo n—o0

and according to (67) it satisfied the recurrence relation

h(x) = xF (h(x)). (71)

Provided that the second moméfit(1) is finite, the following asymptotes for the variances candentl from (66) by
differentiation:

(1) , when 8 < 1,
VarWj, ~ 5
(L_zl—)nz, when g =1,
and
o(n) , when 8 <1,
Var§, ~ 5
(a—l_zﬁn“, when g =1,

asn — oo, In turn it is matter of computation to verify that

0(1) , when 8 <1,
cov(Wh, S) ~

2
%nﬂ when g = 1.

Hence lettingo, denote the correlation coefficientdf, andS,, we have

0 , when 3 < 1,
rI1im Pn=
—>00

@* when 3 = 1.

Last statement specifies that in the cfise 1 between the variabldal, and S, there is an asymptotic independence
property. Contrariwise for the cage= 1 the following "joint theorem” holds, which has been prowedhe paper§].

Theorem 15.Letf3 = Landa = Y'(1) < . Then the two-dimensional process

W S
(5 58,
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weakly converges to the two-dimensional random ve@tgs) having the Laplace transform

2
E[ef)\wfes] _ lCh\/éjL%%] , A,0eR,,

where chx= (€°+e7*) /2 and shx= (e~ e ™) /2.
Supposingd = 0 in Theorem 15 produces the following limit theorem Sr

Corollary 5. LetB =1anda =Y’(1) < ». Then for0 < u < e

. S B
AW{E = “} =F),
where the limit function Fu) has the Laplace transform
to o
/ e %dF(u) =secBvB, BeR,.
0

Letting 6 = 0 from the Theorem 15 we have the following assertion whick prved in the monograph,[pp.59-60]
with applying of the Helly’s theorem.

Corollary 6. LetB =1anda =Y’(1) < ». Then for0 < u < e

: Wh —2 ~2
lim P <up=1—e“Y—2ue, 72
{EW - } (72)

n—oo n

Really, denotingyin(A) = $4(A;0) we have

Yn(A) — ﬁ as n— oo,

Here we have used that lm sh\/§/\/§ = 1. The found Laplace transform corresponds to a distributiothe right-
hand side term in (70) produced as composition of two exptialdaws with an identical density.

7 Asymptotic properties of S, in case of3 < 1

In this section we investigate asymptotic properties ofrilistion of S, in the case3 < 1. Consider the GHy(x) :=

Ex> = Jn(1;x). Owing to (66) it has a form of
—1

>

Ta(X) = [ u(x), (73)

T

where .
n(x) = (),

B
andF (s) = F(09)/d, hn(x) = EX", V, = ZE;éZAk-

In accordance with (6n;1(x) = xF (h(x)). Denoting

(© 2016 BISKA Bilisim Technology



NTMSCI 4, No. 4, 213-238 (2016)www.ntmsci.com BISKA 233

for x € K we have
Ra(¥) = [F (1)) ~ F (e 1) | = XE[n(x) ~ o 1(3)] " < Ry 1(x)
sincelh(x)| < 1 and|ha(s;x)| < 1. Therefore

)

IRa(X)| < B"¥|Re(%)

foreachne Nandk =0,1, ... ,n. Consecutive application of last inequality gives
Ra(x) =0 (B") — 0, (74)

asn — oo uniformly for x € K. Further, where the functioR,(x) is used, we deal with s& in which this function
certainly is not zero.

By Taylor expansion and taking into account (72), (69), weeha

1 09) 1) g

Rn+1(X) = XF' (h(X)) Ra(X) — > (75)
where|nn(X)| — 0 asn — oo uniformly with respect tx € K. SinceR,(x) — 0, formula (73) implies
Rni1(X)
X) = —=———(14+0(1)).
Rn(X) </ (h(x) (1+0(2))
Owing to last equality we transform the formula (73) to a far
~ F”(h(x))
X) = xF'(h(x X)— | —=——2% + &n(X X X
Rur1(X) (h(x))Ra(x) lZF,(h(X)) n(X) | Ra()Rn+1(X)
and, hence
u(x) 1
—— = ——— 4 V(X) + & (X), 76
where R (h00)
~ F” (h(x)
u(x) = xF’ (h(x and X) = ——=,
() =xF' (h() 0= B hGo)
and|en(x)| < &n — 0 asn — o for all x € K. Repeated use of (74) leads to the following representétioR,(x):
u"(x) 1 v(x)-[1-u"(x)] & ‘
= + + ) &(Xx)ut(x). 77
Ra(x)  h(x)—1 1—u(x) k; KU (x) (77)
Note that the formula (75) was written out in monograp# [p.130] for the critical case.
The expansions of functiorigx) andu(x) in neighborhood ok = 1 will be useful for our further purpose.
Lemma 5.Letf < 1. If b:= F”(1) < w, then for K{x) = Ex" the following relation holds:
1 2B(1-B)+b 2
1—h(X) ~ —— (1-x) - ———_ " (1-x)?, 78
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as xt 1.

Proof. We write down the Taylor expansion &g 1:
h(x) = 14 (1) (x— 1) +h"(1) (x—1)* + o (x— 1)°. (79)

In turn by direct differentiation from (69) we have

and

2P (h(x)) 1 () +XF" (h(9) [ ()]*

H'(x) = 1—u(x)

Lettingx 1 1 in last equalities entails (1) = 1/(1— ) and

which together with (77) proves (76).

We remind that existence of the second montent F” (1) is equivalent to existence of = Y'(1) andy = b/B(1-B).
We use it in the following assertion.

Lemma 6.Letf < 1. If b:=F”(1) < o, then as X 1 the following relation holds:

M’bx(l— x)2. (80)

u(x) ~ BX[L—y(1—x)]+ 1-B)3

Proof. The relation (78) follows from Taylor power series expansid function F’ (h(x)), taking into account therein
Lemma 5.

The following Lemma 7 is a direct consequence of relatior).(A6d Lemma 8 implies from (78) and Lemma 7. Therein
we consider the fact that= 8(a — 1).

Lemma7.LetB <landa < «. Thena® — 0

1 B2+y)
h(ef’)—lm17[39+(17ﬁ,)2 02. (81)

Lemma8.1f B <1landa < o, thenasd — 0

1+B(1+y)

6 2
u () ~ BI1+(1+y)6] + By 5 (82)
The following assertion hails from (75), (79) and (80).
Lemma 9.Let3 < 1anda < ». Then the following relation holds:
6

w(ef) “1-B  (1-B)?

asf — 0 and for each fixed g N.
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Further the following lemma is required.

Lemma 10.Let8 < 1anda < . Then the following relation holds:

Innl_!tuk (ee) T <1 U(;9)> n- Bvl(i;V) anfuk (ee), o4

k=

asf — 0 and for each fixed & N.

Proof. Using inequalities Ifil —y) > —y— y2/(1, y), which hold for 0< 'y < 1, we have

n n—-1

In.!_!iuk <eg) - :iln {1* {1* U (eg)} } = 20 [“k (eg) - 1} +0i7(8) = 1n(6) + P (6), (85)

k=

where
n-1

1n(8) = — zo[l—uk(ee)}, (86)

k=

and 5
- u(e)]”

0>p\Pg) > —
Z Pn ( )— s uk(eg)

Itis easy to be convinced that the functional sequeiigéx) } does not decrease é&nThen according to property of GF,
the functionuy (eg) is also non-decreasing dfor each fixech € N andf € R. Hence,

1—up(€%)

o ) (87)

We can verify also that 1 ug (ee) — 0 as 6 — 0. Then in accordance with (85) the second expression in (83)
oY (8) — 0 provided that,(6) has a finite limit a — 0.

Further, by Taylor expansion we have

~ ~ -~

F'(t) = F'(to) — F"(to) (to — t) + (to — t)g(to; 1),

whereg(to;t) = (toft)l?’”(r)/Z andty < T < t. Using this expansion we write

o0 = 200 O g 0 4 Rguce)

hereingy(x) = xlii((x)ﬁ’”/ZB andhy(x) < T < h(x). Therefore

0 Gl 0
NGE U(; ) ¢€F (g(e ))Rk(ee) Re(@) (). (©9)
It follows from (84) and (86) that
1n(6) — ll “(;9)] n ST E) kirek () +0%0). (89)
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where

O3

In last estimation we used the earlier known inequaRy(x)| < B"|Ro(x)|. Owingto the relation (79Ry (ee) =0(0)as
6 — 0. In turn according to (72 (e?) = & (B*) — 0 ask — o for all 6 € R. Hence,

6\ "< 0
Ry (€ (e’ )=0(0)—0, as H6—0.
(&) 3 o(¢)
It follows from here that the error term in (87)

0i?(6) —0, as 6-0. (90)

Considering together (81), (87) and (88) and, after somepeation, taking into account a continuity property-:d‘f(s),
we obtain (82).
The Lemma is proved.

With the help of the above established lemmas, we state anve mow the analogue of Law of Large Numbers and the
Central Limit Theorem fof,.

Theorem 16.Let3 < 1anda < . Then

lim P{g < u}
n—oo n

0, ifu<i+ty,

1 ifu>1+y,

)

wherey = (a —1)/(1-p).

Proof.Denotingyin(6) be the Laplace transform of distributionSf/n it follows from formula (71) thatin(8) = Tn (6n),
where6, = exp{—6/n}. The theorem statement is equivalent to that for any fikexlR ,

Yn(0) — e Y as no . (91)
From Lemma 10 follows .
u(6n) By(2+y) 6°°C" «
|mp(e)~—(1— )n+ — ) U (6h), (92)
” B 15 w2
ash — oo, The first addendum, owing to (80), becomes
u(6 1+B(1+y) 62
(1- 55 ) n~ ey PN B (93)

And the second one, as it is easy to see, has a decrease 0@1@1/]13). Therefore from (90) and (91) follows (89). The
Theorem is proved.

We note that in view of the relation (91), it can be estimatedirate of convergence Sﬁ/n — (1+y) asn— oo,

Theorem 17.LetB < 1, a < », andy= (a —1)/(1— B). Then

P{&—E&
v2¥n

< x} — @(x), as n— o,

(© 2016 BISKA Bilisim Technology
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where the constant
1+B(1+y)

Y=y 1-6

and @(x) — the standard normal distribution function.

Proof. This time let¢n(6) be the characteristic function of distribution ((Sn — E&)/\/zw:

1t [y B (51— ES)
on(0) =E [exp e } .
According to (68) we have _
Inn(6) ~ —(1+ y)%“nm(en), as n— o, (94)
whereg, = exp{ie/\/zq—’n}. Combining (71) and Lemma 10 yields
u(én) )\, Bv2+y) ie°®
INTr (6h) ~ — (1— B ) n+ 1B o k;uk(en). (95)

In turn from (80) we have
; 2
u:?> o (96)

Using relations (93) and (94) in (92) follows

62 63
Ingn(6) = —?—i—ﬁ(m) , as n— oo,

Hence we conclude that 5

%w>%w%%} as s o

and the theorem statement follows from the continuity teeofor characteristic functions.
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