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Abstract: Our principal aim is to observe the Markov discrete-time process of population growth with long-living trajectory. First
we study asymptotical decay of generating function of Galton-Watson process for all cases as the Basic Lemma. Afterwards we get a
Differential analogue of the Basic Lemma. This Lemma plays main role in our discussions throughout the paper. Hereupon we improve
and supplement classical results concerning Galton-Watson process. Further we investigate properties of the population process so
called Q-process. In particular we obtain a joint limit law of Q-process and its total state. And also we prove the analogue of Law of
large numbers and the Central limit theorem for total state of Q-process.
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1 Introduction

The Galton-Watson branching process (GWP) is a famous classical model for population growth. Although this process
is well-investigated but it seems to be wholesome to deeper discuss and improve some famed facts from classical theory
of GWP. In first half part of the paper, Sections 2 and 3, we willdevelop discrete-time analogues of Theorems from the
paper of the author [5]. These results we will exploit in subsequent sections to discuss properties of so-called Q-process
as GWP with infinite-living trajectory.

Let a random functionZn denotes the successive population size in the GWP at the moment n ∈ N0, where;
N0 = {0}∪N andN= {1,2, . . .}. The state sequence{Zn,n∈ N0} can be expressed in the form of

Zn+1 = ξn1+ ξn2+ · · ·+ ξnZn,

whereξnk, n,k ∈ N0, are independent variables with general offspring lawpk := P{ξ11 = k}. They are interpreted as a
number of descendants ofk-th individual in n-th generation. Owing to our assumption{Zn,n∈N0} is a homogeneous
Markov chain with state spaceS ⊂ N0 and transition functions

Pi j := P
{

Zn+1 = j
∣∣ Zn = i

}
= ∑

k1+ ···+ki= j

pk1 · pk2 · · · pki , (1)

for any i, j ∈ S , wherep j = P1 j and∑ j∈S p j = 1. And on the contrary, any chain satisfying to property (1) represents
GWP with the evolution law{pk,k∈ S }. Thus, our GWP is completely defined by setting the distribution {pk}; see [1,
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pp.1–2], [9, p.19]. From now on we will assume thatpk 6= 1 andp0 > 0, p0+ p1 < 1.

A probability generating function (GF) and its iterations is important analytical tool in researching of properties ofGWP.
Let

F(s) = ∑
k∈S

pks
k
, for 0≤ s< 1.

Obviously thatA := Eξ11 = F ′(s ↑ 1) denotes the mean per capita number of offspring provided theseries∑k∈S kpk is
finite. Owing to homogeneous Markovian nature transition functions

Pi j (n) := Pi
{

Zn = j
}
= P

{
Zn+r = j

∣∣ Zr = i
}
, for any r∈ N0

satisfy to the Kolmogorov-Chapman equation

Pi j (n+1) = ∑
k∈S

Pik(n)Pk j, for i, j ∈ S .

Hence
Eis

Zn := ∑
j∈S

Pi j (n)s
j =
[
Fn(s)

]i
, (2)

where GFFn(s) = E1sZn is n-fold functional iteration ofF(s); see [3, pp.16–17].

Throughout this paper we writeE andP instead ofE1 andP1 respectively.

It follows from (2) thatEZn = An. The GWP is classified as sub-critical, critical and supercritical, if A < 1, A = 1 and
A> 1, accordingly.

The event{Zn = 0} is a simple absorbing state for any GWP. The limitq = limn→∞ P10(n) denotes the process starting
from one individual eventually will be lost and called the extinction probability of GWP. It is the least non-negative root
of F(q) = q ≤ 1 and thatq = 1 if the process is non-supercritical. Moreover the convergence limn→∞ Fn(s) = q holds
uniformly for 0≤ s ≤ r < 1. An assertion describing decrease speed of the functionRn(s) := q− Fn(s), due to its
importance, is called the Basic Lemma (in fact this name is usually used for the critical situation).

In Section 2 we follow on intentions of papers [7] and [5] and prove an assertion about asymptote of the functionR′
n(s)

as Differential Analogue of Basic Lemma. This simple assertion (and its corollaries, Theorem 1 and 2) will lays on the
basis of our reasoning in Section 3.

We start the Section 3 with recalling the Lemma 3 proved in [1, p.15]. Until the Theorem 6 we study ergodic property of
transition functions

{
Pi j (n)

}
, having carried out the comparative analysis of known results. We discuss a role of

µ j = limn→∞ P1 j(n)
/

P11(n) qua the invariant measures and seek an analytical form of GFM (s) = ∑ j∈S µ jsj and also
we discussR-classification of GWP. Further consider the variableH denoting an extinction time of GWP, that is
H = min{n : Zn = 0}. An asymptote ofP{H = n} has been studied in [12] and [20]. The event{n< H < ∞}
represents a condition of{Zn 6= 0} at the momentn and {Zn+k = 0} for somek ∈ N. By the extinction theorem
Pi {H < ∞} = qi . Therefore in non-supercritical casePi {n< H < ∞} ≡ Pi {H > n} → 0. Hence,Zn → 0 with
probability one, so in these cases the process will eventually die out. We also consider a conditional distribution

P
H (n)
i {∗} := Pi

{
∗
∣∣ n< H < ∞

}
.
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in the section. The classical limit theorems state that ifq > 0 then under certain moment assumptions the limit
P̃i j (n) := P

H (n)
i

{
Zn = j

}
exists always; see [1, p.16]. In particular, Seneta [19] has proved that ifA 6= 1 then the set{

ν j := limn→∞ P̃1 j(n)
}

represents a probability distribution and, limiting GFV (s) = ∑ j∈S ν jsj satisfies to Schroeder
equation

1−V

(
F(qs)

q

)
= β ·

[
1−V (s)

]
, (3)

whereβ = F ′(q). The equation (3) determines an invariant property of numbers
{

ν j
}

with respect to the transition

functions
{

P̃1 j(n)
}

and, the set
{

ν j
}

is calledR-invariant measure with parameterR = β−1; see [17]. In the critical

case we know the Yaglom theorem about a convergence of conditional distribution of 2Zn
/

F ′′(1)n given that{H > n}
to the standard exponential law. In the end of the Section we investigate an ergodic property of probabilitiesP̃i j (n) and
we refine above mentioned result of Seneta, having explicit form ofV (s).

More interesting phenomenon arises if we observe the limit of PH (n+k)
i {∗} letting k → ∞ and fixedn∈ N. In Section 4

we observe the conditioned limit limk→∞P
H (n+k)
i

{
Zn = j

}
which represents an honest probability measures

Q =
{
Qi j (n)

}
and defines homogeneous Markov chain called the Q-process. LetWn be the state at the momentn∈ N in

Q-Process. ThenW0
d
=Z0 andPi

{
Wn = j

}
= Qi j (n). The Q-process was considered first by Lamperti and Ney [15]; see,

also [1, pp.56–60]. Some properties of it were discussed by Pakes [17], [18], and in [6], [8]. The considerable part of the
paper of Klebaner, Rösler and Sagitov [13] is devoted to discussion of this process from the viewpointof branching
transformation called the Lamperti-Ney transformation. Continuous-time analogue of Q-process was considered by the
author [7].

Section 5 is devoted to classification properties of Markov chain
{
Wn,n∈ N

}
. Unlike of GWP the Q-process is classified

on two types depending on value of positive parameterβ . It is positive-recurrent ifβ < 1 is transient ifβ = 1. The set{
υ j := limn→∞ Qi j (n)

/
Qi1(n)

}
is an invariant measure for Q-process. The section studies properties of the invariant

measure.

Sections 6 and 7 are devoted to examine of structure and long-time behaviors of the total stateSn = ∑n−1
k=0Wk in Q-process

until timen. First we consider the joint distribution of the cumulativeprocess
{
Wn,Sn

}
. As a result of calculation we will

know that in case ofβ < 1 the variablesWn andSn appear asymptotically not dependent. But in the caseβ = 1 we state
that under certain conditions the normalized cumulative process

(
Wn
/
EWn; Sn

/
ESn
)

weakly converges to the
two-dimensional random vector having a finite distribution. Comparing results of old researches we note that in case of
β = 1 the properties ofSn essentially differ from properties of the total progeny of simple GWP. In this connection we
refer the reader to [2], [10] and [11] in which an interpretation and properties of total progenyof GWP in various
contexts was investigated. In case ofβ < 1, in accordance with the asymptotic independence propertyof Wn andSn we
seek a limiting law ofSn separately. So in Section 7 we state and prove an analogue of Law of Large Numbers and the
Central Limit Theorem forSn.

2 Basic lemma and its differential analogue

In this section we observe an asymptotic property of the function Rn(s) := q−Fn(s) and its derivative. In the critical
situation an asymptotic explicit expansion of this function is known from the classical literature which is given in the
formula (4) below.

Let A 6= 1. First we considers∈ [0; q). The mean value theorem gives

Rn+1(s) = F ′(ξn(s)
)
Rn(s), (4)
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whereξn(s) = q− θRn(s), 0< θ < 1. We see thatξn(s) < q. Since the GF and its derivatives are monotonically non-
decreasing then consecutive application of (4) leadsRn(s) < qβ n. Collecting last finding and seeing thatβ < 1 we write
following inequalities:

F (k)(q(1−β n)
)
< F (k)(ξn(s)

)
< F (k)(q), for k= 1, 2. (5)

In (5) the top index means derivative of a corresponding order. Considering together representation (4) and inequalities
(5) we take relations

Rn+1(s)
β

< Rn(s)<
Rn+1(s)

F ′(q(1−β n)
) . (6)

In turn, by Taylor formula and the iteration forF(s) we have expansion

Rn+1(s) = βRn(s)−
F ′′(ξn(s)

)

2
R2

n(s), as n→ ∞, (7)

where and throughout this sectionξn(s) is such for which are satisfied relations (5). Assertions (5)–(7) yield:

F ′′(q(1−β n)
)

2β
<

β
Rn+1(s)

− 1
Rn(s)

<
F ′′(q)

2F ′(q(1−β n)
) . (8)

Repeated application of (8) leads us to the following:

1
2β

n−1

∑
k=0

F ′′(q(1−β k)
)
β k

<
β n

Rn(s)
− 1

q− s
<

F ′′(q)
2

n−1

∑
k=0

β k

F ′(q(1−β k)
) .

Taking limit asn→ ∞ from here we have estimation

∆1

2
≤ lim

n→∞

[
β n

Rn(s)
− 1

q− s

]
≤ ∆2

2
, (9)

where

∆1 := ∑
k∈N0

F ′′(q(1−β k)
)

β
β k and ∆2 := ∑

k∈N0

F ′′(q)

F ′(q(1−β k)
)β k

.

We see that last two series converge. Designating

1
A1(s)

:=
1

q− s
+

∆1

2
and

1
A2(s)

:=
1

q− s
+

∆2

2
,

we rewrite the relation (9) as following:
1

A1(s)
≤ lim

n→∞

β n

Rn(s)
≤ 1

A2(s)
. (10)

Clearly that
1

A2(s)
− 1

A1(s)
=

∆2−∆1

2
< ∞.

So there is a positiveδ = δ (s) such that∆1 ≤ δ ≤ ∆2 and the limit in (10) is equal to

1
A (s)

=
1

q− s
+

δ
2

. (11)

Having spent similar reasoning fors∈ [q; 1) as before, we will be convinced that the limit limn→∞ β n
/

Rn(s) = A (s)

holds for alls∈ [0;1).
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So we can formulate the following basic lemma.

Lemma 1.The following assertions are true for all s∈ [0;1):

(i) if A 6= 1 and F′′(q)< ∞, then

Rn(s) = A (s) ·β n (1+o(1)) as n→ ∞, (12)

where the functionA (s) is defined in (11);

(ii) (see [1, p.19]) if A = 1 and2B := F ′′(1)< ∞, then

Rn(s) =
1− s

(1− s)Bn+1
(1+o(1)) , as n→ ∞, (13)

The following lemma is discrete-time analogue of Lemma 2 from [5].

Lemma 2.The following assertions hold for all s∈ [0;1):

(i) if A 6= 1 and F′′(q)< ∞, then

R′
n(s) =−K (s) ·β n (1+o(1)) , as n→ ∞, (14)

whereK (s) = exp{−δ ·A (s)} andδ = δ (s) ∈ [∆1; ∆2];

(ii) if A = 1 and2B := F ′′(1)< ∞, then

R′
n(s) =

h̄(s)B
s−F(s)

R2
n(s) (1+o(1)) , as n→ ∞, (15)

where F′(s)≤ h̄(s)≤ 1 and Rn(s) has the expression (2.10).

Proof.Concerning the first part of the lemma we have equality

R′
n+1(s)

R′
n(s)

= β −F ′′(ξn(s)
)
Rn(s), (16)

Let at first s ∈ [0; q). As the functionRn(s) monotonously decreases bys, then its derivativeR′
n(s) < 0 and, hence

R′
n+1(s)

/
R′

n(s)> 0. Therefore, taking the logarithm and after, summarizing alongn, we transform the equality (16) to the
form of

ln

[
−R′

n(s)
β n

]
=

n−1

∑
k=0

ln

[
1− F ′′(ξk(s)

)

β
Rk(s)

]
=:

n−1

∑
k=0

lnLk(s), (17)

where

Ln(s) = 1− F ′′(ξn(s)
)

β
Rn(s).

Using elementary inequalities
b−a

b
< ln

b
a
<

b−a
a

, where 0< b< a,

for Lk(s) (a relevance of the use is easily be checked), we write

Lk(s)−1
Lk(s)

< lnLk(s)< Lk(s)−1. (18)

In accordance with (5)

−F ′′(q)
β

Rk(s)< Lk(s)−1<−F ′′(q(1−β k)
)

β
Rk(s) < 0. (19)
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On the other hand asRn(s) < q ·β n, thenFn(s)> q ·
(
1−β n

)
and hence

βLk(s) = F ′(Fk(s)) > F ′(q(1−β k)
)
. (20)

Combining of relations (18)–(19) yields

− F ′′(q)

F ′(q(1−β k)
)Rk(s)< lnLk(s)<−F ′′(q(1−β k)

)

β
Rk(s).

Using this relation in (17) we obtain

n−1

∑
k=0

F ′′(q(1−β k)
)

β
Rk(s)< ln

[
− β n

R′
n(s)

]
<

n−1

∑
k=0

F ′′(q)

F ′(q(1−β k)
)Rk(s).

Hence in our designations

A2(s) ·∆1 ≤ lim
n→∞

ln

[
− β n

R′
n(s)

]
≤ A1(s) ·∆2, (21)

Since∆1 ≤ δ ≤ ∆2, owing to (10)–(12)

A2(s)≤ lim
n→∞

Rn(s)
β n = A (s)≤ A1(s). (22)

Considering together the estimations (21) and (22) we conclude

∆1 ≤ lim
n→∞

ln

[
− β n

R′
n(s)

]

A (s)
≤ ∆2. (23)

The functionβ n
/

R′
n(s) is continuous and monotone bys for eachn ∈ N0. Inequalities (23) entail that the functions

ln
[
−β n

/
R′

n(s)
]

converge uniformly for 0≤ s ≤ z < q as n → ∞. From here we get (14) for 0≤ s < q. By similar
reasoning we will be convinced that convergence (14) is fairfor s∈ [q; 1) and ergo for all values ofs, such that 0≤ s< 1.

Let’s prove now the formula (15). The Taylor expansion and iteration ofF(s) produce

Fn(F(s))−Fn(s) = BR2
n(s) (1+o(1)) , as n→ ∞. (24)

In the left-side part of (24) we apply the mean value Theorem and have

F ′
n (c(s)) =

B
F(s)− s

R2
n(s) (1+o(1)) , as n→ ∞, (25)

wheres< c(s)< F(s). If we use a derivative’s monotonicity property of any GF, a functional iteration ofF(s) entails

F ′
n(s) < F ′

n(c(s)) <
F ′

n+1(s)

F ′(s)
.

From here, using iteration again we have

F ′(s)

F ′(Fn(s)
)F ′

n

(
c(s)

)
< F ′

n(s)< F ′
n

(
c(s)

)
. (26)
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It follows from relations (25), (26) and the factFn(s) ↑ 1, that

F ′(s)≤ lim
n→∞

(
F(s)− s

)
F ′

n(s)

BR2
n(s)

≤ 1.

Designatinḡh(s) the mid-part of last inequalities leads us to the representation (15). Lemma 2 is proved.

Remark.The functionA (s) plays the same role, as the akin function in the Basic Lemma for the continuous-time Markov
branching process established in [5]; see also [7]. Really, it can check up that in the conditions of the Lemma 1, 0<

A (0)< ∞, A (q) = 0, A ′(q) =−1, and also it is asymptotically satisfied to the Schroeder equation:

A
(
Fn(qs)

)
= β n ·A (qs)

(
1+o(1)

)
, as n→ ∞,

for all 0≤ s< 1.

Now due to the Lemma 2 we can calculate the probability of return to an initial stateZ0 = 1 in timen. So sinceF ′
n(0) =

P11(n), puttings= 0 in (14) and (15) we directly obtain the following two local limit theorems.

Theorem 1.Let A 6= 1 and F′′(q)< ∞. Then

β−nP11(n) = K (0)(1+o(1)) , as n→ ∞, (27)

where the functionK (s) is defined in (14).

Theorem 2.If A = 1 and the second moment F′′(1) =: 2B is finite, then

n2P11(n) =
p̂1

p0B
(1+o(1)) , as n→ ∞, (28)

whenever p1 ≤ p̂1 ≤ 1.

3 An ergodic behavior of transition functions
{

Pi j (n)
}

and invariant measures

We devote this section to ergodicity property of transitionfunctions
{

Pi j (n)
}

. Herewith we will essentially use the Lemma
2 with combining the following ratio limit property (RLP) [1].

Lemma 3. [see [1, p.15]] If p1 6= 0, then for all i, j ∈ S the RLP holds:

Pi j (n)

P11(n)
−→ iqi−1µ j < ∞, as n→ ∞, (29)

whereµ j = limn→∞ P1 j(n)
/

P11(n).

Denoting

M
(i)
n (s) = ∑

j∈S

Pi j (n)

P11(n)
sj
,

we see that a GF analogue of assertion (29) is

M
(i)
n (s)∼ iqi−1

Mn(s) −→ iqi−1
M (s)< ∞, as n→ ∞, (30)

here Mn(s) = M
(1)
n (s) and M (s) = ∑ j∈S µ jsj . The properties of numbers

{
µ j
}

are of some interest within our
purpose. In view of their non-negativity the limiting GFM (s) is monotonously not decreasing bys. And according to
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the assertion (30) in studying of behavior ofPi j (n)
/

P11(n) is enough to consider functionMn(s).

It has been proved in [1, pp.12–14] the sequence
{

µ j
}

satisfies to equation

β µ j = ∑
k∈S

µkPk j, for all j ∈ S , (31)

wherePi j = Pi {Z1 = j}. Therewith the GFM (s) satisfies to the functional equation

M
(
F(s)

)
= βM (s)+M (p0), (32)

wheneversandp0 are in the region of convergence ofM (s).

The following theorem describes main properties of this function.

Theorem 3.Let p1 6= 0. ThenM (s) converges for0≤ s< 1. Furthermore

(i) if A 6= 1 and F′′(q)< ∞, then

M (s) =
A (0)−A (s)

K (0)
, (33)

wheneverA (s) andK (s) are functions in (12) and (14) respectively;

(ii) if A = 1 and2B := F ′′(1)< ∞, thenMn(s) = M (s)+ rn(s), where

M (s) =
p0

p̂1B
· s
1− s

, (34)

and p1 ≤ p̂1 ≤ 1, rn(s) = O
(
1
/

n
)

as n→ ∞.

Proof.The convergence property of GFM (s) was proved in [1, p.13].

In our designations we write

Mn(s) =
Fn(s)−Fn(0)

F ′
n(0)

=

(
1− Rn(s)

Rn(0)

)
· Rn(0)
P11(n)

. (35)

In caseA 6= 1 it follows from (12) that

Rn(s)
Rn(0)

−→ A (s)
A (0)

, as n→ ∞,

and, considering (27) implies
Rn(0)
P11(n)

−→ A (0)
K (0)

. (36)

Combining (35) and (36) we obtainM (s) in form of (33).

Let’s pass to the caseA= 1. Due to statement of (2.10) appears

1− Rn(s)
Rn(0)

∼ s
(1− s)Bn+1

, as n→ ∞. (37)

In turn according to (28)
Rn(0)
P11(n)

∼ p0

p̂1
n, as n→ ∞. (38)
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Considering together relations (35), (37) and (38) we obtain

Mn(s)∼
p0

p̂1

sn
(1− s)Bn+1

, as n→ ∞.

Taking limit from here we find the limiting GF in the form of (34). The proof is completed.

Remark.The theorem above is an enhanced form of Theorem 2 from [1, p.13] in sense that in our case we get the
information on analytical form of limiting GFM (s).

The following assertions follow from the theorem proved above.

Corollary 1. Let p1 6= 0. Then

(i) if A 6= 1 and F′′(q)< ∞, then

M (q) = ∑
j∈S

µ jq
j =

A (0)
K (0)

< ∞; (39)

(ii) if A = 1 and2B := F ′′(1)< ∞, then
n

∑
j=1

µ j ∼
p0

p̂1B
n, as n→ ∞. (40)

Proof.The relation (39) follows from (33). In caseA= 1 as shown in (34)

M (s)∼ p0

p̂1B
· 1
1− s

, as s↑ 1.

According to the Hardy-Littlewood Tauberian theorem the last relation entails (40).

Now from the Lemma 3 and Theorems 1 and 2 we get complete account about asymptotic behaviors of transition functions
Pi j (n). Following theorems are fair.

Theorem 4.Let p1 6= 0. If A 6= 1 and F′′(q)< ∞, then

β−nPi j (n) =
A (0)
M (q)

iqi−1µ j (1+o(1)) , as n→ ∞.

Theorem 5. Let p1 6= 0. If in critical GWP the second moment F′′(1) =: 2B is finite then for transition functions the

following asymptotic representation holds:

n2Pi j (n) =
p̂1

p0B
iµ j (1+o(1)) , as n→ ∞.

Further we will discuss the role of the set
{

µ j
}

as invariant measures concerning transition probabilities
{

Pi j (n)
}

. An

invariant (or stationary) measure of the GWP is a set of nonnegative numbers
{

µ∗
j

}
satisfying to equation

µ∗
j = ∑

k∈S

µ∗
k Pk j. (41)

If ∑ j∈S µ∗
j < ∞ (or without loss of generality∑ j∈S µ∗

j = 1) then it is called as invariant distribution. AsP00(n) = 1 then

according to (41) µ∗
0 = 0 for any invariant measure

{
µ∗

j

}
. If P10(n) = 0 then condition (41) becomes

µ∗
j = ∑ j

k=1 µ∗
k Pk j(n). If P10(n)> 0 thenPi0(n)> 0 and henceµ∗

j > 0.
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In virtue of Theorem 4 in non-critical situation the transition functionsPi j (n) exponentially decrease to zero asn → ∞.
Following a classification of the continuous-time Markov process we characterize this decrease by a ”decay parameter”

R =− lim
n→∞

lnPii (n)
n

.

We classify the non-critical Markov chain{Zn, n∈N0} asR-transient if

∑
n∈N

eRnPii (n)< ∞

andR-recurrent otherwise. This chain is called asR-positive if limn→∞ eRnPii (n) > 0, andR -null if last limit is equal
to zero.

Now assertion(39) and Theorem 4 yield the following statement.

Theorem 6.Let p1 6= 0. If A 6= 1 and F′′(q) < ∞, thenR = |lnβ | and the chain{Zn} is R-positive. The set of numbers{
µ j
}

determined by GF (33) is the unique (up to multiplicative constant)R-invariant measure for GWP.

In critical situation the set
{

µ j
}

directly enters to a role of invariant measure for the GWP. Indeed, in this caseβ = 1 and
according to (31) the following invariant equation holds:

µ j = ∑
k∈S

µkPk j, for all j ∈ S ,

and owing to (40)∑ j∈S µ j = ∞ .

Remark.As shown in Theorems 4 and 5 hit probabilities of GWP to any states through the long interval time depend on
the initial state. That is ergodic property for{Zn,n∈ N0} is not carried out.

Our further reasoning is connected with earlier introducedvariable

H := min
{

n∈N : Zn = 0
}
,

which denote the extinction time of GWP. Let as before

P
H (n)
i {∗} := Pi

{
∗
∣∣ n< H < ∞

}
.

Put into consideration probabilities̃Pi j (n) = P
H (n)
i

{
Zn = j

}
and denote

V
(i)

n (s) = ∑
j∈S

P̃i j (n)s
j

to be the appropriate GF. As it has been noticed in the introduction section that ifq> 0, then the limitν j := limn→∞ P̃1 j(n)

always exists. In case ofA 6= 1 the set
{

ν j
}

represents a probability distribution. And limiting GFV (s) = ∑ j∈S ν jsj

satisfies to Schroeder’s equation (1.3) for 0≤ s≤ 1. But if A= 1 thenν j ≡ 0; see [19] and [1, p.16]. In forthcoming two
theorems we observe the limit of̃Pi j (n) asn → ∞ for any i, j ∈ S . Unlike aforementioned results of Seneta we get the
explicit expressions for the appropriate GF.

Theorem 7.Let p1 6= 0. If A 6= 1 and F′′(q)< ∞, then

lim
n→∞

P̃i j (n) = ν j , for all j ∈ S ,
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and suitable GFV (s) = ∑ j∈S ν jsj has a form of

V (s) = 1− A (qs)
A (0)

, (42)

where the functionA (s) is defined in (11).

Proof.We write

P̃i j (n) =
Pi
{

Zn = j, n< H < ∞
}

Pi
{

n< H < ∞
} . (43)

In turn
Pi
{

Zn = j, n< H < ∞
}
= P

{
n< H < ∞

∣∣ Zn = j
}
·Pi j (n).

Since the vanishing probability ofj particles is equal toq j then from last form we receive that

Pi
{

Zn = j, n< H < ∞
}
= q j ·Pi j (n) (44)

Using relation (44) implies

Pi
{

n< H < ∞
}
= ∑

j∈S

Pi
{

Zn = j, n< H < ∞
}
= ∑

j∈S

Pi j (n)q
j
. (45)

Now it follows from (43)–(45) and Lemma 3 that

P̃i j (n) =

Pi j (n)
P11(n)

·q j

∑k∈S

Pik(n)
P11(n)

qk
−→ µ j ·q j

∑k∈S µkqk =
µ jq j

M (q)
=: ν j ,

asn → ∞. It can be verified the limit distribution
{

ν j
}

defines the GFV (s) = M (qs)
/
M (q). Applying here equality

(33) we get to (42).

Remark.The mean of distribution measurẽPi j (n)

∑
j∈S

jP̃i j (n)−→
q

A (0)
, as n→ ∞

and, the limit distribution
{

ν j
}

has the finite meanV ′(s↑ 1) = q
/
A (0).

Further consider the caseA= 1. In this caseP{H < ∞}= 1, therefore

V
(i)

n (s) = ∑
j∈S

Pi
{

Zn = j
∣∣H > n

}
sj = ∑

j∈S

Pi j (n)

Pi
{

Zn > 0
}sj = 1− 1−F i

n(s)
1−F i

n(0)
.

We see that 1−F i
n(s) ∼ iRn(s) asn→ ∞. Hence considering (35) obtains

V
(i)

n (s)∼ 1− Rn(s)
Rn(0)

=
P11(n)
Rn(0)

·Mn(s), as n→ ∞. (46)

Combining expansions (2.10), (28), (34) and (46), we state the following theorem.
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Theorem 8.Let A= 1. If 2B := F ′′(1)< ∞, then

nV
(i)

n (s) =
1
B
· s
1− s

+ρn(s),

whereρn(s) = O
(
1
/

n
)

as n→ ∞.

Remark.It is a curious fact that in last theorem we managed to be savedof undefined variablêp1 ∈ [p1;1].

Now define the stochastic processZ̃n with the transition matrix
{

P̃i j (n)
}

. It is easy to be convinced that̃Zn represents a
discrete-time Markov chain. According to last theorems theproperties of its trajectory lose independence on initial state
with growth the numbers of generations.

In non-critical case, according to the Theorem 7, for GWPZ̃n there is (up to multiplicative constant) unique set of
nonnegative numbers

{
ν j
}

which are not all zero and∑ j∈S ν j = 1. Moreover asM (qs) = M (q) ·V (s) then using the
formula (32) we can establish the following invariant equation:

β ·V (s) = V

(
F̂(s)

)
−V

(
F̂(s)

)
,

whereV (s) = ∑ j∈S ν j sj andF̂(s) = F(qs)
/

q.

So we have the following

Theorem 9.Let A 6= 1 and F′′(q)< ∞. Then

Pi j (n) = P̃i j (n) · ∑
k∈S

Pik(n)q
k− j

,

where transition functions̃Pi j (n) have an ergodic property and their limitsν j = limn→∞ P̃i j (n) present|lnβ |-invariant

distribution for the Markov chain
{

Z̃n

}
.

In critical situation we have the following assertion whichdirectly implies from Theorem 8 and taking into account the
continuity theorem for GF.

Theorem 10.If in critical GWP 2B := F ′′(1)< ∞, then

nP̃i j (n) =
1
B
+O

(
1
n

)
, as n→ ∞.

4 Limiting interpretation of P
H (n+k)
i {∗}

In this section, excepting casesp1 = 0 andq= 0, we observe the distributionPH (n+k)
i {Zn = j}. It has still been noticed

by Harris [4] that its limit ask→ ∞ always exists for any fixedn∈N. By means of relations (43)–(45) it was obtained in
[1, pp.56–60] that

lim
k→∞

P
H (n+k)
i

{
Zn = j

}
=

jq j−i

iβ n Pi j (n) =: Qi j (n).

SinceF ′
n(q) = [F ′(q)]n = β n, then by (1.2)

∑
j∈S

jq j−i

iβ n Pi j (n) =
1

iqi−1β n

[
∑ j∈S

Pi j (n)s
j
]′

s=q
= 1.
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So we have an honest probability measureQ =
{
Qi j (n)

}
. The stochastic process{Wn,n∈ N0} defined by this measure

is called the Q-process.

By definition

Q =

{
lim
k→∞

Pi
{
∗
∣∣ n+ k< H < ∞

}}
=
{
Pi
{
∗
∣∣H = ∞

}}
,

that the Q-process can be considered as GWP with a non-degenerating trajectory in remote future, that is it conditioned
on event{H = ∞}. Harris [4] has established that ifA= 1 and 2B := F ′′(1) < ∞ the distribution ofZn

/
Bn conditioned

on {H = ∞} has the limiting Erlang’s law. Thus the Q-process{Wn,n∈ N0} represents a homogeneous Markov chain

with initial stateW0
d
=Z0 and general state space which will henceforth denoted asE ⊂ N. The variableWn denote the

state size of this chain in instantn with the transition matrix

Qi j (n) = Pi
{
Wn+k = j

}
=

jq j−i

iβ n Pi j (n), for all i, j ∈ E , and for any n,k∈ N, (47)

and for anyn,k∈ N .

Put into consideration a GF
Y(i)

n (s) := ∑
j∈E

Qi j (n)s
j
.

From (1.2) and (47) we have

Y(i)
n (s) = ∑

j∈E

jq j−i

iβ n Pi j (n)s
j =

q1−is
iβ n ∑

j∈E

Pi j (n)(qs) j−1 =
qs
iβ n

∂
∂x

[(
Fn(x)

q

)i
]

x=qs

.

Therefore

Y(i)
n (s) =

[
Fn(qs)

q

]i−1

Yn(s), (48)

where GFYn(s) :=Y(1)
n (s) = E

[
sWn |W0 = 1

]
has the form of

Yn(s) = s
F ′

n(qs)
β n

, for all n ∈ N. (49)

As Fn(s) → q owing to (48) and (49),Qi j (n)
/
Q1 j(n)→ 1, at infinite growth of the number of generations. Using (48)

and iteratingF(s) produce a following functional relation:

Y(i)
n+1(s) =

Y(s)

F̂(s)
Y(i)

n

(
F̂(s)

)
, (50)

whereF̂(s) = F(qs)
/

q andY(s) :=Y1(s). We see that Q-process is completely defined by GF

Y(s) = s
F ′(qs)

β

and, its evolution is regulated by the positive parameterβ . In fact, if the first momentα := Y′(1) is finite then
differentiating of (49) ins= 1 gives

EiWn = (i −1)β n+EWn
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and

EWn =





1+ γ (1−β n) , when β < 1,

(α −1)n+1 , when β = 1,

(51)

whereγ := (α −1)
/
(1−β) andα = 1+ F̂

′′
(1)
/

β > 1.

5 Classification and ergodic behavior of states of Q-processes

The formula (51) shows that ifβ < 1, then

EiWn −→ 1+ γ, as n→ ∞

and, provided thatβ = 1
EiWn ∼ (α −1)n, as n→ ∞.

The Q-Process has the following properties:

(i) if β < 1, then it is positive-recurrent;
(ii) if β = 1, then it is transient.

In the transient caseWn → ∞ with probability 1; see [1, p.59].

Let’s consider first the positive-recurrent case. In this case according to (14), (48), (49) the limitπ(s) := limn→∞Y(i)
n (s)

exists provided thatα < ∞. Then owing to (50) we make sure that GFπ(s) = ∑ j∈E π jsj satisfies to invariant equation
π(s)·F(qs)

/
q=Y(s) ·π

(
F(qs)

/
q
)
. Applying this equation reduces to

π(s) =
Yn(s)

F̂n(s)
π
(

F̂n(s)
)
, (52)

where F̂n(s) = Fn(qs)
/

q. A transition function analogue of (52) is form ofπ j = ∑i∈E πiQi j (n). Taking limit in (52)

asn → ∞ it follows that π
(

F̂n(s)
)
∼ F̂n(s) and it in turn entails∑ j∈E π j = 1 sinceF̂n(s) → 1. So in this case the set

{
π j , j ∈ E

}
represents an invariant distribution. Differentiation (52) and taking into account (51) we easily compute that

π ′(1) = ∑ j∈E
jπ j = 1+ γ, (53)

where as beforeγ := (α −1)
/
(1−β).

Further we note that owing to (14) and (48)

π(s) = sexp
{
−δ (qs) ·A (qs)

}
,

where the functionA (s) looks like (11). Sinceπ(1) = 1 andA (qs) = O (1− s) ass↑ 1 it is necessary to be

δ (qs) = O
(
(1− s)−σ)

with σ < 1. On the other hand for feasibility of equality (53) is equivalent to that

∂
[
δ (qs) ·A (qs)

]

∂s

∣∣∣∣∣
s↑1

=−γ.
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If we remember the form of functionA (s) the last condition becomes

lim
s↑1

{
δ ′(qs)

[
q(1− s)− δ (qs)

2
q2(1− s)2

]
−qδ (qs)

}
=−γ. (54)

For the functionδ = δ (s) all cases are disregarded except for the unique caseσ = 0 for the following simple reason. All
functions having a form of(1− s)−σ monotonically increase to infinity ass↑ 1 when 0< σ < 1 and this fact contradicts
the boundedness of functionδ = δ (s). In the caseσ < 0 cannot be occurred (54) since the limit in the left-hand part is
equal to zero whileγ 6= 0. In unique caseσ = 0 the limit is constant and in view of (54)

δ =
γ
q

.

We proved the following theorem.

Theorem 11.If β < 1 andα :=Y′(1)< ∞, then for0≤ s< 1

lim
n→∞

Y(i)
n (s) = π(s), (55)

whereπ(s) is probability GF having a form of

π(s) = sexp

{
− γ(1− s)

1+ γ
2(1− s)

}
.

The set
{

π j , j ∈ E
}

coefficients in power series expansion ofπ(s) = ∑ j∈E π jsj are invariant distribution for the
Q-process.

In transient case the following theorem hold.

Theorem 12.If β = 1 andα :=Y′(1)< ∞, then for all0≤ s< 1

n2Y(i)
n (s) = µ(s)(1+ rn(s)) , as n→ ∞, (56)

where rn(s) = o(1) for 0≤ s< 1 and the GFµ(s) = ∑ j∈E µ jsj has a form of

µ(s) =
2sh̄(s)

(α −1)
(
F(s)− s

) ,

with Y(s)≤ sh̄(s)≤ s. Nonnegative numbers
{

µ j , j ∈ E
}

satisfy to invariant equation

µ j = ∑i∈E
µiQi j (n). (57)

Moreover∑ j∈E µ j = ∞.

Proof. The convergence (56) immediately follows as a result of combination of (15), (48) and (49). Taking limit in (50)
reduces to equationµ(s)Fn(s) =Yn(s)µ (Fn(s)) which equivalent to (57) in the context of transition probabilities. On the
other hand it follows from (56) thatµ (Fn(s))∼ n2Fn(s) asn→ ∞. Hence∑ j∈E µ j = ∞ .

As lims↓0

[
Y(i)

n (s)
/

s
]
= Qi1(n), the following two theorems imply from (55) and (56).

Corollary 2. If β < 1 andα :=Y′(1)< ∞, then

Qi1(n) = e−2γ/(2+γ) (1+o(1)) , as n→ ∞. (58)
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Corollary 3. If β = 1 andα :=Y′(1)< ∞, then

n2
Qi1(n) =

2Q̃1

(α −1)p0
(1+o(1)) , as n→ ∞, (59)

hereQ11(1)≤ Q̃1 ≤ 1.

Theorem 13.Let β = 1 andα :=Y′(1)< ∞. Then

lim
n→∞

1
n2 [µ1+ µ2+ · · ·+ µn] =

2

(α −1)2
. (60)

Proof.By Taylor formulaF(s)− s∼ B(1− s)2 ass↑ 1. Therefore since lims↑1 h̄(s) = 1 for GFµ(s) we have

µ(s)∼ 4
(α −1)2

1

(1− s)2
, as s↑ 1. (61)

According to Hardy-Littlewood Tauberian theorem each of relations (60) and (61) entails another.

Another invariant measure for Q-process are numbers

υ j := lim
n→∞

Qi j (n)

Qi1(n)
, (62)

which don’t depend oni ∈ E . In fact a similar way as in GWP (see Lemma 3) case it is easy to see that this limit exists.
Owing to Kolmogorov-Chapman equation

Qi j (n+1)
Qi1(n+1)

Qi1(n+1)
Qi1(n)

= ∑
k∈E

Qik(n)
Qi1(n)

Qk j(1).

Last equality and (62), taking into account thatQi1(n+1)
/
Qi1(n)→ 1 gives us an invariant relation

υ j = ∑i∈E
υiQi j (1). (63)

In GF context the equality (63) is equivalent to Schroeder type functional equation

U

(
F̂(s)

)
=

F̂(s)
Y(s)

U (s),

whereF̂n(s) = Fn(qs)
/

q and
U (s) = ∑ j∈E

υ js
j

with υ1 = 1.

Note that in conditions of Theorem 11
U (s) = π(s)e2γ/(2+γ)

.

Hence, considering (62), we generalize the statement (58):

Qi j (n)−→ π j = υ je
−2γ/(2+γ)

, as n→ ∞,

for all i, j ∈ E .
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By similar way forβ = 1 it is discovered that

n2
Qi j (n)−→ µ j = υ j

2Q̃1

(α −1)p0
, as n→ ∞,

whereQ̃1 is defined in (59).

Providing thatY′′(1) < ∞ it can be estimated the convergence speed in Theorem 12. It isproved in [16] that if
C := F ′′′(1)< ∞, then

Rn(s) =
1

bn(s)
+∆ · lnbn(s)+K(s)

(
bn(s)

)2

(
1+o(1)

)
, (64)

asn→ ∞, where

bn(s) =
F ′′(1)

2
n+

1
1− s

and ∆ =
C

3F ′′(1)
− F ′′(1)

2
,

and K(s) is some bounded function depending on form ofF(s). Since the finiteness ofC is equivalent to condition
Y′′(1) < ∞ then from combination of relations (15), (48), (49) and (64)we receive the following theorem for the case
β = 1.

Theorem 14.If together with conditions of Theorem 12 we suppose that Y′′(1)< ∞, then for the error term in asymptotic

formula (56) the following estimation holds:

rn(s) = ∆̃ · lnbn(s)
bn(s)

(1+o(1)) , as n→ ∞,

where∆̃ is constant depending on the moment Y′′(1) and

bn(s) =
(α −1)n

2
+

1
1− s

.

Corollary 4. In conditions of Theorem 14 the following representation holds:

n2
Qi j (n) = µ j

(
1+

∆
α −1

· lnn
n

(1+o(1))

)
, as n→ ∞.

6 Joint distribution law of Q-process and its total state

Consider the Q-process{Wn,n∈ N0} with structural parameterβ = F ′(q). Let’s define a random variable

Sn =W0+W1+ · · · +Wn−1,

a total state in Q-process until timen. Let

Jn(s;x) = ∑
j∈E

∑
l∈N

P
{
Wn = j,Sn = l

}
sjxl

be the joint GF ofWn andSn on a set of

K=

{
(s;x) ∈R

2 : |s| ≤ 1, |x| ≤ 1,
√
(s−1)2+(x−1)2 ≥ r > 0

}
.
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Lemma 4.For all (s;x) ∈K and any n∈ N a recursive equation

Jn+1(s;x) =
Y(s)

F̂(s)
Jn

(
xF̂(s);x

)
(65)

holds, where Y(s) = sF′(qs)
/

β andF̂(s) = F(qs)
/

q.

Proof. Let’s consider the cumulative process
{
Wn,Sn

}
which is evidently a bivariate Markov chain with transition

functions
P
{
Wn+1 = j, Sn+1 = l

∣∣Wn = i, Sn = k
}
= Pi

{
W1 = j, S1 = l

}
δl ,i+k,

whereδi j is the Kronecker’s delta function. Hence we have

Ei

[
sWn+1xSn+1

∣∣ Sn = k
]
= ∑

j∈E

∑
l∈N

Pi
{
W1 = j, S1 = l

}
δl ,i+ks

j xl (66)

= ∑
j∈E

Pi
{
W1 = j

}
sj xi+k =Y(i)(s) ·xi+k

.

Using this result and the formula of composite probabilities, we discover that

Jn+1(s;x) =E

[
E
[
sWn+1xSn+1

∣∣Wn,Sn
]]

= E

[
Y(Wn)(s) ·xWn+Sn

]
(67)

=E

[(
F̂(s)

)Wn−1
·Y(s) ·xWn+Sn

]

=
Y(s)

F̂(s)
·E
[(

xF̂(s)
)Wn

·xSn

]
.

The formula (4.2.) is used in last step. The last equation reduces to (65).

Now by means of relation (65) we can take an explicit expression for GFJn(s;x). In fact, sequentially having applied it,
taking into account(50) and, after some transformations wehave

Jn(s;x) = s
n−1

∏
k=0

[
xF̂ ′ (Hk(s;x))

β

]
=

s
β n

∂Hn(s;x)
∂s

, (68)

where the sequence of functions{Hk(s;x)} is defined for(s;x) ∈K by following recurrence relations:

H0(s;x) = s,

Hn+1(s;x) = xF̂
(
Hn(s;x)

)
. (69)

Since
∂Jn(s;x)

∂x

∣∣∣∣
(s;x)=(1;1)

= ESn,

then provided thatα :=Y′(1) it follows from 6.2) and (67) that

ESn =





(1+ γ)n− γ 1−β n

1−β , when β < 1,

α −1
2 n(n−1)+n , when β = 1,

(70)

where as beforeγ := (α −1)
/
(1−β).
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Remark.It is known from classical theory that if an evolution law of simple GWP
{

Ẑn,n∈N0

}
is generated by GF

F̂(s) = F(qs)
/

q, then a joint GF of distribution of
{

Ẑn,Vn

}
, whereVn = ∑n−1

k=0 Ẑk is the total number of individuals

participating until timen, satisfies to the recurrent equation (67); see e.g., [14, p.126]. SoHn(s;x), (s;x) ∈ K, represents

the two-dimensional GF for alln∈ N and has all properties asE
[
sẐnxVn

]
.

In virtue of the told in Remark 6, in studying of functionHk(s;x) we certainly will use properties of GFE
[
sẐnxVn

]
. As

well asF̂ ′(1) = β ≤ 1 and hence the process
{

Ẑn,n∈ N0

}
is mortal GWP. So there is an integer valued random variable

V = limn→∞ Vn – a total number of individuals participating in the processfor all time of its evolution. Hence there is a
limit

h(x) := ExV = lim
n→∞

ExVn = lim
n→∞

Hn(1;x)

and according to (67) it satisfied the recurrence relation

h(x) = xF̂
(
h(x)

)
. (71)

Provided that the second momentY′′(1) is finite, the following asymptotes for the variances can be found from (66) by
differentiation:

VarWn ∼





O(1) , when β < 1,

(α −1)2

2 n2
, when β = 1,

and

VarSn ∼





O(n) , when β < 1,

(α −1)2

12 n4
, when β = 1,

asn→ ∞. In turn it is matter of computation to verify that

cov
(
Wn,Sn

)
∼





O(1) , when β < 1,

(α −1)2

6 n3 , when β = 1.

Hence lettingρn denote the correlation coefficient ofWn andSn, we have

lim
n→∞

ρn =





0 , when β < 1,

√
6

3
, when β = 1.

Last statement specifies that in the caseβ < 1 between the variablesWn andSn there is an asymptotic independence
property. Contrariwise for the caseβ = 1 the following ”joint theorem” holds, which has been provedin the paper [6].

Theorem 15.Letβ = 1 andα =Y′(1)< ∞. Then the two-dimensional process

(
Wn

EWn
;

Sn

ESn

)
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weakly converges to the two-dimensional random vector(w;s) having the Laplace transform

E

[
e−λ w−θs

]
=

[
ch
√

θ +
λ
2

sh
√

θ√
θ

]−2

, λ ,θ ∈ R+,

where chx=
(
ex+e−x

)/
2 and shx=

(
ex−e−x

)/
2.

Supposingλ = 0 in Theorem 15 produces the following limit theorem forSn.

Corollary 5. Let β = 1 andα =Y′(1)< ∞. Then for0< u< ∞

lim
n→∞

P

{
Sn

ESn
≤ u

}
= F(u),

where the limit function F(u) has the Laplace transform

∫ +∞

0
e−θudF(u) = sech2

√
θ , θ ∈ R+.

Letting θ = 0 from the Theorem 15 we have the following assertion which was proved in the monograph [1, pp.59–60]
with applying of the Helly’s theorem.

Corollary 6. Let β = 1 andα =Y′(1)< ∞. Then for0< u< ∞

lim
n→∞

P

{
Wn

EWn
≤ u

}
= 1−e−2u−2ue−2u

. (72)

Really, denotingψn(λ ) =Ψn(λ ;0) we have

ψn(λ )−→
1

[
1+ λ

2

]2
, as n→ ∞.

Here we have used that limθ↓0sh
√

θ
/√

θ = 1. The found Laplace transform corresponds to a distribution of the right-
hand side term in (70) produced as composition of two exponential laws with an identical density.

7 Asymptotic properties ofSn in case ofβ < 1

In this section we investigate asymptotic properties of distribution of Sn in the caseβ < 1. Consider the GFTn(x) :=
ExSn = Jn(1;x). Owing to (66) it has a form of

Tn(x) =
n−1

∏
k=0

uk(x), (73)

where

un(x) =
xF̂ ′ (hn(x))

β
,

andF̂(s) = F(qs)
/

q, hn(x) = ExVn, Vn = ∑n−1
k=0 Ẑk.

In accordance with (67)hn+1(x) = xF̂
(
hn(x)

)
. Denoting

Rn(x) := h(x)−hn(x), n∈ N0,
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for x∈K we have

Rn(x) = x
[
F̂ (h(x))− F̂ (hn−1(x))

]
= xE

[
h(x)−hn−1(x)

]Ẑn ≤ βRn−1(x),

since|h(x)| ≤ 1 and|hn(s;x)| ≤ 1. Therefore

∣∣Rn(x)
∣∣≤ β n−k

∣∣Rk(x)
∣∣,

for eachn∈ N andk= 0,1, . . . ,n. Consecutive application of last inequality gives

Rn(x) = O (β n)−→ 0, (74)

asn → ∞ uniformly for x ∈ K. Further, where the functionRn(x) is used, we deal with setK in which this function
certainly is not zero.

By Taylor expansion and taking into account (72), (69), we have

Rn+1(x) = xF̂ ′(h(x)
)
Rn(x)− x

F̂ ′′(h(x)
)
+ηn(x)

2
R2

n(x), (75)

where|ηn(x)| → 0 asn→ ∞ uniformly with respect tox∈K. SinceRn(x)→ 0, formula (73) implies

Rn(x) =
Rn+1(x)

xF̂ ′(h(x)
)
(
1+o(1)

)
.

Owing to last equality we transform the formula (73) to a formof

Rn+1(x) = xF̂ ′(h(x)
)
Rn(x)−

[
F̂ ′′(h(x)

)

2F̂ ′(h(x)
) + εn(x)

]
Rn(x)Rn+1(x)

and, hence
u(x)

Rn+1(x)
=

1
Rn(x)

+ v(x)+ εn(x), (76)

where

u(x) = xF̂ ′(h(x)
)

and v(x) =
F̂ ′′(h(x)

)

2F̂ ′(h(x)
) ,

and|εn(x)| ≤ εn → 0 asn→ ∞ for all x∈K. Repeated use of (74) leads to the following representationfor Rn(x):

un(x)
Rn(x)

=
1

h(x)−1
+

v(x) ·
[
1−un(x)

]

1−u(x)
+

n

∑
k=1

εk(x)u
k(x). (77)

Note that the formula (75) was written out in monograph [14, p.130] for the critical case.

The expansions of functionsh(x) andu(x) in neighborhood ofx= 1 will be useful for our further purpose.

Lemma 5.Let β < 1. If b := F̂ ′′(1)< ∞, then for h(x) = ExV the following relation holds:

1−h(x)∼ 1
1−β

(1− x)− 2β (1−β )+b
(1−β )3 (1− x)2

, (78)
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as x↑ 1.

Proof.We write down the Taylor expansion asx ↑ 1:

h(x) = 1+h′(1)
(
x−1

)
+h′′(1)

(
x−1

)2
+o
(
x−1

)2
. (79)

In turn by direct differentiation from (69) we have

h′(x) =
F̂
(
h(x)

)

1−u(x)
,

and

h′′(x) =
2F̂ ′(h(x)

)
h′(x)+ xF̂ ′′(h(x)

)[
h′(x)

]2

1−u(x)
.

Lettingx ↑ 1 in last equalities entailsh′(1) = 1
/
(1−β ) and

h′′(1) =
2β (1−β )+b

(1−β )3

which together with (77) proves (76).

We remind that existence of the second momentb := F̂ ′′(1) is equivalent to existence ofα =Y′(1) andγ = b
/

β (1−β ).
We use it in the following assertion.

Lemma 6.Let β < 1. If b := F̂ ′′(1)< ∞, then as x↑ 1 the following relation holds:

u(x)∼ βx[1− γ (1− x)]+
2β (1−β )+b

(1−β )3 bx(1− x)2
. (80)

Proof. The relation (78) follows from Taylor power series expansion of function F̂ ′ (h(x)), taking into account therein
Lemma 5.

The following Lemma 7 is a direct consequence of relation (76). And Lemma 8 implies from (78) and Lemma 7. Therein
we consider the fact thatb= β (α −1).

Lemma 7.Let β < 1 andα < ∞. Then asθ → 0

h
(

eθ
)
−1∼ 1

1−β
θ +

β (2+ γ)
(1−β )2 θ 2

. (81)

Lemma 8. If β < 1 andα < ∞, then asθ → 0

u
(

eθ
)
∼ β [1+(1+ γ)θ]+β γ

1+β (1+ γ)
1−β

θ 2
. (82)

The following assertion hails from (75), (79) and (80).

Lemma 9.Let β < 1 andα < ∞. Then the following relation holds:

Rn
(
eθ)

un (eθ )
∼ 1

1−β
θ +

β (2+ γ)
(1−β )2 θ 2

, (83)

asθ → 0 and for each fixed n∈ N.
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Further the following lemma is required.

Lemma 10.Let β < 1 andα < ∞. Then the following relation holds:

ln
n−1

∏
k=0

uk

(
eθ
)
∼−

(
1− u

(
eθ)

β

)
n− β γ(2+ γ)

1−β
θ 3

n−1

∑
k=0

uk
(

eθ
)
, (84)

asθ → 0 and for each fixed n∈ N.

Proof.Using inequalities ln(1− y)≥−y− y2
/
(1− y), which hold for 0≤ y< 1, we have

ln
n−1

∏
k=0

uk

(
eθ
)
=

n−1

∑
k=0

ln
{

1−
[
1−uk

(
eθ
)]}

=
n−1

∑
k=0

[
uk

(
eθ
)
−1
]
+ρ (1)

n (θ ) =: In(θ )+ρ (1)
n (θ ), (85)

where

In(θ ) =−
n−1

∑
k=0

[
1−uk

(
eθ
)]

, (86)

and

0≥ ρ (1)
n (θ )≥−

n−1

∑
k=0

[
1−uk

(
eθ )]2

uk (eθ )
.

It is easy to be convinced that the functional sequence{hk(x)} does not decrease onk. Then according to property of GF,
the functionuk

(
eθ) is also non-decreasing onk for each fixedn∈ N andθ ∈ R. Hence,

0≥ ρ (1)
n (θ )≥ 1−u0

(
eθ)

u0(eθ )
In(θ ). (87)

We can verify also that 1− u0
(
eθ) → 0 as θ → 0. Then in accordance with (85) the second expression in (83)

ρ (1)
n (θ )→ 0 provided thatIn(θ ) has a finite limit asθ → 0.

Further, by Taylor expansion we have

F̂ ′(t) = F̂ ′(t0)− F̂ ′′(t0)(t0− t)+ (t0− t)g(t0; t),

whereg(t0; t) = (t0− t)F̂ ′′′(τ)
/

2 andt0 < τ < t. Using this expansion we write

uk(x) =
u(x)

β
− xF̂ ′′(h(x)

)

β
Rk(x)+Rk(x)gk(x),

hereingk(x) = xRk(x)F̂ ′′′
/

2β andhk(x)< τ < h(x). Therefore

uk

(
eθ
)
=

u
(
eθ)

β
− eθ F̂ ′′ (h

(
eθ))

β
Rk

(
eθ
)
+Rk

(
eθ
)

gk

(
eθ
)
. (88)

It follows from (84) and (86) that

In(θ ) =−
[

1− u
(
eθ)

β

]
n− eθ F̂ ′′ (h

(
eθ))

β

n−1

∑
k=0

Rk

(
eθ
)
+ρ (2)

n (θ ), (89)
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where

0≤ ρ (2)
n (θ )≤ R0

(
eθ
)n−1

∑
k=0

gk

(
eθ
)
.

In last estimation we used the earlier known inequality|Rn(x)| ≤ β n |R0(x)|. Owingto the relation (79)R0
(
eθ)= O(θ ) as

θ → 0. In turn according to (72)gk
(
eθ)= O

(
β k
)
→ 0 ask→ ∞ for all θ ∈R. Hence,

R0

(
eθ
)n−1

∑
k=0

gk

(
eθ
)
= O(θ )−→ 0, as θ → 0.

It follows from here that the error term in (87)

ρ (2)
n (θ )−→ 0, as θ → 0. (90)

Considering together (81), (87) and (88) and, after some computation, taking into account a continuity property ofF̂ ′′(s),
we obtain (82).

The Lemma is proved.

With the help of the above established lemmas, we state and prove now the analogue of Law of Large Numbers and the
Central Limit Theorem forSn.

Theorem 16.Let β < 1 andα < ∞. Then

lim
n→∞

P

{
Sn

n
< u

}
=





0, if u < 1+ γ,

1, if u ≥ 1+ γ,

whereγ = (α −1)
/
(1−β ).

Proof.Denotingψn(θ ) be the Laplace transform of distribution ofSn
/

n it follows from formula (71) thatψn(θ ) = Tn (θn),
whereθn = exp

{
−θ
/

n
}

. The theorem statement is equivalent to that for any fixedθ ∈R+

ψn(θ )−→ e−θ(1+γ)
, as n→ ∞. (91)

From Lemma 10 follows

lnψn(θ )∼−
(

1− u(θn)

β

)
n+

β γ(2+ γ)
1−β

θ 3

n3

n−1

∑
k=0

uk (θn), (92)

asn→ ∞. The first addendum, owing to (80), becomes

(
1− u(θn)

β

)
n∼ (1+ γ)θ − γ

1+β (1+ γ)
1−β

θ 2

n
. (93)

And the second one, as it is easy to see, has a decrease order ofO
(
1
/

n3
)
. Therefore from (90) and (91) follows (89). The

Theorem is proved.

We note that in view of the relation (91), it can be estimated the rate of convergence ofSn
/

n−→ (1+ γ) asn→ ∞.

Theorem 17.Let β < 1, α < ∞, andγ = (α −1)
/
(1−β ). Then

P

{
Sn−ESn√

2Ψn
< x

}
−→ Φ(x), as n→ ∞,
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where the constant

Ψ = γ
1+β (1+ γ)

1−β

andΦ(x) – the standard normal distribution function.

Proof.This time letϕn(θ ) be the characteristic function of distribution of
(
Sn−ESn

)/√
2Ψn:

ϕn (θ ) := E

[
exp

iθ (Sn−ESn)√
2Ψn

]
.

According to (68) we have

lnϕn(θ )∼−(1+ γ)
iθn√
2Ψn

+ lnTn (θn) , as n→ ∞, (94)

whereθn = exp
{

iθ
/√

2Ψn
}

. Combining (71) and Lemma 10 yields

lnTn (θn)∼−
(

1− u(θn)

β

)
n+

β γ(2+ γ)
1−β

iθ 3

(2Ψn)3/2

n−1

∑
k=0

uk (θn). (95)

In turn from (80) we have

1− u(θn)

β
∼−(1+ γ)

iθ√
2Ψn

− θ 2

2n
. (96)

Using relations (93) and (94) in (92) follows

lnϕn(θ ) =−θ 2

2
+O

(
θ 3

n3/2

)
, as n→ ∞.

Hence we conclude that

ϕn(θ )−→ exp

{
−θ 2

2

}
, as n→ ∞,

and the theorem statement follows from the continuity theorem for characteristic functions.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors have contributed to all parts of the article. Allauthors read and approved the final manuscript.

References

[1] K.B.Athreya and P.E.Ney,Branching processes. Springer, New York, 1972.

[2] M.Dwass, ‘The total progeny in a branching process’.Journal in Applied Probability, 6 (1969), 682–686.

[3] T.E.Harris,Theory of Branching stochastic process. MIR, Moscow, 1966. (in Russian)

[4] T.E.Harris, ‘Some mathematical models for branching processes’.Proceedings of 2-Berkeley Symposium: Mathematical Statistics

and Probability, 1951, 305–328.

c© 2016 BISKA Bilisim Technology

www.ntmsci.com


238 A. A. Imomov: The renewed limit theorems for the discrete-time branching process and its conditioned...

[5] A.A.Imomov, ‘Limit properties of transition function of continuous-time Markov Branching Processes’.International Journal of

Stochastic Analysis, 2014(2014), http://dx.doi.org/10.1155/2014/409345, 10 pages.

[6] A.A.Imomov, ‘Limit Theorem for the Joint Distribution in the Q-processes’,Journal of Siberian Federal University: Math. and

Physics, 7(3) (2014), 289–296.

[7] A.A.Imomov, ‘On Markov analogue of Q-processes with continuous time’.Theory of Probability and Mathematical Statistics, 84

(2012), 57–64.

[8] A.A.Imomov, ‘Some asymptotical behaviors of Galton-Watson branching processes under condition of non-extinctinity of it

remote future’.Abstracts of Comm. of 8th Vilnius Conference: Probab. Theory and Math. Stat., Vilnius, Lithuania, p.118 (2002).

[9] P.Jagers,Branching Progresses with Biological applications. Great Britain: John Wiley Sons, Pitman Press, 1975.

[10] A.V.Karpenko and S.V.Nagaev, ‘Limit theorems for the total number of descendents for the Galton-Watson branchingprocesses’.

Theory of Probability and its Applications, 38 (1994), 433–455.

[11] D.P.Kennedy, ‘The Galton-Watson process conditionedon the total progeny’.Journal in Applied Probability, 12 (1975), 800–806.

[12] H.Kesten, P.Ney and F.Spitzer, ‘The Galton-Watson process with mean one and finite variance’.Theory of Probability and its

Applications, 11(4) (1966), 579–611.

[13] F.C.Klebaner, U.Rösler and S.Sagitov, ‘Transformations of Galton-Watson processes and linear fractional reproduction’.Advances

in Applied. Probability, 39 (2007), 1036–1053.

[14] V.F.Kolchin,Random mappings. Nauka, Moscow, 1984. (in Russian)

[15] J.Lamperti and P.E.Ney, ‘Conditioned branching processes and their limiting diffusions’.Theory of Probability and its

Applications, 13 (1968), 126–137.

[16] S.V.Nagaev and R.Muhamedhanova, ‘Limit phenomena in branching stochastic processes with discrete time’. In bookLimit

theorems and statistical conclusions, Editor: S.H.Sirajdinov. Tashkent, 43–89, 1966. (in Russian)

[17] A.G.Pakes, ‘Revisiting conditional limit theorems for the mortal simple branching process’.Bernoulli, 5(6) (1999), 969–998.

[18] A.G.Pakes, ‘Some limit theorems for the total progeny of a branching process’.Advances in Applied Probability, 3 (1971), 176–

192.

[19] E.Seneta, ‘Functional equations and the Galton-Watson process’.Advances in Applied Probability, 1 (1969), 1–42.

[20] R.S.Slack, ‘A branching process with mean one and possible infinite variance’.Wahrscheinlichkeitstheor. und Verv. Geb., 9(2)

(1968), 139–145.

c© 2016 BISKA Bilisim Technology


	Introduction
	Basic lemma and its differential analogue
	An ergodic behavior of transition functions { Pij (n)} and invariant measures 
	 Limiting interpretation of PiH(n + k){* }
	Classification and ergodic behavior of states of Q-processes
	 Joint distribution law of Q-process and its total state
	 Asymptotic properties of Sn  in case of < 1

