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Abstract 

This paper presents numerical solution to the pressure distribution of a fluid in a hydro-dynamically lubricated journal 

bearing using the classical Reynolds equation that models the effect of side or end leakage i.e., there is flow in the z-

direction in bearings. The finite element method was used to analyze the flow. Two dimensional interpolation functions 

were used in the modelling and discretization of the domain of analysis. The result obtained from this research shows 

that the pressure increases from the ambient pressure which is taken to be zero at an angular displacement of 0o and 

increases significantly till 135o. At this point, the pressure becomes maximum. Thereafter, it begins to drop until it gets 

to 180o where the pressure becomes the same as the ambient pressure. From this point onward, we begin to experience 

negative pressure. The negative pressures in this regard are those that are below the ambient pressure. 
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1. Introduction 

The classical Reynolds equation for one dimensional 

flow has been solved by many authors using different 

mathematical tools. In all, the problem have been 

solved with the assumption that there is no flow in the 

z-direction i.e., there is no side leakage. This 

assumption is theoretically feasible but in practice, 

there must be flow of the lubricant along the z-

direction. There is no general analytic solution to the 

classical Reynolds equation that models the effect of 

side or end leakage [1]; however, approximate 

solutions have been obtained by using electrical 

analysis, mathematical summations, relaxation 

methods and numerical and graphical methods. 

A comparative study of pressure distribution and load 

capacity of a cylindrical bore journal bearing using 

both analytical method and finite element method has 

been carried out [2]. An approximate analytical 

solution to Reynolds equation for isothermal finite 

length journal bearing by means of the regular 

perturbation method has been proposed [3]. (L/D)2 was 

used as the perturbation parameter. Benasciutti et al. 

[4] presented a numerical approach for the analysis of 

hydrodynamic radial journal bearings. The effect of 

shaft and housing elastic deformation on pressure 

distribution within oil film was investigated. Dwivedi 

et al. [5] tried to find out the effect of eccentricity ratio 

on the pressure distribution pattern by constructing the 

analytical model of infinite short bearing 

approximation and solving it with the help of 

MATLAB. Their results have good agreement against 

the works of [6] and [7]. An exact analytical solution 

to the Reynolds equation for the finite journal bearing 
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lubrication was presented by Sfyris & Chasalevris [8]. 

In their work, the Reynolds equation for the pressure 

distribution of lubricant in a journal bearing with finite 

length was solved analytically using the method of 

separation of variables in an additive and a 

multiplicative form. In their study Mane & Soni [9] 

presented a 3D model of hydrodynamic plain journal 

bearing using COMSOL Multi-physics 4.3a software. 

A finite element procedure was developed for the 

steady-state and dynamic analysis of oil-lubricated 

cylindrical journal bearing [10]. Again, Priyanka & 

Veerendra [11] analysed hydrodynamic journal 

bearings using Computational fluid dynamics (CFD) 

and fluid structure interaction (FSI) approach in order 

to find Pressure profile and temperature distribution in 

the bearing structure, satisfying the boundary 

conditions. Paras & Ashish [12] presented an 

experimental study of pressure distribution on 

hydrodynamic journal bearing with SAE 10W30 multi 

grade oil using Hydrodynamic Journal Bearing Test 

Rig (HJBTR). The results were used for experimental 

calculations and theoretical verification using 

Raimondi and Boyd charts for practical design. In their 

study, Gustafson et al. [13] derive a novel and rigorous 

correction to the classical Reynolds lubrication 

approximation for fluids with viscosity depending 

upon the pressure. Francisco [14] presents the 

development of a general discretization scheme for the 

solution of Reynolds equation with a mass-conserving 

cavitation model and its application for the numerical 

simulation of lubricated contacts to be discretized 

using irregular grids. Fu et al. [15] studied how to 

improve the lubrication in R410A rotary compressor. 

Verma & Samant [16] carried out an unsteady transient 

analysis for hydro-dynamically lubricated journal 

bearing with infinitely long approximation. Results 

comprising of Minimum lubricant film thickness, 

Dynamic pressure and load, Wall shear stress, 

Eccentricity, Temperature distribution and heat flux 

with respect to time were presented in the analysis 

graphically with the aid of ORIGION PRO 8. 

An investigation on journal bearings subjected to 

heavy load and slow speed operates in mixed 

lubrication regime causing contact between the 

interacting surfaces and resulting in wear was carried 

out by Muzakkir [17]. The complexity of wear 

behaviour and lack of unifying theory/model make 

wear control very challenging. In the work, a 

methodology was outlined for minimizing wear in 

journal bearing operating in mixed lubrication regime. 

Shinde & Nagare [18] carried out an experimental 

evaluation of performance parameters (such as 

temperature, frictional torque and coefficient of 

friction) of journal bearing operating in boundary/ 

mixed lubrication regimes. Manojkumar et al. [19] 

analysed Elasto-hydrodynamic journal bearing using 

CFD and fluid structural interactions (FSI) approach. 

Hamdavi et al. [20], carried out theoretical studies and 

approach for finite fluid film journal bearing. In the 

research, the oil film pressure, load carrying capacity 

and attitude angle for plain and grooved short bearing 

were calculated and compared. Their result shows that 

applying one groove at inlet bearing surface, there was 

a decline in the performance of finite fluid film journal 

bearings. 

Sequel to the fact that there is no general analytical 

solution to the classical Reynolds, this study was 

presented to prefer a solution to the pressure 

distribution in a journal bearing considering the effect 

of side leakage i.e., flows in the z-direction, using the 

finite element method. 

 

2. Materials and Method 

The hydrodynamic theory applied to the hydrodynamic 

lubricated bearing is mathematically explained by 

Reynolds’s Equation. The classical theory of Reynolds 

is based on several assumptions that were adopted to 

simplify the mathematical derivations. Hydrodynamic 

lubrication can be expressed mathematically in the 

form of an equation which was originally derived by 

Reynolds and is commonly known as the ‘Reynolds 

equation’. The classical Reynolds equation for one 

dimensional flow is given by the eq. 1. 
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Eq. 1 neglects side leakage, that is, flow in the z-

direction. A similar development is used when side 

leakage is not neglected. The resulting equation is: 
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Initial and boundary conditions 
The initial and boundary condition for eq. 2, 
 

  (P ,   l 2 (P ,  aPl  2  (3) 

 

where aP  is the ambient pressure. 

For symmetry reasons 
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2.1 Weak formulation for Two Dimensional 

Journal bearing 
In the development of the weak form, we need only 

consider an arbitrarily typical element. We assume that 

the domain is such an element which is rectangular and 

we develop the finite element model of eq. 2 over the 

domain. 

Multiply eq. 2 by the weighted residual and integrate 

the final equation over the domain which in this case is 

the area. The result obtained is as shown in eq. 5. 

 

AAAA
z

P
w

x

P
w

x

h

h

U
dA

z

P

z

w
dA

x

P

x

w
































  3

6
(5) 

Eq. 5 is referred to as the weak form. 

 

2.2 Finite Element Formulation 
The weak form in eq. 5 requires that the approximation 

chosen for P should be at least linear in both x and z so 

that there are no terms in eq. 5 that are identically zero. 

Since the primary variable is simply the function itself, 

the Lagrange family of interpolation functions is 

admissible. Suppose that P is approximation over a 

typical finite element domain by the expression 
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In matrix form, 
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Eq. 9 is referred to as the finite element model of the 

well-known 2D classical Reynold’s equation, where  
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A linear rectangular element is used in this problem 

and for the purpose of this research, four elements will 

be used. 
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2.3 Evaluating the elemental matrix 

The  eK  matrix  

In other for us to solve for the 
eK  matrix which is the 

bearing matrix, we substitute the rectangular 

interpolation functions in eq. 12 to 15 accordingly into 

eq. 10. The results for the first to fourth elements, are 

shown in eq. 16-19 respectively. 
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 3K   (18) 

 4K   (19) 

 

The  eF  matrix 

For the wedge
eF  matrix, we substitute eq. 12 to 15 

accordingly into eq. 11. The results for the first to 

fourth elements, are shown in eq. 20-23 respectively. 

 1F    (20) 

 2F    (21) 

2.4 Assembly of the Element Equations 

The assembly of finite element equations is based on 

two principles which can also be used for a one-

dimensional problem. These are: 

1. Continuity of primary variables 

2. Equilibrium or balance of secondary 

variables. 

Here, a quadrilateral element is used to analyse the 

domain. This quadrilateral is divided into four different 

rectangular elements as shown in the Figure 1. Let 

 4,3,2,1,1 jiK ij denote the coefficient matrix 

corresponding to the quadrilateral element. 

 

 3F    (22) 

 4F    (23) 

 

Figure 1. Four-element Mesh  

The assembled 
eK  matrix is shown in eq. 24. 

 















































3

33

3

34

3

32

3

31

3

43

3

44

4

33

4

34

3

42

3

41

4

32

4

31

4

43

4

44

4

42

4

41

3

23

3

24

3

22

2

33

3

21

1

43

2

32

2

31

3

13

3

14

4

23

4

24

3

12

2

43

4

22

3

11

2

44

1

33

4

21

1

34

2

42

1

41

1

32

1

31

4

13

4

14

4

12

1

43

4

11

1

44

2

42

1

41

2

23

2

24

2

22

2

21

2

13

2

14

1

23

1

24

2

12

2

11

1

22

1

21

1

13

1

14

1

12

1

11

00000

000

00000

000

000

00000

000

00000

KKKK

KKKKKKKK

KKKK

KKKKKKKK

KKKKKKKKKKKKKKKK

KKKKKKKK

KKKK

KKKKKKKK

KKKK

K e
(24) 

7 X

48 Z

Z

48 X


X

24 Z

Z

48 X


Z

24 X

X

24 Z


7 X

48 Z


Z

24 X


X

24 Z

Z

48 X


X

48 Z

Z

48 X


X

48 Z


Z

24 X


Z

24 X

X

24 Z


Z

24 X

X

24 Z


X

48 Z


Z

24 X


X

48 Z

7 Z

48 X


X

24 Z

7 Z

48 X


7 X

48 Z


Z

24 X


Z

24 X

X

24 Z


X

24 Z

7 Z

48 X


7 X

48 Z

7 Z

48 X


























X

48 Z

Z

48 X


X

24 Z

Z

48 X


Z

24 X

X

24 Z


X

48 Z


Z

24 X


X

24 Z

Z

48 X


7 X

48 Z

Z

48 X


7 X

48 Z


Z

24 X


Z

24 X

X

24 Z


Z

24 X

X

24 Z


7 X

48 Z


Z

24 X


7 X

48 Z

7 Z

48 X


X

24 Z

7 Z

48 X


X

48 Z


Z

24 X


Z

24 X

X

24 Z


X

24 Z

7 Z

48 X


X

48 Z

7 Z

48 X


























9 X Z

64

3 X Z

64

X Z

64

3 X Z

64

























3 X Z

64

9 X Z

64

3 X Z

64

X Z

64

























3 X Z

64

X Z

64

3 X Z

64

9 X Z

64

























X Z

64

3 X Z

64

9 X Z

64

3 X Z

64



























 

 

 

 

Erhunmwun, I.D. and Akpobi, J.A. / The International Journal of Materials and Engineering Technology 002 (2019) 08-15 

 

12 
 

The assembled matrix is derived by substituting the results from the matrix in eq. 16 to 19 into eq. 24. The assembled 

bearing matrix is shown in eq. 25.
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Z

X
X

Z

Z

X

X

Z

Z

X

X

Z

Z

X

X

Z

Z

X
X

Z

Z

X

X

Z

Z

X

X

Z

Z

X

X

Z

Z

X

X

Z

Z

X

X

Z

Z

X
X

Z

Z

X

X

Z

Z

X

X

Z

Z

X

X

Z

Z

X

X

Z

Z

X

X

Z

Z

X

X

Z

Z

X

X

Z

Z

X

X

Z

Z

X
X

Z

Z

X

X

Z

Z

X

X

Z

Z

X

X

Z

Z

X

X

Z

Z

X

X

Z

Z

X
X

Z

Z

X

X

Z

Z

X

X

Z

Z

X

X

Z

Z

X
X

Z

Z

X

X

Z

Z

X

X

Z

Z

X

X

Z

Z

X

X

Z

Z

X
X

Z

Z

X

X

Z

Z

X

X

Z

Z

X

X

Z

Z

X

K

48

7

48

7

48

7

48

2
0

48

2

48

7

48

2

48

2
0000

48

7

48

2

48

14

48

2

48

2

48

2

48

2

48

2

48

4

48

2

48

2

48

2
000

0
48

7

48

2

48

7

48

7
0

48

2

48

2

48

2

48

7
000

48

2

48

7

48

2

48

2
0

48

2

48

14

48

2

48

4
0

48

2

48

7

48

2

48

2
0

48

2

48

2

48

4

48

2

48

2

48

2

48

2

48

4

48

4

48

4

48

2

48

4

48

2

48

2

48

4

48

2

48

2

48

2

0
48

2

48

2

48

2

48

7
0

48

2

48

4

48

2

48

14
0

48

2

48

2

48

2

48

7

000
48

2

48

7

48

2

48

2
0

48

7

48

7

48

7

48

2
0

000
48

2

48

2

48

4

48

2
0

48

7

48

2

48

14

48

2

48

7

48

2

0000
48

2

48

2

48

2

48

7
0

48

7

48

2

48

7

48

7

 

 

 

 

 

 

 

 

 

(25) 

 (25) 

The assembled  eF  matrix is shown as follows, 

 

 





















































3

3

3

4

4

3

4

4

3

2

2

3

4

2

3

1

2

4

1

3

4

1

1

4

2

2

2

1

1

2

1

1

F

FF

F

FF

FFFF

FF

F

FF

F

F e

     (26) 

             

  

 





































































































9

6

9

6

4

6

9

6

9

64

64

9
64

6
64

9
64

6
64

4
64

6
64

9
64

6
64

9

XZ

XZ

XZ

XZ

XZ

XZ

XZ

XZ

XZ

XZ

F

 
 

 

 

 

 

 

(27) 

 

Finally, substituting eqs. 25 and 27 into eq. 9, we have: 

Substituting the values from eq. 20 to 23 accordingly into eq. 26, the resulting matrix is shown thus: 
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


























































































































































9

6

9

6

4

6

9

6

9

64

6

48

7

48

7

48

7

48

2
0

48

2

48

7

48

2

48

2
0000

48

7

48

2

48

14

48

2

48

2

48

2

48

2

48

2

48

4

48

2

48

2

48

2
000

0
48

7

48

2

48

7

48

7
0

48

2

48

2

48

2

48

7
000

48

2

48

7

48

2

48

2
0

48

2

48

14

48

2

48

4
0

48

2

48

7

48

2

48

2
0

48

2

48

2

48

4

48

2

48

2

48

2

48

2

48

4

48

4

48

4

48

2

48

4

48

2

48

2

48

4

48

2

48

2

48

2

0
48

2

48

2

48

2

48

7
0

48

2

48

4

48

2

48

14
0

48

2

48

2

48

2

48

7

000
48

2

48

7

48

2

48

2
0

48

7

48

7

48

7

48

2
0

000
48

2

48

2

48

4

48

2
0

48

7

48

2

48

14

48

2

48

7

48

2

0000
48

2

48

2

48

2

48

7
0

48

7

48

2

48

7

48

7

3

9

8

7

6

5

4

3

2

1

XZ

x

h

h

U

P

P

P

P

P

P

P

P

P

X

Z

Z

X

X

Z

Z

X

X

Z

Z

X

X

Z

Z

X
X

Z

Z

X

X

Z

Z

X

X

Z

Z

X

X

Z

Z

X

X

Z

Z

X

X

Z

Z

X
X

Z

Z

X

X

Z

Z

X

X

Z

Z

X

X

Z

Z

X
X

Z

Z

X

X

Z

Z

X

X

Z

Z

X

X

Z

Z

X

X

Z

Z

X

X

Z

Z

X
X

Z

Z

X

X

Z

Z

X

X

Z

Z

X

X

Z

Z

X

X

Z

Z

X

X

Z

Z

X

X

Z

Z

X

X

Z

Z

X

X

Z

Z

X
X

Z

Z

X

X

Z

Z

X

X

Z

Z

X

X

Z

Z

X

X

Z

Z

X

X

Z

Z

X
X

Z

Z

X

X

Z

Z

X

X

Z

Z

X

X

Z

Z

X
X

Z

Z

X

X

Z

Z

X

X

Z

Z

X

X

Z

Z

X

X

Z

Z

X
X

Z

Z

X

X

Z

Z

X

X

Z

Z

X

X

Z

Z

X



 

 

 

 

 

 

 

 

 

(28) 

But DX  ,
2

L
Z  , rU  , 

  cos1 ch  and  sinc
x

h





 (29) 

Substituting the parameters in eq. 28 and the boundary 

and initial conditions, we have: 

  






























































6

4

6

cos1256

sin3

48

2

48

14

48

2

48

4
0

48

2

48

4

48

4

48

4

48

2

48

4

0
48

2

48

4

48

2

48

14

32

6

5

4





c

rL

P

P

P

X

Z

Z

X

X

Z

Z

X
X

Z

Z

X

X

Z

Z

X

X

Z

Z

X
X

Z

Z

X

X

Z

Z

X

   (30) 

3. Results and Discussion 

The parameters used in this research are given below 

[21]: 

 

µ=6.8Pa.s, ω=600rpm, c=0.000052m, ε=0.315, 

L=0.05m, D=0.1m 

 

The results obtained as represented in the radar graph 

in Figure 2 shows the variation of pressure with 

angular displacements for a 2D journal bearing in 

which the effect of side leakage is considered. The 

nodal values are the pressures at those points on the 

bearing. The Newmann and the Dirichlet boundary 

conditions were used in the course of this research. The 

length to diameter ratio was 0.5. The result obtained 

from this research shows that the pressure increases 

from the ambient pressure which is taken to be zero at 

an angular displacement of 0o and increases 

significantly till 135o. At this point, the pressure 

becomes maximum. Thereafter, it begins to drop until 

it gets to180o where the pressure becomes the same as 

the ambient pressure. From this point onward, we 

begin to experience negative pressure.  

The negative pressures in this regard are those that are 

below the ambient pressure. At this point, cavity 

begins to set in. This pressure increases in the negative 

direction till 225o and back again to the ambient 

pressure at 360o. Then, another cycle begins between 

360 and 720 and so on. 
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Figure 2. Graph of Pressure against angular 

displacement for 2D Journal Bearing 

 

For an infinitely short journal bearing where the effect 

of side leakage was not considered, using the same 

parameters, the bearing pressure becomes maximum 

at145.3737o and minimum at 210.6262o. This 

difference in the position of the maximum and 

minimum pressure between the infinitely short journal 

bearing and the 2D journal bearing was as a result of 

the effect of the side leakage that was considered in the 

2D journal bearing. For the maximum pressure, the 

experimental value obtained by [21] was 2.62Mpa and 

the predicted value from Raimondi and Boyd chart was 

2.93Mpa. The inlet pressure, at the groove was 

maintained at 0.3MPa to ensure the continuity of oil 

supply. From this research, the maximum pressure 

obtained in the bearing was 2.80MPa. The result 

obtained shows a strong positive correlation between 

the experimental result and the result from the 

Raimondi and Boyd chart. 

 

4. Conclusion 

In this research, we have formulated the finite element 

based models for the classical Reynolds equation for 

the two dimensional Reynolds equation where the 

effect of end leakage is considered. The finite element 

method was used to successfully analyze the variation 

of pressure with the angular displacement of a 

lubricant in a journal bearing putting into consideration 

the effect of side leakage i.e., flow in the z-direction. 

The result obtained shows that the finite element 

method is an efficient and accurate method. 
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