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Abstract: In this paper, a new collocation method based on Euler paohyals is improved for the numerical solution of generalized
pantograph equations. This method transforms the gemedatiantograph equations into the matrix equation with t#ip of Euler
polynomials and collocation points. This matrix equationresponds to a system of linear algebraic equations wéthutknown Euler
coefficients. By solving this system, the unknown Euler fioieits of the solution are found. Some numerical exampiegiaen and
comparisons with other methods are made in order to denadadtre applicability and validity of the proposed method.
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1 Introduction

The pantograph equations are one of the important classilayf differential equations, which arise in many scientifi
models such as population studies, controls of mechanyséims, medical biology, electrodynamics and dynamical
systems etc., and they also arise in modeling of variousgrhena in science and engineeriig 3]. These equations
have been investigated by many authors and both analytidahamerical methods have been developed, some of which
are Runge-Kutta and modified Runge-Kutta methdgs][ differential transform methodd], Taylor collocation method

[7], variational iteration method8[9], homotopy perturbation method (], e-Approximate polynomial methodL[l],
shifted Chebyshev polynomial approximatidre] and various collocation method$3,14,15,16,17,18,19].

The main idea of the collocation method is to seek the unkremution function in the form of a linear combination of
some basis functions with unknown coefficients. Here, basistions can be preferred as orthogonal polynomials
according to their particular properties, which make thexpeeially ideal for a problem under consideration. In récen
years, the various collocation methods have been studieddny authors to obtain solutions of problems arising in
different fields of science and engineeringl2,13,14,15,16,17,18,19,20,21,22,23,24,25,26].

In this paper, a new collocation method based on Euler pohyals is proposed to solve the following generalized
pantograph equation numerically
J n-1 ‘
y(t) = Zoz’pjk(t)y( J(Ajt + i) +9(t), t >0 1)
j=0k=
with the initial conditions _
y(l)(O):CI, |:0,1,2,,n71 (2)

wherepj(t) andg(t) are given analytical functions, aigy, Ujx, G are appropriate constants.
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2 Euler polynomialsand their some properties

Euler polynomials and numbers, introduced by Euler in 1T1¥@¢ special properties and applications in different ield
of mathematics like analysis, number theory, differeng@metry and algebraic topology. The various propertigs an
relationships involving these polynomials found in manypk& The explicit form of well-known Euler polynomials of

n-th degree is defined as
M\ Ec/. 1\"K
En(t) = <>—<t——) ,neN 3)
" k; k) 2k\" 2

whereEy are Euler numbers. The Euler polynomials have the followdmgwn relation fom € N+

The first Euler polynomial i€p(t) = 1, and the next four are as follows

Ei(t) =t— %,Ez(t) =12 —t,E3(t) =t3— gt2+ %,E4(t) =t 23+t
If Euler polynomial is presented as a vector in the f&(h) = [Eg(t) Ea(t) --- En(t)], then the derivative of thE(t),
using @), can be denoted in the matrix form by
T
[E'(t)] =ME®)" )

where
E(t) = [Eo(t) Ex(t) --- En-1(t) En(t)],

E/(t) = [E'o(t) Ell(t) E/Nfl(t) E'N(t)],

[00--- 0 00
10--- 0 00
02 0 00

00 (N=1) 00
00--- 0 NO

(N+1)x (N+1)

Accordingly, the kth derivative with respecttef E(t) can be obtained by

=E(t)(M")7, (6)

EN() =ECY ) (MT

where M is the Euler operational matrix of derivative.

3 Euler collocation method (ECM)

First, we suppose that the solution of ti¢ i6 expressed in the form

N
y(t) = ;a,- Ej(t), (7

J
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whereN is any chosen positive integey,are unknown Euler coefficients, aig(t) are the Euler polynomials. Then, the
approximate solutiog(t) given by (7) can be written in matrix form as:

y(t) =E(t)A (8)
where the Euler vectdg(t) and the Euler coefficient vectdrare given by

E(t)=[Eo(t) Ei(t) --- En(t)]

Al=lag & - a] 9)

respectively. With the help obj, thekth derivative ofy(t) can be expressed in the matrix form by

w () =EX A (10)

() =E@®) (M)A (11)
By substituting 8) and (1) into (1), we get
J n-1
Et)(MT)"A= 32 PIk®EM it + 1) (MT) A+ g(t) (12)

where
E(Ajt + Hjk) = [Eo(Ajt + Hjk) Ex(Ajt + Hjk) -+ En(Ajt + Hji) ] -

To obtain the unknown Euler coefficients, the collocatiomfst; =i/N,i =0,1,2,...,N are putinto {2) and the systems
of the matrix equations are obtained as

J n-1

Et)(MT)"A= gbk; Pik(ti)E(Ajti +ij)(MT)kA+ g(ti). (13)

This system can be rescripted as follows

J n-1
{E(MT)”— Z)kzopjkéjk(MT)k}Aze (14)
J=0k=

where

Eo(tn) Ea(tn) -+ En(tn)
Eo(Ajkto + Mjk) E1(Ajkto+ Mjk) - En(Ajkto + Mjk)
: Eo(Ajkts + Mjk) Ex(Ajkts+ Mjk) - En(Ajts + Mijk)
ij = . . _ .

Eo(Ajktn + Hjk) Ex(Ajktn + Hik) -+ En(Ajkin + Hijk)
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Pik(to) Pjk(to) --- Pjk(to) g(to)
Pi(t1) Pik(ty) --- pik(t glt
P Jk.( 1) Jk.( 1) | Jk.( 1) o (.1)
Pik(tn) Pjk(tn) -+ Pjk(tn) g(tn)
Briefly, (14) can be written in the form
WA =G or W;G] (15)

where

W = {E(MT)" - Ji):z:ijEJk(MT)k}

Thus, @) is transformed into matrix equation which corresponds gystem of (N+1) linear algebraic equations with
unknown Euler coefficients which can be written in followiaiggmented matrix form

Woo Wo1 -+ Won :9(to)

WG] = W:10 W:11 W:lN Eg(:[l) - (16)

Vo Wait -+ Wy ?g(t.N)
Next, using {) and (L0) att = 0, initial conditions given inZ) can be written in the form of matrix representation as
E(O)(M)'A=[c], i=0,1,2,...,n—1. (17)
Thus, the matrix form of2) is:
UA=][c] or [U;;c], i=0,1,2,...,.N—1 (18)

where

Ui=EO) (M) =[uo Ua ... Uin],i=0,1,2,.,n—1.

Finally, by replacing the last n rows of the augmented md8 by the row matrices18), we reduce the generalized
pantograph equatiori) under conditionsZ) to the following linear system of algebraic equations

WA=G (29)
where _ 3
Wo1  Wo2 won ; O(to)
Wio W11 WIN

W — W(N=i)0 W(N=i)1 """ W(N-)N (20)
Uoo Uo1 UNn 5 ©Co
Uio U11 un ; C
LUn-10 Un-1)1 - Un-1)N 7 Cn-1 |

If rankW = rank [W : é] = N+ 1, the linear systeml@) has a unique solution and the matAxwhich is represented

Euler coefficients, is determined By— (W) ~'G. On the other hand, if d&i/) = 0 andrankW = rank [W : ] < N+1,
then we may obtain the particular solutions. OtherwisegiikW = rank [W : G] , then there is no solution.

4 Numerical examples

In this section, some examples are given to illustrate tipdicability, effectiveness, and accuracy of ECM.

(© 2016 BISKA Bilisim Technology
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Example 1. Firstly, let us consider the following pantograph equafibf 17]
{Y’(t) = YO +y(5) —t*+2t €01

y(0) =Yy(0) =0,

(21)

In this problem poo(t) = 3/4, p1o(t) = 1 andg(t) = —t?+4 2. By applying ECM withN = 3, we may write the approximate

solution in the form .

ya(t) = ajEj(t) (22)
3 J; iEj

where poo(t) = 32, pio(t) = 1, g(t) = —t2 + 2. The collocation points for N=3 is calculated as
{to=0,t; =1/3,t = 2/3,t3 = 1}.From (14), the fundamental matrix equation &fl) is written as

{E(MT)2 — PooBoo— PloElo} A=G (23)
where
34 0 0 0 100
_|034 0 of , 0100
Po=1 9 o 34 0| |oo1o0
0 0 0 34 0001
1-1/2 0  1/4
£_|1-1/6 —2/9 13/108
1 1/6 —2/9 —13/108
112 0 -1/4
1-1/2 0  1/4 T
£ _|1-1/3 -5/36 23108
10711 -1/6 —2/9 13/108
1 0 -1/4 0

Hence the augmented matrix f&1) is computed as

~7/4 7/8 2 -55/16 ; 2

‘ol | ~7/4 11/24 8336 —563/432 ; 17/9
WiCl=1_7/4 124 4318 419432 : 149
~7/4 —3/8 9/4 5116 ; 1

By using (L8), the fundamental matrix forms of initial conditions arenqauted as

O

[Ul;Cl]Z[O 1 -1 0]

Therefore, from20), the new augmented matrix based on the conditions can laéebtas follows

~7/4 7/8 2 -55/16 ; 2

WG] = —7/4 11/24 83/36 —563/432 ; 17/9
' 1 -1/2 0 Y4 ;0
o 1 -1 0 ;0
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Solving this system, the unknown Euler coefficients vecdound as follows.
1 T
A=z 110 .
AR

By substituting the determined Euler coefficients irt@)( the solution of 21) for N=3 is obtaineds(t) = t? which is the
exact solution.

Example 2. Now, let us consider the third order pantograph equafiod, 15,17].

{ Y (t) = —y(t) + pa(t)y(0.5t) + p2(t)y(0.25)
(24)

y(0) =1,

wherep (t) = —e %% sin(0.5t), px(t) = —2e %73 cog0.5t) sin(0.25t). The exact solution of24) is y(t) = e~ codt. In
this problem,poo(t) = —1, p1o(t) = p1(t), p2o(t) = p(t) andg(t) = 0. From (4), the fundamental matrix equation of
(24) is written as

{EMT — PooEgo — ProE10— PaoE2o} A= G. (25)

By applying the ECM for different values of N=3, N=5 and N=% wbtain the approximate solutions. Fig.1 shows the
absolute error functionsy(t) = |y(t) — yn(t)| . Also, in Table 1, the absolute error functions at the deieenhpoints of
the given interval are compared with other methods.

0.7 T T T

0.6

0.5

0.4

0.3F

absolute error

0.2

0.1

Fig. 1: The absolute error functiore (t) for N=3, N=5 and N=9.

Example 3. Let us consider the following pantograph equatiichl 6,17,18].

y'(t) = —y(t) —y({t—0.3)+e 03 tc[0,1]
{ (26)

y(0)=1,y(0)=-1y'(0)=1
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Table 1: Comparison of the absolute errors corresponding to diftereethods forZ4).

ECM
N=9

Ref.[7]
for N=9

Ref.[g]

for N=10

Ref[15 Ref.[L7]

for N=9

0.2
0.4
0.6
0.8
1.0

8.80e-11
7.89e-11
541e-11
8.55e-11
2.23e-09

1.30e-9
1.43e-7
2.06e-6
1.21e-5
4.00e-5

5.65e-9
2.95e-7
2.72e-6
1.24e-5
3.80e-5

5.03e-11
3.98e-11
2.28e-11
1.23e-11
2.25e-09

1.21e-11
9.68e-12
7.19e-12
6.82e-12
5.62e-10

with the exact solutiog(t) = e~t.In this problempgo(t) = —1,p10(t) = —1,9(t) = e %3, By using (4), the fundamental
matrix equation of26) is written as

0.5

{E(MT)3 — PooBoo— PlOElO}A =G

The approximate solution oR6) is obtained for N = 3,5 and 9. Fig.2 shows the absolute etnactfonsEy (t) for N =3,
N=5, and N=9. Table 2 gives the comparison of the absolute®abtained by ECM and other methods for N=8.

0.45

0.4

0.35

0.3

0.25

absolute error

0.2

0.15

0.14

0.05

Fig. 2: The absolute error functiori&y (t) for N=3, N=5 and N=9.

(27)

Table 2: Comparison of the absolute errors corresponding to difteresthods forZ6).

. ECM Ref[lf Ref[lf] Ref[7] Ref[
! N=8 forN=8 forN=8 forN=8 for N=8

0.2 6.07e-11 6.20e-9 3.70e-7 1.00e-10 5.11le-11

0.4 3.06e-10 5.76e-8 2.38e-6 4.00e-10 2.50e-10

0.6 7.38e-10 1.79e-7 5.97e-6 7.00e-10 2.50e-10

0.8 9.81e-10 3.73e-7 3.48e-5 8.00e-10 7.11e-10

1.0 2.62e-08 6.36e-7 2.03e-4 2.69e-08 2.68e-08
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Example 4. Finaly, let us consider the pantograph equation with végiabefficients.
y'®) =ty(5 -1ty (5+1) - y(0)
_t (e*%”qte*%*l), 0<t<3 (28)

with the exact solutiory(t) = e~t. Here,poo(t) = —1, p11(t) = —t, paa(t) =t andg(t) = —t (e*%“jte*%*l). From
(14), the fundamental matrix equation of tH&gj is

{F’ooE(MT)3 — PooEoo — PuiEiiM T —Pzzézz(MT)z} A=G (29)

wherepoo(t) = —1,p11(t) = —t,p2a(t) =t,9(t) = —t (e*§+1+ e*%*l). By following the present method, we obtain the
approximate solutions o2@) for N = 3,5 and 9. Fig.3 shows the comparison of the absolute éunctions for various
values of N.

25 T T T T T

15F

absolute error

0.5

Fig. 3: The absolute error functiori&y (t) for N=3, N=5 and N=9.

5 Conclusion

In this paper, an efficient algorithm, which is named Euldiomation method (ECM), was developed for solving the
generalized pantograph equations numerically. This nekthas illustrated by solving the generalized pantograph
equations accurately. By using ECM, these equations warsfiormed to a linear system of algebraic equations that
could be solved easily.

Consequently, the obtained results show that this apprcachsolve the generalized pantograph equations effegtivel
and this method is consistent with the existing results éliterature. The validity and accuracy of this method iselas
on the assumption that it converges as the number of coltocabints increases. We conclude that the ECM can be
considered as an accurate and reliable method for the dieeerpantograph equations.

(© 2016 BISKA Bilisim Technology
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