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Abstract: Locally and globally M-projectively g-symmetric (¢)-Kenmotsu manifolds are studied. We show that a globally
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1 Introduction

In 1969, Takahashif] introduced almost contact manifolds equipped with asgedi indefinite metrics. He studied
Sasakian manifolds equipped with an associated indefirgteien These indefinite almost contact metric manifolds and
indefinite Sasakian manifolds are also called(agalmost contact metric manifolds an@)-Sasakian manifolds,
respectively 1,7]. The concept of(¢)-Sasakian manifolds was introduced by Bejancu and Dugfahid further
investigation was taken up by Xufeng and Xiadlv7] and Rakesh Kumar et a®]. The index of a metric plays significant
roles in differential geometry on it generates variety aftee fields such as space-like, time-like, and light-likédée In
1972, Kenmotsug] introduced a new class of almost contact manifolds whigh reow a days called as Kenmotsu
manifolds. As our natural trend to study various types oftaonmanifolds with indefinite metric, De and Sarl&r[
introduced the concept ¢€)-Kenmotsu manifolds with indefinite metric and studied somteresting properties.

In 1971, Pokhariyal and Mishrd q] defined a tensor fiel on a Riemannian manifold as

M(X,Y)Z =R(X,Y)Z - [S(Y,Z)X — S(X,Z)Y +9(Y,Z)QX — g(X,Z)QY]. 1)

2(n—1)
Such atensor fiel is known asM-projective curvature tensor. 14(, 11], Ojha studied some propertiesifprojective
curvature tensor in Sasakian manifolds and Kahler marsféie has also shown that it bridges the gap between conformal
curvature tensor, conharmonic curvature tensor and acanaircurvature tensor on one side atigprojective curvature
tensor on the other. From), we obtain

(OwM)(X,Y)Z = (OwR)(X,Y)Z -

21y (WS (Y.2X — (DS (X.2)Y+6¥.2)EwQ) (X) g% 2)(BwWQ)Y))- (2
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The notion of local symmetry of Riemannian manifolds haverbseakened by many authors in several ways to a different
extent. As a weaker version of local symmetry, Takahah8jiihtroduced the notion of locallyp-symmetry on Sasakian
manifolds. According to Takahashi, a Riemannian manifslskiid to be locallyp-symmetric if it satisfies the condition

whereX,Y,Z andW are horizontal vector fields which means that it is horizbwith respect to the connection form

of the local fibering; namely, a horizontal vector is nothing a vector which is orthogonal & In (3), if X, Y, Z andW

are not horizontal then we call the manifold is globafhsymmetric. In the context of contact Geometry the notion of
@-symmetry was introduced and studied by Boeckx, Buecken\@amthecke 8] with several examples. Ir2], Blair,
Koufogiorgos and Sharma studied localgsymmetric contact metric manifolds. The concept @symmetry to
Kenmotsu manifolds were studied id][ Later in [5], De, Ozgur and Mondal studied both locally and globally
@-quasiconformally symmetric Sasakian manifolds.

In this paper, we define localll-projectively g-symmetric and globallyM-projectively g-symmetric(&)-Kenmotsu
manifolds. An(g)-Kenmotsu manifold is calledlocally M — projectivelyg — symmetridf the condition

¢*((CwM)(X.Y)Z) =0 (4)

holds onM, whereX, Y, Z andW are horizontal vectors. IX, Y, Z andW are arbitrary vectors then the manifold is
calledglobally M — projectivelyp — symmetric

The rest of the paper unfold as follows: Section 2 contairsichdefinitions of(¢)-Kenmotsu manifolds; Section 3 is
devoted to the study of globally-symmetric (¢)-Kenmotsu manifolds; In this section we see that a globally
@-symmetric(g)-Kenmotsu manifold is an indefinite space form. Section 4jmwestigate the necessary and sufficient
condition for a 3-dimensiondle)-Kenmotsu manifold to be locallp-symmetric; Section 5, provides some results on
globally M-projectively g-symmetric (¢)-Kenmotsu manifolds; In section 6 we investigate that if (@jKenmotsu
manifold is globallyM-projectively@-symmetric, then the manifold is an Einstein manifold. ldli&idn, it is show that a
globally M-projectively ¢-symmetric(€)-Kenmotsu manifold is globallyp-symmetric and hence is an indefinite space
form; and finally section 7 provides two examples of a 3-disiemallocallyM-projectively g-symmetric(g)-Kenmotsu
manifolds. Our results extend those obtainh &nd [13] for the case of Sasakian manifolds af&]-para 3-Sasakian
manifolds.

2 (¢)-Kenmotsu manifolds

Let M be ann-dimensional differential manifold endowed with an almeshtact structurég,n, &), whereg is a tensor
field of type(1,1), n is a 1-form anc is a vector field orM satisfying

X =-X+n(X)& nE)=1 vXex(M). (5)

It follows that
n(exX)=0; @(&)=0; rankp=n—1, (6)

thenM is called an almost contact manifold. If there exists a sRiemannian metrig satisfying

g(@X, 9Y) =g(X,Y) —en(X)n(Y) VXY € x(M), ()
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with € = 41 then(e,n,&,q) is called an(e)-almost contact metric structure aMi is known an(e)-almost contact
manifold. For an(e)-almost contact manifold we also have

n(X) =eg(X,&), vXexM) (8)
€=9(¢, &) (9)

Hencef is never a light like vector field oM. Heree is 1 or—1 according ag is space like or time like vector field on
M, and according to the casual characteg pfve have two classes ¢£)-Kenmotsu manifolds. Whea= —1 and the
index ofg is an odd numbery = 2s+ 1), thenM is time-like Kenmotsu manifold ani is a space-like Kenmotsu
manifold whens = —1 andvu = 2s. Fore = 1 andu = 0, we obtain usual Kenmotsu manifold and & 1 andu =1,
M is a Lorentz-Kenmotsu manifold.

If dn(X,Y) =g(X,@Y) for every X,Y € x(M), thenM is said to have¢)-contact metric structurép,&,n,g). An
(g)-almost contact metric structute, n,&,g) is (¢)-Kenmotsu if and only if

(Ox@)Y = —g(X,9Y)& —en(Y)pX, VXY € x(X) (10)
wherel] denotes the Levi-Civita connection with respecgt@lso one has
Ox& = e(X=n(X)§) VX e x(X). (11)

Then for an(e)-Kenmotsu manifold, we have following relatioBk[

(Oxm)(Y) =g(X,Y) —en(X)n(Y), (12)
R(X,Y)& =n(X)Y —n(Y), (13)
S(X,§) == (n=1)n(X). (14)

If an (¢)-Kenmotsu manifold is a space of constant curvature tharaihiindefinite space form.

3 Globally g-symmetric (&)-Kenmotsu manifolds

Let us suppose that d@)-Kenmotsu manifold is globallp-symmetric. Then by virtue o] and @) we have
—(OWwR)(X,Y)Z+ n((OwR)(X,Y)Z)é =0. (15)

This implies
—(OwWR)(X,Y)Z + e9((OWR)(X,Y)Z,&)¢ = 0. (16)

Next, by using the property of curvature tensor we have
g((OwR)(X,Y)Z, &) = g(OwR(X,Y)Z, &) + g(R(X,Y)&,0wZ) + 9(R(OWX,Y)E,Z) + g(R(X, OwY)E,Z2).  (17)
Sincell is a metric connection, it follows that

9(OwR(X,Y)Z,&) = g(R(X,Y)Owé,Z) — Owa(R(X,Y)&,2) (18)
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and
Owa(R(X,Y)¢&,Z) = g(DwR(X,Y)¢&,Z) + g(R(X,Y)&, DwZ). (19)

From (18) and (19), we have
9(OwR(X,Y)Z, &) = —g(OwR(X,Y)&,Z) —g(R(X,Y)&, OwZ) + g(R(X,Y)Owé, Z). (20)

Using @0) in (17), we get
9(OwR)(X,Y)Z,&) = —g((BwR)(X,Y)&, Z). (21)

Using 1), we obtain from 16) that
(OwR)(X,Y)Z = —g((BwR)(X,Y)&,Z)¢. (22)
Using (L1) and (L3), we have
(OWR)(X,Y)& = g(X, W)Y —g(Y,W)X — eR(X,Y)W. (23)
By taking account ofZ3) in (22), one can get
(OwR)(X,Y)Z = {&(g(Y,W)g(X,Z) —g(X,W)g(Y,Z)) + 9(R(X,Y)W,Z) } . (24)
Again, if (24) holds, then21) and @3) implies that the manifold is globallyg-symmetric. Thus we can state the following.

Theorem 1. An (¢)-Kenmotsu manifold is globallg-symmetric if and only if the relatior24) holds for any vector fields
X,Y,Z, W tangent to M.

Next, puttingZ = & in (22) and using 21) we have
(BwR)(X,Y)§ =0, (25)
for any vector fields X, Y, W on M. From26) and @3) it follows that
ROX, Y)W = —g{g(Y,W)X — g(X,W)Y}.
Thus the manifold is of constant curvature. This leads ubéddllowing.

Theorem 2. A globally g-symmetriq €)-Kenmotsu manifold is an indefinite space form.

4 3-dimensional locally ¢g-symmetric (&)-Kenmotsu manifolds
Itis known that in a 3-dimensional Riemannian manifold

R(X,Y)Z=9(Y,Z2)QX—g(X,2)QY+ S(Y,Z)X — S(X,2Z2)Y + %[g(X, 2)Y —g(Y,2)X] (26)
whereQ is the Ricci operator andis the scalar curvature of the manifold. If we puttidg- ¢ in (26) and use 13) we get

(5+€) (NONX=n(X)Y) = (V)X —N(X)QY (27)
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By puttingY = € in (27) and using {4) for n = 3, we obtain

X = (%+£)X7(%+3£)U(X)E, 28)

that is, . ;
SX,Y) = (5+¢) 906.Y) — (5 +3¢) en()n(Y). (29)
Thus from ¢8) and 9) in (26), we obtain

RX,Y)Z = (5 +2¢) [9(Y,2)X ~g(X. 2)¥] + (5 +3¢) [90X. 2)n (V)& — 9V, Z)N(X)E +en(X)n2)Y —en(¥V)n(Z)X].  (30)

By taking the covariant differentiation 0BQ) we have

(OWR)(X,Y)Z :drgN)

o0y 2)x —gx.2)v] + T

[9(X,2)n(Y)& —a(Y,Z)n(X)¢
+en(X)n@)Y —en(V)n@)X]+ (5 +3¢) [0X.2)(Own) (V)€ +9(X.Z)n(Y)0wE  (3D)

—9(Y,Z2)(Own)(X)& —g(Y,Z)n(X)Ow& + &(Own)(X)n(Z)Y + &(Own ) (Z)n (X)Y
—&(0wn)(Y)n(2)X —e(Bwn)(2)n(Y)X].

Now assumé,Y andZ are horizontal vector fields. So equati@i(becomes

(OWR)(X,Y)Z =

A 100v, 2%~ g% 2)Y] + (5 +3¢) [00X,2) (G (V)€ ~ 0. 2) (Cwm) 8], (32)

Applying ¢? on both sides of above equation, we get

dr(w)
2

P(DWR)(X,Y)Z) = [9(Y.Z)¢*X — g(X,Z)¢?Y]. (33)

SinceX, Y andZ are horizontal vectoir fields, using)(equation 83) gives us

P((OWR)(X,Y)Z) = dr(;/V)

[—a(Y,2)X+g(X,Z)Y]. (34)

Assume that?((OwR)(X,Y)Z) = 0 for all horizontal vector fields. Then the equati@d)impliesdr(W) = 0. Hence we
conclude the following theorem.

Theorem 3. A 3-dimensional€)-Kenmotsu manifold is locallp-symmetric if and only if the scalar curvature ris constant
for all horizontal vector fields.

In particular, by takingZ = & in (31) we have

(OWR)(X,Y)E = (5 +3¢) [en(X)(Own) (V)& +en(X)n(Y)Dw& — en(¥) (Cwm)(X)& —n(¥V)n(X)wé  (35)
+ £(0wn)(X)Y + (0w ()N (X)Y — e(Cwn) (Y)X — e(Cw) (€)1 (Y)X].

If we assumeX,Y, Z are horizontal vector fields, and usint?j in (35) we obtain

(OWR)(X,Y)& = (% n 35) £[gOX, W)Y — g(Y,W)X]. (36)
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Applying ¢? to the both sides of36) we get
P(CWRI(X.)E) = (5 +3¢) elg(X, W)gPY — g(Y, W) ¢?X]. (37)
If we takeX, Y are orthogonal td in (36) and 37) we have
@ (OwR)(X,Y)E = (OwR)(X,Y)€.

Now we can state the following:

Theorem 4. Let M be a3-dimensional €)-Kenmotsu manifold such that
¢*(OWR)(X,Y)& =0,

for all horizontal vector fields XY,W. Then M is an indefinite space form.

5 Globally M-projectively ¢g-symmetric (€)-Kenmotsu manifolds

An (g)-Kenmotsu manifoldM is said to be globally M-projectivelgp-symmetric if theM-Projective curvature tensiv
satisfies
P*((DwM)(X,Y)Z) =0, (38)

for all vector fieldsX,Y,Z,W € x(M).

Let us suppose thad is globally M-projectivelygp-symmetric. Then by virtue of38) and 6), we have
—([OwM)(X,Y)Z+n((OwM)(X,Y)Z)¢ = 0. (39)

From @) it follows that

€
2(n—1) I

= (EwS)(X,Z2)nU)n(Y) +9(Y,Z)n(CwQ)X)n(U) —9(X,Z)n ((EwQ)Y)n(U)] =0.

2(n—1)

—9(X,2)9((OwQ)Y,U)] +en((OWR)(X,Y)Z)n(U) — OwS)(Y,Z)n(X)n(U)

PuttingX =U = g, where{a},i =1,2,...,n, is an orthonormal basis of the tangent space at each painé ehanifold,
and taking summation ovérwe get

2(an 7y (BwS(Y.2)+en(DwR)(&,Y)Z)n (@) + ﬁ ol

g 9((OWQIY.2) ~ (CwSIE. 2)n(Y) - en((BuQY)n(2)] =C.

OwQ)ei, &) —en((DwQ)e)n(e)]g(Y,Z)

PuttingZ = &, we obtain

o1y (WSY.E) + En((CuR)@.Y)E)n(@) + 5™ [rW) —en(DwQ)a)n(@) + (CwS) (€. E)ln(Y) =0 (40)

(© 2016 BISKA Bilisim Technology



NTMSCI 4, No. 4, 295-305 (2016)www.ntmsci.com BISKA 301
Now
n((BwQe)n(e) =9((bwQ)ea,&)g(e, &) =9((BwQ)&,§) (41)
= —£9(QW —n(W)¢&),§) = —eS(W, &) +en(W)S(¢,¢) = 0.
n((BwR)(a,Y)&)n(e) = g((CwR)(e,Y)E,&)g(e, &) (42)
and
9((CwR)(e,Y)&,¢) = g(OwR(e,Y)&, &) —g(R(Owe;, Y)&, &) —g(R(e, DwY)E, &) —g(R(e,Y)Owé, &).
Since{e} is an orthonormal basiSxe = 0 and using 13) we find
9(R(e,OwY)§, &) = e{n(e)n(OwY) —n(e)n(BwY)} = 0. (43)
Asg(R(e,Y)&. &) +9(R(E.€)Y.e) =0, we have
9(OwR(e,Y)&, &) +g(R(e,Y)§, Owé) =0.
Using this we get
9((OwR)(&,Y)¢,¢&) =0. (44)
By the use of41)-(44), from (40) we obtain
(CWS)(Y,€) = ~dr(W)n(Y). (45)

PutY = £ in (45), we getdr(W) = 0. This impliesr is constant. So from4), we have
(OwS)(Y,&)=0.

Using (11), this implies
S(Y,W) = —g(n—1)g(Y,W).

Hence we can state the following theorem:

Theorem 5. A globally M-projectivelyp-symmetriq €)-Kenmotsu manifold is an Einstein manifold.
Next, suppose th&(X,Y) = Ag(X,Y), i.e.QX = AX. Then form () we have

M(X,Y)Z=R(X,Y)Z— ﬁ [9(Y,Z2)X —g(X,2)Y],

which gives us
(OwM)(X,Y)Z = (OwR)(X,Y)Z.

Applying ¢? on both sides of the above equation we have
@ (OWM)(X,Y)Z = @*(OwR)(X,Y)Z.

Hence we can state the following theorem:
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Theorem 6. A globally M-projectivelyp-symmetriq € )-Kenmotsu manifold is globalkg-symmetric.

Since a globallyp-symmetric(e)-Kenmotsu manifold is always a globall-projectively g-symmetric manifold, from
Theoren®B, we conclude that on af)-Kenmotsu manifold, globallp-symmetry and globalli¥-projectiveg-symmetry
are equivalent. Thus, we can state:

Corallary 1. A globally M-projectivelyp-symmetrid € )-Kenmotsu manifold is an indefinite space form.

6 3-dimensional locally M-projectively g-symmetric (&)-Kenmotsu manifolds

In a 3-dimensionale)-Kenmotsu manifold the curvature tendRrthe Ricci tensoS and the Ricci operatd® are as in
(30), (29) and @8), respectively. Now putting?@), (29) and @0) into (1) we have

M(X,Y)Z :% (% n 35) [9(Y,Z)X — g(X,2)Y] - g(r +66)[g(Y,Z)n(X)&

—9(X,2)n(Y)& +en(Y)n(Z)X —en(X)n(Z)Y]. (46)

Taking covariant differentiation ofig) we have

dr(W) 3dr(W)
4 8

(OwM)(X,Y)Z = [9(Y,2)X —g(X,2)Y] [9(Y,2)n(X)¢ —a(X,Z2)n(Y)&

+en(Y)n(2)X —en(X)n(2)Y] - g(r +6¢)[g(Y,2)(Own)(X)& +9(Y,Z)n(X)Bwé (47
—9(X,2)([Own)(Y)& —9(X,Z)n(Y)Dwé +&(0wn)(Y)n(2)X +&(Bwn)(Z)n(Y)X
—e([DwmX)n(2)Y — &(Bwn)(Z2)n (X)Y].

Now assumé,Y andZ are horizontal vector fields. So equatia@Y becomes

AW) 14v, 2)X — g(X.Z)¥] — = (r + 6)[g(Y.2) (Cwn) (X)E +9(X.Z)(Cwn)(V)E].  (48)

(OWwM)(X,Y)Z = 8

Applying ¢? on both sides of above equation, we get

dr(W)

P ((OWM)(X,Y)Z) = [9(Y.2)¢*X — g(X,Z) ¢?Y]. (49)

Since X, Y and Z are horizontal vector fields, usiiy équation 49) gives us

¢*((CWRI(X,Y)Z)

_ drg’v) [—g(Y,Z)X +9(X,Z)Y]. (50)

Assume that?((OwM)(X,Y)Z) = 0 with horizontal vector fields. Then the equati@@)impliesdr(W) = 0. Hence we
conclude the following theorem:

Theorem 7. A 3-dimensional(e)-Kenmotsu manifold is locally M-projectivelg-symmetric if and only if the scalar
curvature ris constant for all horizontal vector fields.

Using Theoren8 and TheorenT, we state the following theorem.

Theorem 8. A 3-dimensional(¢)-Kenmotsu manifold is locally M-projectively-symmetric if and only if it is locally
@-symmetric for all horizontal vector fields.
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In particular, by takingZ = & in (47) we have

(OWM)(X,)Y)E =—¢

drgN) [N(Y)X=n(X)Y] - g(f +6¢)[en(Y)(Own)(X)& +&n(Y)n(X)Bwé

—en(X)(Own)(Y)E —en(X)n(Y)Owé + &(0Own)(Y)X + £(0wn)(§)n(Y)X (51)
—&(0wn)(X)Y —(0wn)(&)n(X)Y].

If we assumeX andY are horizontal vector fields, And using2) in (51) we obtain

(CM)OXY)E =~ (1 + 62)[g(¥, W)X — g0 W)Y, 52
Applying ¢? on the both sides 06@) we get
FP(TWM) (X, Y)€) = — 2 (1 + 66)[GlY, W) X — GX,W)@PY . 59

If we takeX,Y,W orthogonal tc€ in (52) and 63) we have
@*([OwM)(X,Y)E = (OwM)(X,Y)E.
Now we can state the following:
Theorem 9. Let M be a3-dimensional€)-Kenmotsu manifold such that
¢*(DwM)(X,Y) =0

for all horizontal vector fields XY,W. Then M is an indefinite space form.

7 Examples of M-projectively ¢-symmetric (€)-Kenmotsu manifolds
Example 1. We consider the 3-dimensional manifdt? = {(x,y,2) € R3}, where(x,y,z) are the standard coordinates in
R3. The vector fields are
et (9 0 o g2 0N _ 0
= ox oy)’ = oy 0x)’ 8= 57
It is obvious that{e, &>, €3} are linearly independent at each point\i. Let g be the Riemannian metric defined by

g(er,e1) = g(ex, &) = g(es,3) = €, g(e1,€2) =g(e1, &) =9(e, &) =0,

wheree = +1. That is the form of the metric becomgs- ¢ { zfel,z(dx® dx+ dy®dy) + dzo dz}.

Let n be the 1-form defined by)(Z) = €g(Z,e3) for any Z € x(M). Let ¢ be the(1,1) tensor field defined by
p(e1) = e, p(ex) = —eq, @(e3) = 0. Then using the linearity ap andg we have

¥*X =-Z+n(X)es, n(es) =1, g(eX,eY)=9(X,Y)—en(X)n(Y),

for any vector fields om3.
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Let O be the Levi-Civita connection with respect to the megridhen we get
[e1,€2] =0, [e,63] =€, [e1,63] = €er. (54)
Using Koszul's formula, the Riemannian connectioof the metricg is given by
29(0xY,Z) = Xg(Y,Z) +YJZ, X) — Zg(X,Y) —g(X, [Y, Z]) — (Y, [X, Z]) = 9(Z, [X,Y]).
Koszul's formula yields
Oe €3 = €61, U € =0, Og, 01 = —€63, Ue, 03 = €6, [e,& = €63, He,€1 = 0,0e,€3 =0, Oe,82 =0, e, =0.

Thus it can be easily seen th@®, @,&,n,qg) is an (g)-Kenmotsu manifold. Hence one can easily obtain by simple
calculation that the curvature tensor and the Ricci tensorponenets are as follows

R(e,ex)e; = —€1, R(er,e3)e3 = —e€1, R(ep,e1)e1 = —e,R(er, €3)83 = — €2, R(ez,e1)e = —€3, R(es, )6, = —e3.
and
S(er,e1) = S(ez, €2) = (e, €3) = —2¢. (55)

Thus the scalar curvaturés constant. Hence from Theoréand Theoren8, M2 is a locallyM-projectively@-symmetric
(¢8)-Kenmotsu manifold with horizontal vector fields.

Example 2. We consider the 3-dimensional manifditf = {(x,y,z) € R3}, where(x,y, z) are the standard coordinates in

R3. The vector fields are
9 o9 o 9
= 27 oy’ &=

It is obvious that{ey, e;, €3} are linearly independent at each pointi. Let g be the Riemannian metric defined by
g(er,e1) =9(e2, &) =g(es,e3) = €, g(e1, &) =g(ey,€3) = g(e2,€3) =0,

whereg = +1. That is the form of the metric becomgs- ¢ {%(dx@ dx+dy®dy) +dz@ dz}.

Let n be the 1-form defined by)(Z) = €g(Z,e3) for any Z € x(M). Let ¢ be the(1,1) tensor field defined by

o(er) = &, (&) = —e1, g(e3) = 0. Then as in the previous example, it can be easily seenMiatp, &,n,g) is an

(¢)-Kenmotsu manifold which is locally-projectively g-symmetric with horizontal vector fields.
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