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1 Introduction, definitions and notations

We denote byC the set of all finite complex numbers. Létbe a meromorphic function defined @ We use the
standard notations and definitions in the theory of enticerarromorphic functions which are available #2] and [?].

Let f be a non-constant meromorphic function defined in the opempéex planeC. Also let ngj ny; ...nkj(k > 1) be

k . .
non-negative integers such that for eagh y nj > 1. We call M;[f] = Aj(f)™ (f(l))nlJ (f(k))“k, where
i=0

k k
T (r,Aj) = S(r, ) to be a differential monomial generated byThe numbersm; = 3 mj; andlvj = 3 (i+1)n;j are
i=0 [

called respectively the degree and weightf(f] {[5],[26]}. The expressio [f] = § M;j [f] is called a differential
polynomial generated by. The numberg = 1?%5)4\“ andlp = 12?%(!'\“ are caiI:eld respectively the degree and
weight of P[f] {[5],[26] } . Also we call the numbers:p = 1rSn}r; Mi andk (the order of the highest derivative 6f) the
lower degree and the order &ff] respectively. Ify, = yp, P[f] is called a homogeneous differential polynomial.

Throughout the paper we consider only the non-constargreifitial polynomials and we denote By[f] a differential
polynomial not containing i.e., for whichng; = 0 for j = 1,2,...s. We consider only thosB([f], Py[f] singularities of
whose individual terms do not cancel each other. We also tdelmpM [f] a differential monomial generated by a
transcendental meromorphic functién

In the sequel the following definitions are well known.
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Definition 1. Let a be a complex number, finite or infinite. The Nevanlinrfecidecy and the Valiron deficiency of * a’
with respect to a meromorphic function f are defined as
Nf ( ) . M (ra a)

r.a
d(a;f)=1—Ilimsu _— = liminf
@ =1~

and
.. Ni(rha) ms (r,a)
A(a;f) =1—Iliminf =limsup———.
( ) r—o  Ti (I‘) r—e  If (I’)

Definition 2. The quantity@(a; f) of a meromorphic function f is defined as follows

Ny
O f)=1- Iimsupﬂ.
roe T (r)
Definition 3. [29] For a € CU{«}, we denote by f)_;(r,a), the number of simple zeros of-fain [z <r. N¢_y(r,a) is
defined in terms of _4 (r,a) in the usual way. We put

e . Nf—1(r,a)
o(agf)=1- Ilrrnsup_l_fi(r) ,

the deficiency of ‘a’ corresponding to the simple a-point$ 0é., simple zeros of f a.

Yang [28] proved that there exists at most a denumerable number ghle@mumbers € CU {0} for whichd;(a; f) >0

and Z a(af) <4
acCU{w}

Definition 4. [24] Fora e CU{}, let ny(r, a; ) denote the number of zeros of-fin |z] <r, where a zero of multiplicity
< p is counted according to its multiplicity and a zero of nplltity > p is counted exactly p times ang (K a; f) is
defined in terms ofir, a; f) in the usual way. We define

op(a;f)=1— Iimsupw.
r—oo Tt (I’)

Definition 5. [3] P[f] is said to be admissible if

(i) P[f]is homogeneous, or
(i) P[f]is non homogeneous and (n) = S¢(r).

During the past decades, several authors (6g®[[17], [25]) made closed investigations on comparative study of the
growth properties of composite entire or meromorphic fiomg in different directions using order (lower order ) and
differential polynomials and differential monomials gested by one of the factors. The growth indicator such asrorde
(lower order ) of entire or meromorphic function which is geally used in computational purpose is defined in terms of
the growth of that function with respect to the exponentialdtion is shown in the following definition:

Definition 6. The orderp; ( the lower order; ) of an entire function f is defined as

. loglogMs (r) . loglogMs (r)
=limsup——— =limsup—————
pr r—o0 |Og|OgMexpz(r) r—o0 log(r)
Ar = liminf 2910OMe (1) _ g 10g100M1 (1))
r—o loglogMexp, () 1= log(r)
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when f is a meromorphic, one may easily prove that

= Iimsupil()g-rf ) _ IimsupLgTf 0 _ lim supilog-rf ()
pi =1lmst l0gTexpz(r) 15w log(L) e log(r)+0O(1)

o logTe(r) o logTe(r) logTs (r)
<Af"ﬂ'ﬂflognxpz<r> e Tog(Z) T og(r) +0(D) )

Both entire and meromorphic function have regular growtthéir order coincides with their lower order.

For a non-constant entire functidi M¢(r) andT; (r) are both strictly increasing and continuous functions afnd
their inversed; 1(r) : (|f (0)|,) — (0,00) andT; : (Tt (0), ) — (0,0) respectively exist Whersglim§l(s) =0 and
éiin Tf’l (s) = . In this connection we just recall the following definitiomieh is relevant to our study:

Definition 7. [2] A non-constant entire function f is said have the propeAy i for any o > 1 and for all sufficiently
large r, [My (r)]2 < Mg (r?9) holds. For examples of functions with or without the Propé&), one may see].

Bernal {[1], [2]} initiated the idea of relative order of an entire functibrwith respect to another entire functign
symbolized bypg (f) to keep away from comparing growth just with exphich is as follows:

pg(f) =inf{u>0:Ms(r) <Mg(r¥) forallr >ro(u)>0.}
logMg M
— limsup—29 f(r).
r—o0 logr

The definition agrees with the classical ofgif g(z) = expz.

Similarly, one may define the relative lower order of an enfiinction f with respect to another entire functian
symbolized bylq (f) in the following way:

logMg Mg (r
Ag(f) :|iminf997f()
r—oo logr

Extending this idea, Lahiri and Banerjg2d] established the definition of relative order of a meromaritanction with
respect to an entire function which is as follows:

Definition 8. [23] Let f be any meromorphic function and g be any entire funcfidre relative order of f with respect
to g is defined as

pg(f) =inf{u>0:Ts(r) < Ty(r*) for all sufficiently large 1}
log Ty 1T (r
— limsup—3-¢ () .
r—s00 logr
Likewise, one may define the relative lower order of a mergrhimrfunctionf with respect to an entire functianin the
following way:

logT, 1T
A () = liminf 29T TH(1).

r—w logr

It is known {cf. [23] } that if g(z) = expz then Definition8 coincides with the classical definition of the order of a
meromorphic functiorf.

In the paper we prove some comparative growth propertiewiposite entire or meromorphic functions in almost a
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new direction in the light of their relative orders and risdatlower orders and differential monomials, differential
polynomials generated by one of the factor.

2 Lemmas

In this section we present some lemmas which will be need#tkisequel.

Lemma 1.[4] Let f be meromorphic and g be entire then for all sufficiefdlge values of r

Tg(r)

Trog(r) < {1+0(1)} WTf (Mg (r)).

Lemma 2.[18] Let f be a meromorphic function and g be an entire functiochsiinatAg < u < o and0 < At < pf < oo,
Then for a sequence of values of r tending to infinity,

Trog(r) < Ts (exp(rH)) .

Lemma 3.[18] Let f be a meromorphic function of finite order and g be anrertflinction such tha® < Ag < u < oo,
Then for a sequence of values of r tending to infinity,

Trog(r) < Tg(exp(r¥)) .
Lemma 4.[21] Let f be an entire function which satisfy the Property (B)> 0, d > 1anda > 2. Then
BTi(r) <T; (ar5) :

Lemma5.[19] If f be a meromorphic function either of finite order or of naaro lower order such tha® (e; ) =

Y op(af)=1lord(w;f)= 3 &(a f)=1and g be an entire function of regular growth having non zeridiorder

aoo ato

andO («;0) = 3 dp(a;g) =1or &(w;9) = Y &(a;g) = 1. Then the relative order and relative lower order gf[P
aoo afoo

with respect to p[g] are same as those of f with respect to g wheyef Pand R [g] are homogeneous. i.e.,

Projg (Po[f]) = pg (f) andAp;g (Po[f]) = Ag(f) -

Lemma 6. [20] Suppose f be a transcendental meromorphic function offioitler or of non-zero lower order and

Sy 0i(a;f) = 4. Also let g be a transcendental entire function of regularvgito having non zero finite order and
acCU{w}

Sy 0&i(a;9) = 4. Then the relative order and relative lower order of Niwith respect to Mp] are same as those of f
acCU{w}
with respect to gi.e.,

Pug (M [f]) = pg (f) andAyg (M[f]) = Ag(f) .

3 Theorems

In this section we present the main results of the paper.néedless to mention that in the paper, the admissibility and
homogeneity 0P [f] for meromorphicf will be needed as per the requirements of the theorems.

Theorem 1.Let g be an entire function and f be a meromorphic functionegiof finite order and non-zero lower order
With @ (w; f) = 5 Jp(a;f)=1o0rd(w; f) = 3 &(a; f) = 1. Also h be an entire function of regular growth having non
a#o a#o
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zero finite order with® (e0;h) = 3 dp(a;h) =1 or d(w;h) = S d(a;h) =1and0 < Ap(f) < pn(f) < o. Then for
a;éoo a;éoo
every positive constapt and eacho € (—, ),

=0if u > Ag.
Proof.If 1+ a < 0, then the theorem is obvious. We consider & > 0. SinceT,, * (r) is an increasing function of, it

follows from Lemma2 for a sequence of values ntending to infinity that

log T, *Trog(r) < logT, 2T¢ (exp(rH))
i.e, 10gT, 1Trog(r) < (on(f)+e)rH. (1)

Again for all sufficiently large values af we get in view of Lemm& that

lOng;(lh)TPo(f) (exp(r¥)) > (Ap,ny (Po(f)) — ) ¥
i.e., 10gTe & Try(r) (exp(rH)) = (An (f) — &)1k . )

Therefore for a sequence of values @énding to infinity, we obtain fronil) and(2) that

{IOgThfleog(r)}lﬁLa _ (ph(f) + 8)1+G r“(1+a)
logTe i Tro(r) (€XP(rH) —  (An(F) —g)rk

®3)

So from(3) we obtain that

o {IogTh’leog(r)}Ha

r—e lOng;(lh)TPo(f) (exp(r“))

=0.

This proves the theorem.
In the line of Theoren and with the help of Lemm@, we may state the following theorem without its proof.

Theorem 2.Let g be an entire function and f be a transcendental merohiorfunction either of finite order and of
non-zero lower order with 5 &1(&; f) = 4. Also h be a transcendental entire function of regular gfoWwaving non

acCU{w}
zero finite order with ¥ &1(a;h) =4 and 0 < A (f) < pr(f) < . Then for every positive constaptand each
acCU{w}
a € (—o,00),

_ 1
liminf {log T, MTiog(n)}

r—eo lOQTM(lh)TM(f) (exp(r“))

=0if u>Ag.

Theorem 3.Let f be a meromorphic function with non zero finite order amddr order, g be an entire function either
of finite order or of non-zero lower order such th@{«;g) = Y dp(a;g) =1o0r d(;g) = 3 d(a;g) =1andh be an
aFfo a;éoo
entire function of regular growth having non zero finite ardad © (eo;h) = 5 Jp(a;h) =1o0rd(eo;h)= 5 o(a;h)=1.
aFfo

aF¢o
Also letp, (f) < 0 and A (g) > 0. Then for every positive constamtand eacho € (—oo,00)

_ 1+a
fiminf_L109Th Treg(1)}

— =0if u>Aqg.
r—oo IogTPO(h)Tpo(g) (exp(rH))

The proof is omitted as it can be carried out in the line of Teeol.
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Theorem 4.Let f be a meromorphic function with non zero finite order aodr order, g be a transcendental entire

function either of finite order or of non-zero lower order bubat Y & (a;g) = 4 and h be a transcendental entire
acCU{w}
function of regular growth having non zero finite order andy 41 (a;h) = 4. Also letp, (f) < « andA, (g) > 0. Then
acCuU{w}

for every positive constamt and eachy € (—oo, ),

log T 1Tt.q(r)} -+
jiminf 09T Treol0)}
r—oo IogTM(h)TM(g) (exp(r#))

=0if u>Ag.
The proof of the above theorem is omitted as it can be carti¢éhdhe line of Theoremd and with the help of Lemmé

Theorem 5.Let f be a meromorphic function of finite order wih(co; f) = 5 dp(a;f)=1ord(eo;f)= 5 o(a;f) =1,
a;éoo a;éoo
g be an entire function with non zero finite lower order and labentire function of regular growth having non zero finite
order with@ (eo;h) = 3 dp(a;h) =1or d(eo;h) = 5 d(a;h) = 1. Also letAp (f) > 0andpn(g) < o . Then for every
aFfo a;éoo

positive constanti and eachn € (—o, )

_ 1
{logT, *Trog(r)}

liminf
r—eo lOng;(lh)TPo(f) (exp(r“))

=0if u>Ag.

Theorem 6.Let f be a meromorphic function with finite order, g be an entirnction non zero finite lower order with
O(w;9)= 5 Jp(a;g)=1ord(w;g) = 3 d(a;g) =1 and h be an entire function of regular growth having non zero
aoo ato
finite order with® («0;h) = 5 dp(a;h) =1 or d(o;h) = § d(a;h) = 1. Also let0 < Ap(g) < pn(g) < o . Then for
a#o

a#oo
every positive constant and eacho € (—, ),

_ 1
iming /09T Treg(r)} -
e logTo 4 Try(g) (EXP(TH))

=0if u > Ag.

We omit the proofs of Theorerd and Theorent as those can be carried out in the line of Theofieand Theoren8
respectively and with the help of Lemma

In the line of Theorend and Theoren® and with the help of Lemm@&we may state the following two theorems without
their proofs.

Theorem 7. Let f be a transcendental meromorphic function of finite oigh 3 & (a; f) = 4, g be an entire
function with non zero finite lower order and h be a transcerideentire functioarf(%#{;oe}gular growth having non zero
finite order with S &1(a;h) = 4. Also letAn (f) > 0 and p, (g) < . Then for every positive constaatand each
o e (700700)7 acCuU{w}

liminf {logThileog(r)}Ha

r—eo |09T,\](1h)TM(f) (exp(rt))

=0if p>Ag.

Theorem 8.Let f be a meromorphic function with finite order, g be a traaratental entire function non zero finite lower

orderwith ¥  01(a;9) =4 and h be a transcendental entire function of regular growdlrihg non zero finite order
acCU{w}
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with 3y d&i(a;h) =4. Also letO < Ap(g) < pn(g) < . Then for every positive constgmtand eacho € (—o, ),
acCuU{w}

o {logTy Treg(n)}
liminf —
r—oo IogTM(h)TM(g) (exp(rH))

=0if u>Ag.

Theorem 9.Suppose f be a meromorphic function either of finite orderforam-zero lower order such th@ (e; f) =
> Op(a;f)=1ord(w;f) = 3 d(a;f) = 1. Also let h be an entire function of regular growth having reemo finite
a;éoo a;éoo
order with@ (eo;h) = 5 dp(ah) =1or d(w;h)= 3 J(a;h) = 1and g be any entire function such that(f) < c and
a;éoo a;éoo
An(fog) = .Then
logT, *Ttog (1)

== log T, i Try 1) ()

= 00,

Proof. Let us suppose that the conclusion of the theorem do not fibkeh we can find a constaft> 0 such that for a
sequence of values oftending to infinity,

log Ty, *Treg () < BlOgTs iy Tryir) () - (4)
Again it follows for all sufficiently large values afand in view of Lemm& that

lOng;[j}:]]TPo[f] (r) < (PR (Po[f]) +€) logr
ie, IogTP;[lh]TpO[f] (r) < (pn(f)+¢€)logr . (5)

Thus from(4) and(5), we have for a sequence of valueg dénding to infinity that

logT, *Treg (1) < B (pn(f)+€)logr
logT, *Trog(r) _ B (pn(f)+€)logr
o logr - logr
o logT, Mg (r)
i.e, Ilpﬂng =An(fog) < oo.

This is a contradiction. Hence the theorem follows.

RemarkTheorenB is also valid with “limit superior” instead of “limit” ifA,, (f o g) = « is replaced by, (f 0 g) = « and
the other conditions remain the same.

Corollary 1. Under the assumptions of Theor@and Remarig,

-1 —1
lim M = andlimsupM =00,
r=e T iy TRl (1) roe To b TRy (1)

respectively hold.
The proof is omitted.

Analogously one may also state the following theorem andltaoies without their proofs as those may be carried out in
the line of Remarld, Theoren® and Corollaryl respectively.
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Theorem 10. Let g be an entire function either of finite order or of nonezelower order such that
O(w;g9) = Y dp(a;g)=1ord(w;g) = Y d(a;g) = 1. Also let h be an entire function of regular growth having non
ato aoo
zero finite order with® (e0;h) = 5 dp(a;h) =1or §(eo;h) = 5 6 (a;h) =1 and f be any meromorphic function such
a#o

aFo
thatpp (g) < o andpy, (f og) = .Then

Ty Trog (r
Ilmsupg—fg() 0o
r—oo IOgT [ ]TPO[ ]( )

Remark Theoreml0is also valid with “limit” instead of “limit superior” ifon (f o g) = « is replaced by\p (f og) =
and the other conditions remain the same.

Corollary 2. Under the assumptions of Theordhand Remaria,

o T M Treg (1
Iimsup#() = and lim Th_Treg ().

F—oo TPo[h]TPO[Q] (r) '””Tpg[lh]TF’o[g] ()

= 00

respectively hold.

In the line of Theoren® and Theorenm 0and with the help of Lemm@, we may state the following two theorems without
their proofs.

Theorem 11.Suppose f be a transcendental meromorphic function eithiémite order or of non-zero lower order such

that Y di(a f) =4. Alsolet h be atranscendental entire function of regulavgth having non zero finite order with
acCU{w}

Sy d&i(a;h) =4 and g be any entire function such thaf(f) < co andA, (f og) = .Then
acCU{w}

log T, M Ttog (1)

lim———— 7 —o0.

r%mlogTM[ﬁ]TM[f] (r)

Remark.Theoreml1is also valid with “limit superior” instead of “limit” ifA, (f 0 g) = oo is replaced by, (f o g) = o
and the other conditions remain the same.

Corollary 3. Under the assumptions of Theordrhand Remarig,

T 1 Tro o
lim A() = oo andlimsup#()

r—oo T HTM[ ]( ) r—co TM[h] M[f] (r)
respectively hold.
The proof is omitted.

Theorem 12. Let g be a transcendental entire function either of finiteeordr of non-zero lower order such that

Sy &(a;g) =4. Also let h be a transcendental entire function of regularvgito having non zero finite order with
acCU{w}

Sy di(a;h) =4 and f be any meromorphic function such tpa{g) < « andpy (f og) = .Then
acCuU{w}

T Troq (1
||msupgh—fg() 0 .

r—oo |OgT Mh ]TM[ ]( )
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RemarkTheoreml2is also valid with “limit” instead of “limit superior” ifp, (f 0 g) =  is replaced by, (fog) =
and the other conditions remain the same.

Corollary 4. Under the assumptions of Theordhand Remari3,

T 1T T 1T
Iimsupﬁl%g(r) = oo andlim El%g(r) = o0
r=e Ty Tmg (1) = Ty Tigl (1)

respectively hold.

Theorem 13. Let f be a meromorphic function either of finite order or of rmero lower order with
O(wo;f)= 5 dp(a;f)=1ord(w;f) = S d(a; f) =1, g be an entire function and h be an entire function of regular
ato ato
growth having non zero finite order wit® (o;h) = 3 dp(a;h) = 1 or 6(w;h) = 5 d(a;h) = 1 and satisfy the
a#o

a#oo
Property (A). Also lefg < Ap (f) < pn(f) < 0. Then

Proof.Let f > 2 andd > 1. SinceThfl(r) is an increasing function af it follows from Lemmal and Lemma4, for all
sufficiently large values af that
Th Trog (1) < Ty [{140(1)} Tr (Mg ()]

BTy 1Tt (Mg (r))]°
3logT, T¢ (Mg (r)) +O(1) .

i.e, To M Trog(r)

<
i.e, logT, MTieg(r) <

Therefore from above, we get for a sequence of valuegefding to infinity that

log T, 1Tog (r) < & (pon () +€)logMg (1) + O(1) (6)

i.e, 10gT, MTrog(r) < 8 (pon(f)+&)rte* e+ 0O(1). 7)

Again from the definition of relative order, we obtain in vievLemmab for all sufficiently large values af that

3 A £))—
TF’O[}ﬂTF’o[f] (r) > r< Ro(h) (Po(f)) 5)

ie, TP;[}ﬂTpo[f] (r) > rn(f)=e), (8)

Thus in view of(7) and(8), we get for a sequence of valuesrdending to infinity,

logT, *Trog (1) _ 8 (pn(f)+)r’s+€+0(1)
T 17 < S : 9)
Rolf TRol ] (1) r

Now asAg < Ap (), we can choose (> 0) in such a way thadg+ & < Ay (f) — £ and the theorem follows frort®) .

RemarkIf we takepg < An(f) < pn(f) < o instead ofdg < Ap () < pn(f) < o and the other conditions remain the
same, the conclusion of Theordr@remains valid with “limit inferior ” replaced by “ limit "
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Theorem 14.Let f be a transcendental meromorphic function either otdiwirder or of non-zero lower order with

Sy di(a; f) =4, g be an entire function and h be a transcendental entiretfanof regular growth having non zero
acCU{w}
finite order with 3 &1(a;h) = 4 and satisfy the Property (A). Also I&§ < Ap (f) < pn(f) <. Then
acCuU{w}

logT~1T¢,
iminf 29T _Trea (D) _
re TM[h]TM[f](r)

The proof of the above theorem is omitted as it can be carti¢ihdhe line of Theoremi 3 and with the help of Lemma
6.

RemarkIf we considetpg < Ap (f) < pn (f) < o instead ofAg < Ap (f) < pn () < o and the other conditions remain the
same, the conclusion of Theordrremains valid with “limit inferior " replaced by “ limit”.

Theorem 15.Let f be a meromorphic function, g be an entire function eitifefinite order or of non-zero lower order
with @ (e0; f) = 5 dp(a;f)=1ord(»;f) = ¥ &(a f) =1and h be an entire function of regular growth having non
a#oo a#o
zero finite order with@ (eo;h) = 5 dp(a;h) =1 o0r d(w;h) = 5 d(ah) =1. Also letpn (fog) < o andAn(g) > 0.
a;éoo a;éoo
Then

=0.

_ 2
lim [log Ty, *Trog (1)]
oT -1 -1
"= To h) Tro(g) (8XPr) -109Tg 5 Tryg) (1)

Proof. For any arbitrary positive, we have in view of Lemma& for all sufficiently large values af that
l0gT, *Treg (1) < (Pn(f 0g) + &) logr (10)
and

logTa ) Try(g) (1) = (Ary(n) (PO(9)) — €) logr
i.e., 10Ty ) Tryg) () = (An(g) — &) logr. 11)

Similarly, for all sufficiently large values afwe have

log T, 1y Try(g) (€XPr) > (Aum (L(9) — &)
i.e., T iy Try(g) (€XPr) = exp((An(g) — €)1] . (12)
From(10) and(11), we have for all sufficiently large values pthat

|OgTh71Tfog (r) (ph(f 09)+£)|Ogr
logTe &y Tryg) (1)~ (An(@) —€)logr

IN

As g (> 0) is arbitrary, we obtain from above that

limsup |09-E1 Trog (1) pn(fog) (13)
r—co IOgTPO(h)TPO(Q) (r) /\h (g)
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Again from(10) and(12), we get for all sufficiently large values ofthat

|OgTh71Tfog(r) (Ph(fog)-i-e)logr
Tey i Tro() (€XPr) — expl(An(9) —€)r]

IN

Sincee (> 0) is arbitrary, it follows from above that

T 1Tt
limsup: 79 fog(r) _
r—se T ()Tpo (expr)

e, m——2n 190 _q (14)

Thus the theorem follows frorfi3) and(14).
In view of Theoreml5, the following two theorems can be carried out. Hence theiofs are omitted.

Theorem 16. Let f a meromorphic function either of finite order or of nare lower order such that
O(o;f)= 3 dp(a;f)=21o0rd(o;f)= S d(a;f) =1, g be any entire function and h be an entire function of regula
a;éoo a;éoo
growth having non zero finite order with (eo;h) = ¥ dp(a;h) =1or &(o;h) = 5 d(a;h) = 1. Also letpy (fog) <
aoo ato
andAp(f) > 0. Then
. 2
lim [IOgTh 1Tfog (r)]
r—oo T

=0.
p;(lh)TPo(f) (exp(r)) : lOQTp;(lh)TPo(f) (I’)

Theorem 17.Let f be a meromorphic function either of finite order or of reeTo lower order such tha® (oo; f) =
Z Op(a;f)=1ord(w;f)= Y o(a;f) =1, g be an entire function either of finite order or of non-zevweér order

a#oo
such that S ©(a;g) = 2 and h be an entire function of regular growth having non zenitdi order and® (e;h) =
aF#oo
> Op(ah)=1ord(w;h)= 5 &(a;h)=1. Also letp, (f o) < o, Ay (g) > 0andAn(f) > 0. Then
ato aoo
2
logT 1Ty,
(i jm . 199Ts Treq (D) ~0 and
"= T TRo(@) (expr) - log Ty ihy Tro(r) (1)
2
logT ~1T¢,
(ii) lim 09T, Treg (T ” —o0.

HooTF,;(lh)Tp0 (1) (expr) - IogT b Tro(g) (1)

In the line of Theorenm5, Theoreml6 and Theoreni7 and with the help of Lemm@ we may state the following three
theorems without their proofs :

Theorem 18.Let f be a meromorphic function, g be a transcendental efinetion either of finite order or of non-zero

lower order with 5 & (a;9) = 4 and h be a transcendental entire function of regular growdlrihg non zero finite
acCU{w}
orderwith ¥  9:(a;h) = 4. Also letp, (f 0 g) < 0 andAn(g) > 0. Then
acCU{w}

lim [IogTileog(r)]z

=0.
o T TMig) (8XPr) - 10g Ty i Tg) (1)

Theorem 19.Let f a transcendental meromorphic function either of fimitder or of non-zero lower order such that

5> oi(a f) =4, g be any entire function and h be a transcendental entiretfan of regular growth having non zero
acCU{w}

(© 2016 BISKA Bilisim Technology


www.ntmsci.com

317 BISKA S. K. Datta, T. Biswas, D. Dutta: Comparative growth measofalifferential monomials and......

finite order with 5 &1(a;h) = 4. Also letp, (f og) < 0 andAp (f) > 0. Then
acCuU{w}

[log T,y *Trog (r)] ’

=0.
T (f)(expr)-logT,\;(ﬁ)TM(f)(r)

lim
rﬁooT

( ) ‘M

Theorem 20.Let f be a transcendental meromorphic function either otdimirder or of non-zero lower order such
that S di(a; f) =4, g be a transcendental entire function either of finite ordeof non-zero lower order such

acCU{w}
that Y di1(a;9) =4 and h be a transcendental entire function of regular growdlvihg non zero finite order and
acCuU{w}
01(a;h) = 4. Also letpp (f o g) < o, Ap(g) > 0andA,(f) > 0. Then
acCuU{w}
. . [log T,y MTrog(r )]2 B
(i) rlmoTM(lh)TM(g)(expr) IogT wik) () (1) =0 and
_ 2
(it) lim logT, “Treq(r)] —o.
r%ooT (h) M(f )(expr) log M(h)TM(Q)( )

Theorem 21. Let f be a meromorphic function either of finite order or of rmmero lower order with
O(o;f)= 5 dp(af)=10rd(»;f) = 3 d(a;f) =1, g be an entire function with finite order and h be an entire
ato aoo
function of regular growth having non zero finite order wh(eo;h) = 5 dp(a;h) =1 or 6(w;h) = 5 d(a;h) =1
aFfo

aF¢o
and satisfy the Property (A). Also 18t Ap () < pr (f) < . Then

Proof. From (6) and in view of Lemm#, it follows for all sufficiently large values af that

logi? T, 1 Tsoq (r) < logi? Mg (r) +O(1)

log? T, M Treq (r) Iog Mg (r)+0O(1) logr
IogT L Tru() (r) logr Ionggih)TpO(f) (r)
lo T T og M
i.e, limsu g 1 fog (1) < IlmsupOg o(r) +O(1) -limsup Ilogr
r—oo IOgT TPO f (r) r—oo |Ogr r—00 IOgT TPO( )( )
log? T, Tioq (1) 1 Pg
i.e, Ilmsup <p = .
log Ty, 1 T (1)~ Aryy (R(F)  An(f)

This proves the theorem.

Theorem 22.Let f be a meromorphic function, g be an entire function otdiorder with© («0;g) = 5 dp(a;9) =1
a#o

ord(»;g)= S 0(a;g) =1and h be an entire function of regular growth having non zen@diorder with® (co; h) =
aFfo
S Op(ah)=1ord(w;h)= 3 &(a;h)=1and satisfy the Property (A). Also I} (f) < o andA,(g) > 0. Then
aFfo a;éoo

log? T MTtog (1) < Po
r—oo IOgTP;(lh)TPO(Q) (r)y — An(9)

The proof of Theoren22is omitted as it can be carried out in the line of TheoZin
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Theorem 23Let f be a transcendental meromorphic function either otdimirder or of non-zero lower order with

y ai(a f) =4, g be an entire function with finite order and h be a transcentadkentire function of regular growth
acCuU{w}
having non zero finite order with 3 &1(a;h) = 4 and satisfy the Property (A). Also 18t< Ap (f) < pn(f) < co.
acCuU{w}
Then

IimsuplOg[Z]Thileog(r)< Py
r—oo |OgT,\;(lh)TM(f) (r) o Ah(f)

Theorem 24 Let f be a meromorphic function, g be a transcendental efuitetion of finite orderwith 5 & (a;g) =
acCuU{w}
4 and h be a transcendental entire function of regular growdihg non zero finite order with ¥ & (a;h) =4 and
acCuU{w}
satisfy the Property (A). Also Igk, (f) < co andAp(g) > 0. Then

log? T, T,
IimsupOg — fg(r)g Py
r—oo IOgTM(h)TM(g) (r) /\h(g)

The proof of the above two theorems are omitted as those caarlied out in the line of Theore@il and Theoren22
respectively and with the help of Lemrba

Theorem 25.Let f be a meromorphic function either of finite order or of reeTo lower order such tha® (o; f) =

S Op(af)=1o0rd(w;f)= 3y &(a f) =1, g be an entire function with finite order and h be an entirection of

ato ato

regular growth having non zero finite order wi@(co;h) = 5 dp(a;h) =1or &(wo;h) = 5 d(a;h) = 1 and satisfy the
aFo

aFfo
Property (A). Also led < A, (f) < pn (f) < . Then

im log T, Trog (r)
510G T 1y Tro(1) (€XPrH)

—= 0

wherepg < 4 < .

Proof. Let us considep > 2 andd > 1. As T, (r) is an increasing function of in view of Lemmal we get fron{6) for
all sufficiently large values df,
log T, MTrog (1) < & (pn (f)+€)rP e +0(1). (15)

Also from the definition of the relative lower order and inwief Lemmab, we obtain for all sufficiently large values of
r that

|OgTF%éLh)Tp0(f) (exp(r¥)) > (Apyny (Po(f)) — €) log{exp(rH)}
i.e., 10gTy ) Tryr) (XprH) > (An (f) — ) rH. (16)

Now from (15) and(16), it follows for all sufficiently large values af that

logTy Treg (1) _ 3(pn(f)+)rf* +0(1)

s B (17)
109 e iy Tro( 1) (EXPYH) (An(f) —g)rH
As pg < [, we can choose (> 0) in such a way that
PgteE<U. (18)
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Thus from(17) and(18), we obtain that

logT, *Teg () _
rﬂWIogT,%(lh)Tpo(f) (exprH)

Thus the theorem follows.
In the line of Theoren25, we may state the following theorem without its proof:

Theorem 26.Let f be a meromorphic function, g be an entire function eitifefinite order or of non-zero lower order
with @ («;9) = 5 Jp(a;g) =1o0r d(w;9) = S d(a;g) =1 and h be an entire function of regular growth having non
a;éoo a;éoo
zero finite order with® (eo;h) = 5 Jp(a;h) =1 or 6 (w;h) = 5 6 (ah) =1 and satisfy the Property (A). Also let
a;éoo a;éoo
An(g) > 0andpy (f) < . Then for everyt with pg < t < oo,
logT, *Teg (1)

r=logTe b Tryg) (BXPrH)

In the line of Theoren25 and Theoren26 and with the help of Lemm&, we may state the following two theorems
without their proofs :

Theorem 27.Let f be a transcendental meromorphic function either ofdinrder or of non-zero lower order such that

01(a; f) =4, g be an entire function with finite order and h be a transcenalentire function of regular growth
acCuU{w}
having non zero finite order with ¥ 61(a; h) = 4 and satisfy the Property (A). Also et A, (f) < pp (f) < . Then
acCU{w}

logT, 1 Troq (r
lim 9T, Trog(r)

— —= 00
rﬁmlogTM(h)TM(f) (expr#)

)

wherepg < U < oo,

Theorem 28.Let f be a meromorphic function, g be a transcendental efinetion either of finite order or of non-zero

lower order with 5 &1(a;9) =4 and h be a transcendental entire function of regular growdlring non zero finite
acCuU{w}
orderwith S & (a;h) =4 and satisfy the Property (A). Also 1&(g) > 0 and pp (f) < . Then for everyu with
acCuU{w}
Pg < H <o,
logT, *Teg ()

rﬁWIogT,\;(ﬁ)TM(g) (expri)
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