

# Advances in the Theory of Nonlinear Analysis and its Applications 

# Controllability for Impulsive Fractional Evolution Inclusions with State-Dependent Delay 

Khalida Aissania ${ }^{\text {a }}$, Mouffak Benchohra ${ }^{\text {b }}$, Juan J. Nieto ${ }^{\text {c }}$<br>${ }^{a}$ University of Bechar, PO Box 417, 08000, Bechar, Algeria.<br>${ }^{b}$ Laboratory of Mathematics, Djillali Liabes University of Sidi Bel-Abbès<br>PO Box 89, 22000 Sidi Bel-Abbès, Algeria, Department of Mathematics, College of Science, King Saud University, P.O. Box 2455<br>Riyadh 11451, Saudi Arabia.<br>${ }^{c}$ Departamento de Estatistica, Análise Matemática e Optimización, Instituto de Matemáticas, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain.


#### Abstract

In this paper, sufficient conditions are provided for the controllability of impulsive fractional evolution inclusions with state-dependent delay in Banach spaces. We used a fixed-point theorem for condensing maps due to Bohnenblust-Karlin and the theory of semigroup for the achievement of the results. An Illustrative example is presented.


Keywords: Impulsive fractional evolution, $\alpha$-resolvent family, solution operator, Caputo fractional derivative, mild solution, state-dependent delay, fixed point, Banach space.
2010 MSC: 26A33, 34A37, 93B05.

## 1. Introduction

Differential inclusions of fractional order have attracted great interest due to their applications in characterizing many problems in physics, biology, mechanics and so on; see, for instance [2, 3, 4, 46, 47]. The theory of impulsive differential equations is a new and important branch of differential equations, which has an extensive physical background, for instance, we refer to [6, 12, 14, 18, 28, 33, 37, 41].

[^0]One of the basic qualitative behaviors of a dynamical system is controllability, it means that it is possible to steer a dynamical control system from an arbitrary initial state to an arbitrary final state using the set of admissible controls. As a result of its great application, the controllability of such systems all have received more and more attention, we refer the work for more details [7, 9, 11, 13, 15, 19, 31, 32, 40, 44]. Yan 45 ] established the controllability of fractional-order partial neutral functional integrodifferential inclusions with infinite delay. In [36], the authors provided some sufficient conditions ensuring the existence of mild solution of the problem

$$
\begin{array}{cc}
D_{t}^{\alpha} x(t)=A x(t)+f\left(t, x_{\rho\left(t, x_{t}\right)}, x(t)\right), & t \in J_{k}=\left(t_{k}, t_{k+1}\right], k=0,1, \ldots, m \\
\Delta x\left(t_{k}\right)=I_{k}\left(x\left(t_{k}^{-}\right)\right), & k=1,2, \ldots, m  \tag{1}\\
x(t)=\phi(t), & t \in(-\infty, 0]
\end{array}
$$

The controllability of fractional integro-differential equation of the form

$$
\begin{array}{ll}
D_{t}^{q} x(t)=A x(t)+B u(t)+\int_{0}^{t} a(t, s) f\left(s, x_{\rho\left(s, x_{s}\right)}, x(s)\right) d s, & t \in J=[0, T]  \tag{2}\\
x(t)=\phi(t), & t \in(-\infty, 0]
\end{array}
$$

has been considered by Aissani and Benchohra in [8].
Motivated by the papers cited above, in this work, we consider the controllability for a class of impulsive fractional inclusions with state-dependent delay described by

$$
\begin{array}{cc}
D_{t_{k}}^{\alpha} x(t) \in A x(t)+F\left(t, x_{\rho\left(t, x_{t}\right)}, x(t)\right)+B u(t), & t \in J_{k}=\left(t_{k}, t_{k+1}\right], k=0,1, \ldots, m \\
\Delta x\left(t_{k}\right)=I_{k}\left(x\left(t_{k}^{-}\right)\right), & k=1,2, \ldots, m  \tag{3}\\
x(t)=\phi(t), & t \in(-\infty, 0]
\end{array}
$$

where $D_{t_{k}}^{\alpha}$ is the Caputo fractional derivative of order $0<\alpha<1, A: D(A) \subset E \rightarrow E$ is the infinitesimal generator of an $\alpha$-resolvent family $\left(S_{\alpha}(t)\right)_{t \geq 0}, F: J \times \mathcal{B} \times E \longrightarrow \mathcal{P}(E)$ is a multivalued map ( $\mathcal{P}(E)$ is the family of all nonempty subsets of $E)$ and $\rho: J \times \mathcal{B} \rightarrow(-\infty, T]$ are appropriated functions, $J=[0, T], T>0$, $B$ is a bounded linear operator from $E$ into $E$, the control $u \in L^{2}(J ; E)$, the Banach space of admissible controls. Here, $0=t_{0}<t_{1}<\ldots<t_{m}<t_{m+1}=T, I_{k}: E \rightarrow E, k=1,2, \ldots, m$, are given functions, $\Delta x\left(t_{k}\right)=x\left(t_{k}^{+}\right)-x\left(t_{k}^{-}\right), x\left(t_{k}^{+}\right)=\lim _{h \rightarrow 0} x\left(t_{k}+h\right)$ and $x\left(t_{k}^{-}\right)=\lim _{h \rightarrow 0} x\left(t_{k}-h\right)$ denote the right and the left limit of $x(t)$ at $t=t_{k}$, respectively. We denote by $x_{t}$ the element of $\mathcal{B}$ defined by $x_{t}(\theta)=x(t+\theta), \theta \in(-\infty, 0]$. Here $x_{t}$ represents the history up to the present time $t$ of the state $x(\cdot)$. We assume that the histories $x_{t}$ belongs to some abstract phase space $\mathcal{B}$, to be specified later, and $\phi \in \mathcal{B}$.

## 2. Preliminaries

In this section, we state some notations, definitions and preliminary facts about fractional calculus and the multivalued analysis.

Let $(E,\|\cdot\|)$ be a Banach space.
$C=C(J, E)$ be the Banach space of continuous functions from $J$ into $E$ with the norm

$$
\|y\|_{C}=\sup \{\|y(t)\|: t \in J\}
$$

By $A C(J, E)$ we denote the space of absolutely continuous function from $J$ into $E$.
$A C^{n}(J, E)=\left\{y \in C^{n-1}(J, E): y^{(n-1)} \in A C(J, E)\right\}$.
$L(E)$ be the Banach space of all linear and bounded operators on $E$.
$L^{1}(J, E)$ the space of $E$-valued Bochner integrable functions on $J$ with the norm

$$
\|y\|_{L^{1}}=\int_{0}^{T}\|y(t)\| d t
$$

Denote by $P_{c l}(X)=\{Y \in P(X): Y$ closed $\}, \quad P_{b}(X)=\{Y \in P(X): Y$ bounded $\}, P_{c p}(X)=\{Y \in$ $P(X): Y$ compact $\}, P_{c p, c}(X)=\{Y \in P(X): Y$ compact, convex $\}$, $P_{c l, c}(E)=\{Y \in P(E): Y$ closed, convex $\}$.

A multivalued map $G: X \rightarrow P(X)$ is convex (closed) valued if $G(X)$ is convex (closed) for all $x \in X$. $G$ is bounded on bounded sets if $G(B)=\cup_{x \in B} G(x)$ is bounded in $X$ for all $B \in P_{b}(X)$ (i.e. $\sup _{x \in B}\{\sup \{\|y\|$ : $y \in G(x)\}\}<\infty)$.
$G$ is called upper semi-continuous (u.s.c.) on $X$ if for each $x_{0} \in X$ the set $G\left(x_{0}\right)$ is a nonempty, closed subset of $X$, and if for each open set $U$ of $X$ containing $G\left(x_{0}\right)$, there exists an open neighborhood $V$ of $x_{0}$ such that $G(V) \subseteq U$.
$G$ is said to be completely continuous if $G(B)$ is relatively compact for every $B \in P_{b}(X)$. If the multivalued $\operatorname{map} G$ is completely continuous with nonempty compact values, then $G$ is u.s.c. if and only if $G$ has a closed graph (i.e. $x_{n} \longrightarrow x_{*}, y_{n} \longrightarrow y_{*}, y_{n} \in G\left(x_{n}\right)$ imply $y_{*} \in G\left(x_{*}\right)$ ). For more details on multivalued maps see the books of Deimling [21], Djebali et al. [23], Górniewicz [24] and Hu and Papageorgiou [30].

Definition 2.1. The multivalued map $F: J \times \mathcal{B} \times E \longrightarrow \mathcal{P}(E)$ is said to be Carathéodory if
(i) $t \longmapsto F(t, x, y)$ is measurable for each $(x, y) \in \mathcal{B} \times E$;
(ii) $(x, y) \longmapsto F(t, x, y)$ is upper semicontinuous for almost all $t \in J$.

Definition 2.2. Let $\alpha>0$ and $f \in L^{1}(J, E)$. The Riemann-Liouville integral is defined by

$$
I_{0}^{\alpha} f(t)=\frac{1}{\Gamma(\alpha)} \int_{0}^{t} \frac{f(s)}{(t-s)^{1-\alpha}} d s
$$

For more details on the Riemann-Liouville fractional derivative, we refer the reader to [20].
Definition 2.3. [38]. The Caputo derivative of order $\alpha$ for a function $f \in A C^{n}(J, E)$ is defined by

$$
D_{0}^{\alpha} f(t)=\frac{1}{\Gamma(n-\alpha)} \int_{0}^{t} \frac{f^{(n)}(s)}{(t-s)^{\alpha+1-n}} d s=I_{0}^{n-\alpha} f^{(n)}(t), \quad t>0, n-1 \leq \alpha<n
$$

If $0 \leq \alpha<1$, then

$$
D_{0}^{\alpha} f(t)=\frac{1}{\Gamma(1-\alpha)} \int_{0}^{t} \frac{f^{\prime}(s)}{(t-s)^{\alpha}} d s
$$

Obviously, the Caputo derivative of a constant is equal to zero.
In order to defined the mild solution of the problems (3) we recall the following definition.
Definition 2.4. A closed and linear operator $A$ is said to be sectorial if there are constants $\omega \in \mathbb{R}, \theta \in$ $\left[\frac{\pi}{2}, \pi\right], M>0$, such that the following two conditions are satisfied:

1. $\sum_{(\theta, \omega)}:=\{\lambda \in C: \lambda \neq \omega,|\arg (\lambda-\omega)|<\theta\} \subset \rho(A)(\rho(A)$ being the resolvent set of $A)$.
2. $\|R(\lambda, A)\|_{L(E)} \leq \frac{M}{|\lambda-\omega|}, \quad \lambda \in \sum_{(\theta, \omega)}$.

Sectorial operators are well studied in the literature. For details see [25].
Definition 2.5. [10]. If $A$ is a closed linear operator with domain $D(A)$ defined on a Banach space $E$ and $\alpha>0$, then we say that $A$ is the generator of an $\alpha$-resolvent family if there exists $\omega \geq 0$ and a strongly continuous function $S_{\alpha}: \mathbb{R}_{+} \rightarrow L(E)$ such that $\left\{\lambda^{\alpha}: \operatorname{Re}(\lambda)>\omega\right\} \subset \rho(A)$ and

$$
\left(\lambda^{\alpha} I-A\right)^{-1} x=\int_{0}^{\infty} e^{-\lambda t} S_{\alpha}(t) x d t, \quad R e \lambda>\omega, x \in E
$$

In this case, $S_{\alpha}(t)$ is called the $\alpha$-resolvent family generated by $A$.

Definition 2.6. (see Definition 2.1 in [5]). If $A$ is a closed linear operator with domain $D(A)$ defined on a Banach space $E$ and $\alpha>0$, then we say that $A$ is the generator of a solution operator if there exist $\omega \geq 0$ and a strongly continuous function $S_{\alpha}: \mathbb{R}_{+} \rightarrow L(E)$ such that $\left\{\lambda^{\alpha}: \operatorname{Re}(\lambda)>\omega\right\} \subset \rho(A)$ and

$$
\lambda^{\alpha-1}\left(\lambda^{\alpha} I-A\right)^{-1} x=\int_{0}^{\infty} e^{-\lambda t} S_{\alpha}(t) x d t, \quad R e \lambda>\omega, x \in E
$$

in this case, $S_{\alpha}(t)$ is called the solution operator generated by $A$.
In this paper, we will employ an axiomatic definition for the phase space $\mathcal{B}$ which is similar to those introduced by Hale and Kato [26]. Specifically, $\mathcal{B}$ will be a linear space of functions mapping $(-\infty, 0]$ into $E$ endowed with a seminorm $\|\cdot\|_{\mathcal{B}}$, and satisfies the following axioms:
(A1) If $x:(-\infty, T] \longrightarrow E$ is such that $x_{0} \in \mathcal{B}$, then for every $t \in J, x_{t} \in \mathcal{B}$ and

$$
\|x(t)\| \leq C\left\|x_{t}\right\|_{\mathcal{B}}
$$

where $C>0$ is a constant.
(A2) There exist a continuous function $C_{1}(t)>0$ and a locally bounded function $C_{2}(t) \geq 0$ in $t \geq 0$ such that

$$
\left\|x_{t}\right\|_{\mathcal{B}} \leq C_{1}(t) \sup _{s \in[0, t]}\|x(s)\|+C_{2}(t)\left\|x_{0}\right\|_{\mathcal{B}}
$$

for $t \in[0, T]$ and $x$ as in (A1).
(A3) The space $\mathcal{B}$ is complete.
Example 2.7. The phase space $C_{r} \times L^{p}(g, X)$.
Let $r \geq 0,1 \leq p<\infty$, and let $g:(-\infty,-r) \rightarrow \mathbb{R}$ be a nonnegative measurable function which satisfies the conditions $(g-5),(g-6)$ in the terminology of [29]. Briefly, this means that $g$ is locally integrable and there exists a nonnegative, locally bounded function $\Lambda$ on $(-\infty, 0]$, such that $g(\xi+\theta) \leq \Lambda(\xi) g(\theta)$, for all $\xi \leq 0$ and $\theta \in(-\infty,-r) \backslash N_{\xi}$, where $N_{\xi} \subseteq(-\infty,-r)$ is a set with Lebesgue measure zero.

The space $C_{r} \times L^{p}(g, X)$ consists of all classes of functions $\varphi:(-\infty, 0] \rightarrow X$, such that $\varphi$ is continuous on $[-r, 0]$, Lebesgue-measurable, and $g\|\varphi\|^{p}$ on $(-\infty,-r)$. The seminorm in $\|\cdot\|_{\mathcal{B}}$ is defined by

$$
\|\varphi\|_{\mathcal{B}}=\sup _{\theta \in[-r, 0]}\|\varphi(\theta)\|+\left(\int_{-\infty}^{-r} g(\theta)\|\varphi(\theta)\|^{p} d \theta\right)^{\frac{1}{p}}
$$

The space $\mathcal{B}=C_{r} \times L^{p}(g, X)$ satisfies axioms (A1), (A2), (A3). Moreover, for $r=0$ and $p=2$, this space coincides with $C_{0} \times L^{2}(g, X), H=1, M(t)=\Lambda(-t)^{\frac{1}{2}}, K(t)=1+\left(\int_{-r}^{0} g(\tau) d \tau\right)^{\frac{1}{2}}$, for $t \geq 0$ (see [29], Theorem 1.3.8 for details).

Let $S_{F, x}$ be a set defined by

$$
S_{F, x}=\left\{v \in L^{1}(J, E): v(t) \in F\left(t, x_{\rho\left(t, x_{t}\right)}, x(t)\right) \text { a.e. } t \in J\right\}
$$

Lemma 2.8. 34]. Let $F: J \times \mathcal{B} \times E \longrightarrow P_{c p, c}(E)$ be an $L^{1}$-Carathéodory multivalued map and let $\Psi$ be $a$ linear continuous mapping from $L^{1}(J, E)$ to $C(J, E)$, then the operator

$$
\begin{aligned}
\Psi \circ S_{F}: C(J, E) & \longrightarrow P_{c p, c}(C(J, E)), \\
x & \longmapsto\left(\Psi \circ S_{F}\right)(x):=\Psi\left(S_{F, x}\right)
\end{aligned}
$$

is a closed graph operator in $C(J, E) \times C(J, E)$.
The next result is known as the Bohnenblust-Karlin's fixed point theorem.
Lemma 2.9. (Bohnenblust-Karlin [17]). Let $X$ be a Banach space and $D \in P_{c l, c}(X)$. Suppose that the operator $G: D \rightarrow P_{c l, c}(D)$ is upper semicontinuous and the set $G(D)$ is relatively compact in $X$. Then $G$ has a fixed point in $D$.

## 3. Main Result

In this section, we prove our main result. We need the following lemma ( $[42]$ ).
Lemma 3.1. Consider the Cauchy problem

$$
\begin{align*}
& D_{t}^{\alpha} x(t)=A x(t)+F(t)+B u(t), \quad 0<\alpha<1 \\
& \quad x(0)=x_{0} \tag{4}
\end{align*}
$$

where $F$ is a function satisfying the uniform Hölder condition with exponent $\beta \in(0,1]$ and $A$ is a sectorial operator, then the Cauchy problem (4) has a unique mild solution which is given by

$$
x(t)=T_{\alpha}(t) x_{0}+\int_{0}^{t} S_{\alpha}(t-s) F(s) d s+\int_{0}^{t} S_{\alpha}(t-s) B u(s)
$$

where

$$
\begin{aligned}
& T_{\alpha}(t)=\frac{1}{2 \pi i} \int_{\hat{B_{r}}} e^{\lambda t} \frac{\lambda^{\alpha-1}}{\lambda^{\alpha}-A} d \lambda \\
& S_{\alpha}(t)=\frac{1}{2 \pi i} \int_{\hat{B_{r}}} e^{\lambda t} \frac{1}{\lambda^{\alpha}-A} d \lambda,
\end{aligned}
$$

$\hat{B}_{r}$ denotes the Bromwich path, $S_{\alpha}(t)$ is called the $\alpha$-resolvent family and $T_{\alpha}(t)$ is the solution operator, generated by $A$.

Theorem 3.2. 42]. If $\alpha \in(0,1)$ and $A \in \mathbb{A}^{\alpha}\left(\theta_{0}, \omega_{0}\right)$, then for any $x \in E$ and $t>0$, we have

$$
\left\|T_{\alpha}(t)\right\|_{L(E)} \leq M e^{\omega t} \text { and }\left\|S_{\alpha}(t)\right\|_{L(E)} \leq C e^{\omega t}\left(1+t^{\alpha-1}\right), t>0, \omega>\omega_{0}
$$

Let

$$
\widetilde{M}_{T}=\sup _{0 \leq t \leq T}\left\|T_{\alpha}(t)\right\|_{L(E)}, \quad \widetilde{M}_{s}=\sup _{0 \leq t \leq T} C e^{\omega t}\left(1+t^{\alpha-1}\right)
$$

so we have

$$
\left\|T_{\alpha}(t)\right\|_{L(E)} \leq \widetilde{M}_{T},\left\|S_{\alpha}(t)\right\|_{L(E)} \leq t^{\alpha-1} \widetilde{M}_{s}
$$

Let us consider the set

$$
\begin{aligned}
\mathcal{B}_{1}= & \left\{x:(-\infty, T] \rightarrow E \text { such that }\left.x\right|_{J_{k}} \in C\left(J_{k}, E\right)\right. \text { and there exist } \\
& \left.x\left(t_{k}^{+}\right) \text {and } x\left(t_{k}^{-}\right) \text {with } x\left(t_{k}\right)=x\left(t_{k}^{-}\right), x_{0}=\phi, k=1,2, \ldots, m\right\},
\end{aligned}
$$

endowed with the seminorm

$$
\|x\|_{\mathcal{B}_{1}}=\sup \{|x(s)|: s \in[0, T]\}+\|\phi\|_{\mathcal{B}}, x \in \mathcal{B}_{1}
$$

where $\left.x\right|_{J_{k}}$ is the restriction of $x$ to $J_{k}=\left(t_{k}, t_{k+1}\right], k=1,2, \ldots, m$.
From Lemma 3.1, we define the mild solution of system (3) as follows:
Definition 3.3. A function $x:(-\infty, T] \rightarrow E$ is called a mild solution of (3) if the restriction of $x(\cdot)$ to the interval $J_{k},(k=0,1, \ldots, m)$ is continuous and there exists $v(\cdot) \in L^{1}\left(J_{k}, E\right)$, such that $v(t) \in$
$F\left(t, x_{\rho\left(t, x_{t}\right)}, x(t)\right)$ a.e $t \in[0, T]$, and $x$ satisfies the following integral equation:

$$
x(t)= \begin{cases}\phi(t), & t \in(-\infty, 0]  \tag{5}\\ \int_{0}^{t} S_{\alpha}(t-s) v(s) d s+\int_{0}^{t} S_{\alpha}(t-s) B u(s) d s, & t \in\left[0, t_{1}\right] \\ T_{\alpha}\left(t-t_{1}\right)\left(x\left(t_{1}^{-}\right)+I_{1}\left(x\left(t_{1}^{-}\right)\right)\right)+\int_{t_{1}}^{t} S_{\alpha}(t-s) v(s) d s & \\ +\int_{t_{1}}^{t} S_{\alpha}(t-s) B u(s) d s, & t \in\left(t_{1}, t_{2}\right] \\ \vdots \\ T_{\alpha}\left(t-t_{m}\right)\left(x\left(t_{m}^{-}\right)+I_{m}\left(x\left(t_{m}^{-}\right)\right)\right)+\int_{t_{m}}^{t} S_{\alpha}(t-s) v(s) d s & \\ +\int_{t_{m}}^{t} S_{\alpha}(t-s) B u(s) d s, & t \in\left(t_{m}, T\right]\end{cases}
$$

Definition 3.4. The problem (3) is said to be controllable on the interval $J$ if for every initial function $\phi \in \mathcal{B}$ and $x_{1} \in E$ there exists a control $u \in L^{2}(J, E)$ such that the mild solution $x(\cdot)$ of $(3)$ satisfies $x(T)=x_{1}$.

Set

$$
R\left(\rho^{-}\right)=\{\rho(s, \varphi):(s, \varphi) \in J \times \mathcal{B}, \rho(s, \varphi) \leq 0\}
$$

We always assume that $\rho: J \times \mathcal{B} \rightarrow(-\infty, T]$ is continuous. Additionally, we introduce following hypothesis:
$\left(H_{\varphi}\right)$ The function $t \rightarrow \varphi_{t}$ is continuous from $\mathcal{R}\left(\rho^{-}\right)$into $\mathcal{B}$ and there exists a continuous and bounded function $L^{\phi}: \mathcal{R}\left(\rho^{-}\right) \rightarrow(0, \infty)$ such that

$$
\left\|\phi_{t}\right\|_{\mathcal{B}} \leq L^{\phi}(t)\|\phi\|_{\mathcal{B}} \quad \text { for every } t \in \mathcal{R}\left(\rho^{-}\right)
$$

Remark 3.5. The condition $\left(H_{\varphi}\right)$, is frequently verified by continuous and bounded functions. For more details see, e.g., [29].
Remark 3.6. In the rest of this section, $C_{1}^{*}$ and $C_{2}^{*}$ are the constants

$$
C_{1}^{*}=\sup _{s \in J} C_{1}(s) \text { and } C_{2}^{*}=\sup _{s \in J} C_{2}(s)
$$

Lemma 3.7. [27] If $x:(-\infty, T] \rightarrow X$ is a function such that $x_{0}=\phi$, then

$$
\left\|x_{s}\right\|_{\mathcal{B}} \leq\left(C_{2}^{*}+L^{\phi}\right)\|\phi\|_{\mathcal{B}}+C_{1}^{*} \sup \{|y(\theta)| ; \theta \in[0, \max \{0, s\}]\}, s \in \mathcal{R}\left(\rho^{-}\right) \cup J
$$

where $L^{\phi}=\sup _{t \in \mathcal{R}\left(\rho^{-}\right)} L^{\phi}(t)$.
Let us list the following assumptions.
(H1) The resolvent family $S_{\alpha}(t)$ is compact for $t>0$.
(H2) The multivalued map $F: J \times \mathcal{B} \times E \longrightarrow P_{c p, c v}(E)$ is Carathéodory.
(H3) There exist a function $\mu \in L^{1}\left(J, \mathbb{R}^{+}\right)$and a continuous nondecreasing function $\psi: \mathbb{R}^{+} \rightarrow(0,+\infty)$ such that

$$
\|f(t, v, w)\| \leq \mu(t) \psi\left(\|v\|_{\mathcal{B}}+\|w\|\right), \quad(t, v, w) \in J \times \mathcal{B} \times E
$$

(H4) $I_{k}: E \rightarrow E$ is continuous, and there exists $\Omega>0$ such that

$$
\Omega=\max _{1 \leq k \leq m}\left\{\left\|I_{k}(x)\right\|_{E}, x \in D_{r}\right\}
$$

(H5) The linear operator $W: L^{2}(J, E) \rightarrow E$ defined by

$$
W u=\int_{0}^{T} S_{\alpha}(T-s) B u(s) d s
$$

has a pseudo inverse operator $\tilde{W}^{-1}$, which takes values in $L^{2}(J, E) / \operatorname{ker} W$ and there exist two positive constants $M_{1}$ and $M_{2}$ such that

$$
\begin{equation*}
\|B\|_{L(E)} \leq M_{1},\left\|\tilde{W}^{-1}\right\|_{L(E)} \leq M_{2} \tag{6}
\end{equation*}
$$

Remark 3.8. The question of the existence of the operator $\tilde{W}^{-1}$ and of its inverse is discussed in the paper by Quinn and Carmichael (see [39]).
Theorem 3.9. Assume that $\left(H_{\varphi}\right),(H 1)-(H 5)$ hold. Then the IVP (3) is controllable on $(-\infty, T]$.
Proof. We transform the problem (3) into a fixed-point problem. Consider the multivalued operator $N: \mathcal{B}_{1} \longrightarrow \mathcal{P}\left(\mathcal{B}_{1}\right)$ defined by $N(h)=\left\{h \in \mathcal{B}_{1}\right\}$ with

$$
h(t)= \begin{cases}\phi(t), & t \in(-\infty, 0] \\ \int_{0}^{t} S_{\alpha}(t-s) v(s) d s+\int_{0}^{t} S_{\alpha}(t-s) B u(s) d s, & t \in\left[0, t_{1}\right] \\ T_{\alpha}\left(t-t_{1}\right)\left(x\left(t_{1}^{-}\right)+I_{1}\left(x\left(t_{1}^{-}\right)\right)\right)+\int_{t_{1}}^{t} S_{\alpha}(t-s) v(s) d s & \\ +\int_{t_{1}}^{t} S_{\alpha}(t-s) B u(s) d s, & t \in\left(t_{1}, t_{2}\right] \\ \vdots, & \\ T_{\alpha}\left(t-t_{m}\right)\left(x\left(t_{m}^{-}\right)+I_{m}\left(x\left(t_{m}^{-}\right)\right)\right)+\int_{t_{m}}^{t} S_{\alpha}(t-s) v(s) d s & \\ +\int_{t_{m}}^{t} S_{\alpha}(t-s) B u(s) d s, & t \in\left(t_{m}, T\right]\end{cases}
$$

Using hypothesis (H5) for an arbitrary function $x(\cdot)$ define the control

$$
u(t)= \begin{cases}\tilde{W}^{-1}\left[x_{1}-\int_{0}^{T} S_{\alpha}(T-s) v(s) d s\right](t), & t \in\left[0, t_{1}\right] \\ \tilde{W}^{-1}\left[x_{1}-T_{\alpha}\left(T-t_{1}\right)\left(x\left(t_{1}^{-}\right)+I_{1}\left(x\left(t_{1}^{-}\right)\right)\right)\right. & \\ \left.-\int_{t_{1}}^{T} S_{\alpha}(T-s) v(s) d s\right](t), & t \in\left(t_{1}, t_{2}\right] \\ \vdots, & \\ \tilde{W}^{-1}\left[x_{1}-T_{\alpha}\left(T-t_{m}\right)\left(x\left(t_{m}^{-}\right)+I_{m}\left(x\left(t_{m}^{-}\right)\right)\right)\right. & \\ \left.-\int_{t_{m}}^{T} S_{\alpha}(T-s) v(s) d s\right](t), & t \in\left(t_{m}, T\right]\end{cases}
$$

It is clear that the fixed points of the operator $N$ are mild solutions of the problem (3).
Let us define $y(\cdot):(-\infty, T] \longrightarrow E$ as

$$
y(t)= \begin{cases}\phi(t), & t \in(-\infty, 0] \\ 0, & t \in J\end{cases}
$$

Then $y_{0}=\phi$. For each $z \in C(J, E)$ with $z(0)=0$, we denote by $\bar{z}$ the function defined by

$$
\bar{z}(t)= \begin{cases}0, & t \in(-\infty, 0] \\ z(t), & t \in J\end{cases}
$$

Let $x_{t}=y_{t}+\bar{z}_{t}, t \in(-\infty, T]$. It is easy to see that $x(\cdot)$ satisfies (5) if and only if $z_{0}=0$ and for $t \in J$, we have

$$
z(t)= \begin{cases}\int_{0}^{t} S_{\alpha}(t-s) v(s) d s+\int_{0}^{t} S_{\alpha}(t-s) B u(s) d s, & t \in\left[0, t_{1}\right] \\ T_{\alpha}\left(t-t_{1}\right)\left[y\left(t_{1}^{-}\right)+\bar{z}\left(t_{1}^{-}\right)+I_{1}\left(y\left(t_{1}^{-}\right)+\bar{z}\left(t_{1}^{-}\right)\right)\right] & \\ +\int_{t_{1}}^{t} S_{\alpha}(t-s) v(s) d s+\int_{t_{1}}^{t} S_{\alpha}(t-s) B u(s) d s, & t \in\left(t_{1}, t_{2}\right] \\ \vdots, \\ T_{\alpha}\left(t-t_{m}\right)\left[y\left(t_{m}^{-}\right)+\bar{z}\left(t_{m}^{-}\right)+I_{m}\left(y\left(t_{m}^{-}\right)+\bar{z}\left(t_{m}^{-}\right)\right)\right] \\ +\int_{t_{m}}^{t} S_{\alpha}(t-s) v(s) d s+\int_{t_{m}}^{t} S_{\alpha}(t-s) B u(s) d s, \quad t \in\left(t_{m}, T\right]\end{cases}
$$

where $v(s) \in S_{F, y_{\rho\left(s, y_{s}+\bar{z}_{s}\right)}+\bar{z}_{\rho\left(s, y_{s}+\bar{z}_{s}\right)} .}$.
Let

$$
\mathcal{B}_{2}=\left\{z \in \mathcal{B}_{1} \quad \text { such that } \quad z_{0}=0\right\} .
$$

For any $z \in \mathcal{B}_{2}$, we have

$$
\begin{aligned}
\|z\|_{\mathcal{B}_{2}} & =\sup _{t \in J}\|z(t)\|+\left\|z_{0}\right\|_{\mathcal{B}} \\
& =\sup _{t \in J}\|z(t)\| .
\end{aligned}
$$

Thus $\left(\mathcal{B}_{2},\|\cdot\|_{\mathcal{B}_{2}}\right)$ is a Banach space. We define the operator $P: \mathcal{B}_{2} \longrightarrow \mathcal{P}\left(\mathcal{B}_{2}\right)$ by : $P(z)=\left\{h \in \mathcal{B}_{2}\right\}$ with

$$
h(t)= \begin{cases}\int_{0}^{t} S_{\alpha}(t-s) v(s) d s+\int_{0}^{t} S_{\alpha}(t-s) B u(s) d s, & t \in\left[0, t_{1}\right] \\ T_{\alpha}\left(t-t_{1}\right)\left[y\left(t_{1}^{-}\right)+\bar{z}\left(t_{1}^{-}\right)+I_{1}\left(y\left(t_{1}^{-}\right)+\bar{z}\left(t_{1}^{-}\right)\right)\right] & \\ +\int_{t_{1}}^{t} S_{\alpha}(t-s) v(s) d s+\int_{t_{1}}^{t} S_{\alpha}(t-s) B u(s) d s, & t \in\left(t_{1}, t_{2}\right] \\ \vdots, \\ T_{\alpha}\left(t-t_{m}\right)\left[y\left(t_{m}^{-}\right)+\bar{z}\left(t_{m}^{-}\right)+I_{m}\left(y\left(t_{m}^{-}\right)+\bar{z}\left(t_{m}^{-}\right)\right)\right] \\ & \\ +\int_{t_{m}}^{t} S_{\alpha}(t-s) v(s) d s+\int_{t_{m}}^{t} S_{\alpha}(t-s) B u(s) d s, & t \in\left(t_{m}, T\right]\end{cases}
$$


It is clear that the operator $N$ has a fixed point if and only if $P$ has a fixed point. So let us prove that $P$ has a fixed point. We shall show that the operators $P$ satisfy all conditions of Lemma 2.9. For better readability, we break the proof into a sequence of steps.
Choose

$$
\begin{aligned}
r & >\widetilde{M}_{T}(r+\Omega)\left(1+\widetilde{M}_{S} M_{1} M_{2} \frac{T^{\alpha}}{\alpha}\right)+\widetilde{M}_{S} M_{1} M_{2} \frac{T^{\alpha}}{\alpha}\left\|x_{1}\right\| \\
& +\left(1+\widetilde{M}_{S} M_{1} M_{2} \frac{T^{\alpha}}{\alpha}\right) \widetilde{M}_{S} \frac{T^{\alpha}}{\alpha} \psi\left(\left(C_{2}^{*}+L^{\phi}\right)\|\phi\|_{\mathcal{B}}+\left(C_{1}^{*}+1\right) r\right)\|\mu\|_{L^{1}}
\end{aligned}
$$

and consider the set

$$
D_{r}=\left\{z \in \mathcal{B}_{2}: z(0)=0,\|z\|_{\mathcal{B}_{2}} \leq r\right\}
$$

It is clear that $D_{r}$ is a closed, convex, bounded set in $\mathcal{B}_{2}$.
Step 1: $P$ is convex for each $z \in \mathcal{B}_{2}$.

Indeed, if $h_{1}$ and $h_{2}$ belong to $P$, then there exist $v_{1}, v_{2} \in S_{F, y_{\rho\left(s, y_{s}+\bar{z}_{s}\right)}+\bar{z}_{\rho\left(s, y_{s}+\bar{z}_{s}\right)}}$ such that, for $t \in J$ and $i=1,2$, we have

$$
h_{i}(t)= \begin{cases}\int_{0}^{t} S_{\alpha}(t-s) v_{i}(s) d s & \\ +\int_{0}^{t} S_{\alpha}(t-s) B \tilde{W}^{-1}\left[x_{1}-\int_{0}^{T} S_{\alpha}(T-\tau) v_{i}(\tau) d \tau\right] d s, & t \in\left[0, t_{1}\right] ; \\ T_{\alpha}\left(t-t_{1}\right)\left[y\left(t_{1}^{-}\right)+\bar{z}\left(t_{1}^{-}\right)+I_{1}\left(y\left(t_{1}^{-}\right)+\bar{z}\left(t_{1}^{-}\right)\right)\right]+\int_{t_{1}}^{t} S_{\alpha}(t-s) v_{i}(s) d s & \\ +\int_{t_{1}}^{t} S_{\alpha}(t-s) B \tilde{W}^{-1}\left[x_{1}-T_{\alpha}\left(T-t_{1}\right)\left[y\left(t_{1}^{-}\right)+\bar{z}\left(t_{1}^{-}\right)\right.\right. & \\ \left.\left.+I_{1}\left(y\left(t_{1}^{-}\right)+\bar{z}\left(t_{1}^{-}\right)\right)\right]-\int_{t_{1}}^{T} S_{\alpha}(T-\tau) v_{i}(\tau) d \tau\right] d s, & t \in\left(t_{1}, t_{2}\right] ; \\ \vdots & \\ T_{\alpha}\left(t-t_{m}\right)\left[y\left(t_{m}^{-}\right)+\bar{z}\left(t_{m}^{-}\right)+I_{m}\left(y\left(t_{m}^{-}\right)+\bar{z}\left(t_{m}^{-}\right)\right)\right]+\int_{t_{m}}^{t} S_{\alpha}(t-s) v_{i}(s) d s & \\ +\int_{t_{m}}^{t} S_{\alpha}(t-s) B \tilde{W}^{-1}\left[x_{1}-T_{\alpha}\left(T-t_{m}\right)\left[y\left(t_{m}^{-}\right)+\bar{z}\left(t_{m}^{-}\right)\right.\right. & \\ \left.\left.+I_{m}\left(y\left(t_{m}^{-}\right)+\bar{z}\left(t_{m}^{-}\right)\right)\right]-\int_{t_{m}}^{T} S_{\alpha}(T-\tau) v_{i}(\tau) d \tau\right] d s, & t \in\left(t_{m}, T\right] .\end{cases}
$$

Let $d \in[0,1]$. Then for each $t \in\left[0, t_{1}\right]$, we get

$$
\begin{aligned}
d h_{1}(t)+(1-d) h_{2}(t) & =\int_{0}^{t} S_{\alpha}(t-s)\left[d v_{1}(s)+(1-d) v_{2}(s)\right] d s+\int_{0}^{t} S_{\alpha}(t-s) B \tilde{W}^{-1} \\
& \times\left[x_{1}-\int_{0}^{T} S_{\alpha}(T-\tau)\left(d v_{1}(\tau)+(1-d) v_{2}(\tau)\right) d \tau\right] d s
\end{aligned}
$$

Similarly, for any $t \in\left(t_{i}, t_{i+1}\right], i=1, \ldots, m$, we have

$$
\begin{aligned}
d h_{1}(t)+(1-d) h_{2}(t) & =\int_{t_{i}}^{t} S_{\alpha}(t-s)\left[d v_{1}(s)+(1-d) v_{2}(s)\right] d s \\
& +T_{\alpha}\left(t-t_{i}\right)\left[y\left(t_{i}^{-}\right)+\bar{z}\left(t_{i}^{-}\right)+I_{i}\left(y\left(t_{i}^{-}\right)+\bar{z}\left(t_{i}^{-}\right)\right)\right] \\
& +\int_{t_{i}}^{t} S_{\alpha}(t-s) B \tilde{W}^{-1}\left[x_{1}-T_{\alpha}\left(T-t_{i}\right)\left[y\left(t_{i}^{-}\right)+\bar{z}\left(t_{i}^{-}\right)\right.\right. \\
& \left.\left.+I_{i}\left(y\left(t_{i}^{-}\right)+\bar{z}\left(t_{i}^{-}\right)\right)\right]-\int_{t_{i}}^{T} S_{\alpha}(T-\tau)\left(d v_{1}(\tau)+(1-d) v_{2}(\tau)\right) d \tau\right] d s
\end{aligned}
$$

Since $S_{F, y_{\rho\left(s, y_{s}+\bar{z}_{s}\right)}+\bar{z}_{\rho\left(s, y_{s}+\bar{z}_{s}\right)}}$ is convex (because $F$ has convex values), we get

$$
d h_{1}+(1-d) h_{2} \in P(z)
$$

Step 2: $P\left(D_{r}\right) \subset D_{r}$. Let $h \in P(z)$ and $z \in D_{r}$, for $t \in\left[0, t_{1}\right]$, we have

$$
\begin{aligned}
\|h(t)\| & \leq \int_{0}^{t}\left\|S_{\alpha}(t-s)\right\|_{L(E)}\|v(s)\| d s+\int_{0}^{t}\left\|S_{\alpha}(t-s)\right\|_{L(E)}\|B u(s)\| d s \\
& \leq \widetilde{M}_{S} \int_{0}^{t}(t-s)^{\alpha-1} \mu(s) \psi\left(\left\|y_{\rho\left(s, y_{s}+\bar{z}_{s}\right)}+\bar{z}_{\rho\left(s, y_{s}+\bar{z}_{s}\right)}\right\|+\|y(s)+\bar{z}(s)\|\right) d s \\
& +\widetilde{M}_{S} M_{1} M_{2} \int_{0}^{t}(t-s)^{\alpha-1}\left[\left\|x_{1}\right\|+\widetilde{M}_{S} \int_{0}^{T}(T-\tau)^{\alpha-1}\|v(\tau)\| d \tau\right] d s \\
& \leq \widetilde{M}_{S} \int_{0}^{t}(t-s)^{\alpha-1} \mu(s) \psi\left(\left\|y_{\rho\left(s, y_{s}+\bar{z}_{s}\right)}+\bar{z}_{\rho\left(s, y_{s}+\bar{z}_{s}\right)}\right\|+\|y(s)+\bar{z}(s)\|\right) d s \\
& +\widetilde{M}_{S} M_{1} M_{2} \int_{0}^{t}(t-s)^{\alpha-1}\left[\left\|x_{1}\right\|\right. \\
& \left.+\widetilde{M}_{S} \int_{0}^{T}(T-\tau)^{\alpha-1} \mu(\tau) \psi\left(\left\|y_{\rho\left(\tau, y_{\tau}+\bar{z}_{\tau}\right)}+\bar{z}_{\rho\left(\tau, y_{\tau}+\bar{z}_{\tau}\right)}\right\|+\|y(\tau)+\bar{z}(\tau)\|\right) \mid d \tau\right] d s \\
& \leq \widetilde{M}_{S} \frac{T^{\alpha}}{\alpha} \psi\left(\left(C_{2}^{*}+L^{\phi}\right)\|\phi\|_{\mathcal{B}}+\left(C_{1}^{*}+1\right) r\right) \int_{0}^{t} \mu(s) d s+\widetilde{M}_{S} M_{1} M_{2} \frac{T^{\alpha}}{\alpha}\left\|x_{1}\right\| \\
& +\widetilde{M}_{S}^{2} M_{1} M_{2} \frac{T^{2 \alpha}}{\alpha^{2}} \psi\left(\left(C_{2}^{*}+L^{\phi}\right)\|\phi\|_{\mathcal{B}}+\left(C_{1}^{*}+1\right) r\right) \int_{0}^{t} \mu(s) d s \\
& \leq \widetilde{M}_{S} M_{1} M_{2} \frac{T^{\alpha}}{\alpha}\left\|x_{1}\right\|+\left(1+\widetilde{M}_{S} M_{1} M_{2} \frac{T^{\alpha}}{\alpha}\right) \widetilde{M}_{S} \frac{T^{\alpha}}{\alpha} \\
& \times \psi\left(\left(C_{2}^{*}+L^{\phi}\right)\|\phi\|_{\mathcal{B}}+\left(C_{1}^{*}+1\right) r\right)\|\mu\|_{L^{1}}
\end{aligned}
$$

Moreover, when $t \in\left(t_{i}, t_{i+1}\right], i=1, \ldots, m$, we have the estimate

$$
\begin{aligned}
\|h(t)\| & \leq\left\|T_{\alpha}\left(t-t_{i}\right)\left[z\left(t_{i}^{-}\right)+I_{i}\left(z\left(t_{i}^{-}\right)\right)\right]\right\|_{E}+\int_{t_{i}}^{t}\left\|S_{\alpha}(t-s)\right\|_{L(E)}\|v(s)\| d s \\
& +\int_{t_{i}}^{t}\left\|S_{\alpha}(t-s)\right\|_{L(E)} \| B \tilde{W}^{-1}\left[x_{1}-T_{\alpha}\left(T-t_{i}\right)\left[z\left(t_{i}^{-}\right)+I_{i}\left(z\left(t_{i}^{-}\right)\right)\right]\right. \\
& \left.-\int_{t_{i}}^{T} S_{\alpha}(T-\tau) v(\tau) d \tau\right] \| d s \\
& \leq \widetilde{M}_{T}(r+\Omega)+\widetilde{M}_{S} \int_{0}^{t}(t-s)^{\alpha-1} \mu(s) \psi\left(\left\|y_{\rho\left(s, y_{s}+\bar{z}_{s}\right)}+\bar{z}_{\rho\left(s, y_{s}+\bar{z}_{s}\right)}\right\|+\|y(s)+\bar{z}(s)\|\right) d s \\
& +\widetilde{M}_{S} M_{1} M_{2} \int_{0}^{t}(t-s)^{\alpha-1}\left[\left\|x_{1}\right\|+\widetilde{M}_{T}(r+\Omega)+\widetilde{M}_{S} \int_{0}^{T}(T-\tau)^{\alpha-1}\|v(\tau)\| d \tau\right] d s \\
& \leq \widetilde{M}_{T}(r+\Omega)\left(1+\widetilde{M}_{S} M_{1} M_{2} \frac{T^{\alpha}}{\alpha}\right)+\widetilde{M}_{S} M_{1} M_{2} \frac{T^{\alpha}}{\alpha}\left\|x_{1}\right\| \\
& +\left(1+\widetilde{M}_{S} M_{1} M_{2} \frac{T^{\alpha}}{\alpha}\right) \widetilde{M}_{S} \frac{T^{\alpha}}{\alpha} \psi\left(\left(C_{2}^{*}+L^{\phi}\right)\|\phi\|_{\mathcal{B}}+\left(C_{1}^{*}+1\right) r\right)\|\mu\|_{L^{1}}<r .
\end{aligned}
$$

Step 3: $P$ maps bounded sets of $D_{r}$ into equicontinuous sets of $D_{r}$.
Let $\tau_{1}, \tau_{2} \in\left[0, t_{1}\right]$, with $\tau_{1}<\tau_{2}$, we have

$$
\left\|h\left(\tau_{2}\right)-h\left(\tau_{1}\right)\right\| \leq Q_{1}+Q_{2}
$$

where

$$
\begin{aligned}
Q_{1} & =\int_{\tau_{1}}^{\tau_{2}}\left\|S_{\alpha}\left(\tau_{2}-s\right)(v(s)+B u(s))\right\| d s \\
Q_{2} & =\int_{0}^{\tau_{1}}\left\|\left(S_{\alpha}\left(\tau_{2}-s\right)-S_{\alpha}\left(\tau_{1}-s\right)\right)(v(s)+B u(s))\right\| d s
\end{aligned}
$$

Actually, $Q_{1}$ and $Q_{2}$ tend to 0 as $\tau_{1} \rightarrow \tau_{2}$ independently of $z \in D_{r}$. Indeed, in view of (H3) and (6), we have

$$
\begin{aligned}
Q_{1} & =\int_{\tau_{1}}^{\tau_{2}}\left\|S_{\alpha}\left(\tau_{2}-s\right)(v(s)+B u(s))\right\| d s \\
& \leq \int_{\tau_{1}}^{\tau_{2}}\left\|S_{\alpha}\left(\tau_{2}-s\right)\right\|_{L(E)}\|v(s)\| d s+\int_{\tau_{1}}^{\tau_{2}}\left\|S_{\alpha}\left(\tau_{2}-s\right)\right\|_{L(E)}\|B u(s)\| d s \\
& \leq \frac{\widetilde{M}_{s}\left(\tau_{2}-\tau_{1}\right)^{\alpha}}{\alpha} \psi\left(\left(C_{2}^{*}+L^{\phi}\right)\|\phi\|_{\mathcal{B}}+\left(C_{1}^{*}+1\right) r\right)\|\mu\|_{L^{1}} \\
& +\frac{M_{1} M_{2} \widetilde{M}_{s}\left(\tau_{2}-\tau_{1}\right)^{\alpha}}{\alpha}\left[\left\|x_{1}\right\|+\widetilde{M}_{s} \frac{T^{\alpha}}{\alpha} \psi\left(\left(C_{2}^{*}+L^{\phi}\right)\|\phi\|_{\mathcal{B}}+\left(C_{1}^{*}+1\right) r\right)\right]\|\mu\|_{L^{1}}
\end{aligned}
$$

Hence, we deduce that

$$
\lim _{\tau_{1} \rightarrow \tau_{2}} Q_{1}=0
$$

Also,

$$
\begin{aligned}
Q_{2} & =\int_{0}^{\tau_{1}}\left\|\left(S_{\alpha}\left(\tau_{2}-s\right)-S_{\alpha}\left(\tau_{1}-s\right)\right)(v(s)+B u(s))\right\| d s \\
& \leq \int_{0}^{\tau_{1}}\left\|\left(S_{\alpha}\left(\tau_{2}-s\right)-S_{\alpha}\left(\tau_{1}-s\right)\right)\right\|_{L(E)}(\|v(s)\|+\|B u(s)\|) d s \\
& \leq \int_{0}^{\tau_{1}}\left\|\left(S_{\alpha}\left(\tau_{2}-s\right)-S_{\alpha}\left(\tau_{1}-s\right)\right)\right\|_{L(E)}\|v(s)\| d s \\
& +M_{1} \int_{0}^{\tau_{1}}\left\|\left(S_{\alpha}\left(\tau_{2}-s\right)-S_{\alpha}\left(\tau_{1}-s\right)\right)\right\|_{L(E)}\|u(s)\| d s \\
& \leq \psi\left(\left(C_{2}^{*}+L^{\phi}\right)\|\phi\|_{\mathcal{B}}+\left(C_{1}^{*}+1\right) r\right)\|\mu\|_{L^{1}} \int_{0}^{\tau_{1}}\left\|\left(S_{\alpha}\left(\tau_{2}-s\right)-S_{\alpha}\left(\tau_{1}-s\right)\right)\right\|_{L(E)} d s \\
& +M_{1} M_{2}\left[\left\|x_{1}\right\|+\widetilde{M}_{s} \frac{T^{\alpha}}{\alpha} \psi\left(\left(C_{2}^{*}+L^{\phi}\right)\|\phi\|_{\mathcal{B}}+\left(C_{1}^{*}+1\right) r\right)\|\mu\|_{L^{1}}\right] \\
& \times \int_{0}^{\tau_{1}}\left\|S_{\alpha}\left(\tau_{2}-s\right)-S_{\alpha}\left(\tau_{1}-s\right)\right\|_{L(E)} d s .
\end{aligned}
$$

Since $\left\|S_{\alpha}\left(\tau_{2}-s\right)-S_{\alpha}\left(\tau_{1}-s\right)\right\|_{L(E)} \leq 2 \widetilde{M}_{s}\left(t_{1}-s\right)^{\alpha-1} \in L^{1}\left(J, \mathbb{R}_{+}\right)$for $s \in\left[0, t_{1}\right]$ and $S_{\alpha}\left(\tau_{2}-s\right)-S_{\alpha}\left(\tau_{1}-s\right) \rightarrow 0$ as $\tau_{1} \rightarrow \tau_{2}, S_{\alpha}$ is strongly continuous. This implies that

$$
\lim _{\tau_{1} \rightarrow \tau_{2}} Q_{2}=0
$$

Similarly, for $\tau_{1}, \tau_{2} \in\left(t_{i}, t_{i+1}\right], i=1, \ldots, m$, we have

$$
\begin{aligned}
\left\|h\left(\tau_{2}\right)-h\left(\tau_{1}\right)\right\| & \leq\left\|T_{\alpha}\left(\tau_{2}-t_{i}\right)-T_{\alpha}\left(\tau_{1}-t_{i}\right)\right\|_{L(E)}\left[\left\|z\left(t_{i}^{-}\right)\right\|+\left\|I_{i}\left(z\left(t_{i}^{-}\right)\right)\right\|\right]+Q_{1}^{\prime}+Q_{2}^{\prime} \\
& \leq\left\|T_{\alpha}\left(\tau_{2}-t_{i}\right)-T_{\alpha}\left(\tau_{1}-t_{i}\right)\right\|_{L(E)}(r+\Omega)+Q_{1}^{\prime}+Q_{2}^{\prime}
\end{aligned}
$$

where

$$
\begin{aligned}
Q_{1}^{\prime} & =\int_{\tau_{1}}^{\tau_{2}}\left\|S_{\alpha}\left(\tau_{2}-s\right)(v(s)+B u(s))\right\| d s \\
& \leq \frac{\widetilde{M}_{s}\left(\tau_{2}-\tau_{1}\right)^{\alpha}}{\alpha} \psi\left(\left(C_{2}^{*}+L^{\phi}\right)\|\phi\|_{\mathcal{B}}+\left(C_{1}^{*}+1\right) r\right)\|\mu\|_{L^{1}}+\frac{M_{1} M_{2} \widetilde{M}_{s}\left(\tau_{2}-\tau_{1}\right)^{\alpha}}{\alpha} \\
& \times\left[\left\|x_{1}\right\|+\widetilde{M}_{T}(r+\Omega)+\widetilde{M}_{s} \frac{T^{\alpha}}{\alpha} \psi\left(\left(C_{2}^{*}+L^{\phi}\right)\|\phi\|_{\mathcal{B}}+\left(C_{1}^{*}+1\right) r\right)\right]\|\mu\|_{L^{1}} .
\end{aligned}
$$

Hence, we deduce that $\lim _{\tau_{1} \rightarrow \tau_{2}} Q_{1}^{\prime}=0$,

$$
\begin{aligned}
Q_{2}^{\prime} & =\int_{0}^{\tau_{1}}\left\|S_{\alpha}\left(\tau_{2}-s\right)-S_{\alpha}\left(\tau_{1}-s\right)(v(s)+B u(s))\right\| d s \\
& \leq \psi\left(\left(C_{2}^{*}+L^{\phi}\right)\|\phi\|_{\mathcal{B}}+\left(C_{1}^{*}+1\right) r\right)\|\mu\|_{L^{1}} \int_{0}^{\tau_{1}}\left\|\left(S_{\alpha}\left(\tau_{2}-s\right)-S_{\alpha}\left(\tau_{1}-s\right)\right)\right\| d s \\
& +M_{1} M_{2}\left[\left\|x_{1}\right\|+\widetilde{M}_{T}(r+\Omega)+\widetilde{M}_{s} \frac{T^{\alpha}}{\alpha} \psi\left(\left(C_{2}^{*}+L^{\phi}\right)\|\phi\|_{\mathcal{B}}+\left(C_{1}^{*}+1\right) r\right)\|\mu\|_{L^{1}}\right] \\
& \times \int_{0}^{\tau_{1}}\left\|S_{\alpha}\left(\tau_{2}-s\right)-S_{\alpha}\left(\tau_{1}-s\right)\right\|_{L(E)} d s
\end{aligned}
$$

As $\left\|S_{\alpha}\left(\tau_{2}-s\right)-S_{\alpha}\left(\tau_{1}-s\right)\right\|_{L(E)} \leq 2 \widetilde{M}_{s}\left(t_{1}-s\right)^{\alpha-1} \in L^{1}\left(J, \mathbb{R}_{+}\right)$for $s \in\left[0, t_{1}\right]$ and $S_{\alpha}\left(\tau_{2}-s\right)-S_{\alpha}\left(\tau_{1}-s\right) \rightarrow 0$ as $\tau_{1} \rightarrow \tau_{2}$, since $S_{\alpha}$ is strongly continuous. This implies that $\lim _{\tau_{1} \rightarrow \tau_{2}} Q_{2}^{\prime}=0$. Since $T_{\alpha}$ is also strongly continuous, so $T_{\alpha}\left(\tau_{2}-t_{i}\right)-T_{\alpha}\left(\tau_{1}-t_{i}\right) \rightarrow 0$ as $\tau_{1} \rightarrow \tau_{2}$. Thus, from the above inequalities, we have

$$
\lim _{\tau_{1} \rightarrow \tau_{2}}\left\|h\left(\tau_{2}\right)-h\left(\tau_{1}\right)\right\|=0
$$

So, $P\left(D_{r}\right)$ is equicontinuous.
Step 4: The set $\left(P D_{r}\right)(t)$ is relatively compact for each $t \in J$, where

$$
\left(P D_{r}\right)(t)=\left\{h(t): h \in P\left(D_{r}\right)\right\} .
$$

Let $0<t \leq s \leq t_{1}$ be fixed and let $\varepsilon$ be a real number satisfying $0<\varepsilon<t$. For $z \in D_{r}$ we define

$$
h_{\varepsilon}(t)=\int_{0}^{t-\varepsilon} S_{\alpha}(t-s) v(s) d s+\int_{0}^{t-\varepsilon} S_{\alpha}(t-s) B u(s) d s
$$



$$
H_{\varepsilon}=\left\{h_{\varepsilon}(t): h_{\varepsilon} \in P\left(D_{r}\right)\right\}
$$

is relatively compact in $E$. Moreover,

$$
\left\|h(t)-h_{\varepsilon}(t)\right\| \leq\left\|\int_{t-\varepsilon}^{t} S_{\alpha}(t-s) v(s) d s\right\|+\left\|\int_{t-\varepsilon}^{t} S_{\alpha}(t-s) B u(s) d s\right\| .
$$

Similarly, for any $t \in\left(t_{i}, t_{i+1}\right]$ with $i=1, \ldots, m$. Let $t_{i}<t \leq s \leq t_{i+1}$ be fixed and let $\varepsilon$ be a real number satisfying $0<\varepsilon<t$. For $z \in D_{r}$ we define

$$
\begin{aligned}
h_{\varepsilon}(t) & =T_{\alpha}\left(t-t_{i}\right)\left[y\left(t_{i}^{-}\right)+\bar{z}\left(t_{i}^{-}\right)+I_{i}\left(y\left(t_{i}^{-}\right)+\bar{z}\left(t_{i}^{-}\right)\right)\right] \\
& +\int_{t_{i}}^{t-\varepsilon} S_{\alpha}(t-s) v(s) d s+\int_{t_{i}}^{t-\varepsilon} S_{\alpha}(t-s) B u(s) d s,
\end{aligned}
$$

where $v \in S_{F, y_{\rho\left(s, y_{s}+\bar{z}_{s}\right)}+\bar{z}_{\rho\left(s, y_{s}+\bar{z}_{s}\right)} \text {. Since } S_{\alpha}(t) \text { is a compact operator, the set }}$

$$
H_{\varepsilon}=\left\{h_{\varepsilon}(t): h \in P\left(D_{r}\right)\right\}
$$

is relatively compact. Moreover,

$$
\left\|h(t)-h_{\varepsilon}(t)\right\| \leq\left\|\int_{t-\varepsilon}^{t} S_{\alpha}(t-s) v(s) d s\right\|+\left\|\int_{t-\varepsilon}^{t} S_{\alpha}(t-s) B u(s) d s\right\|
$$

On the other hand, using the continuity of the operator $T_{\alpha}(t)$, it follows that $\left(P D_{r}\right)(t)$ is relatively compact in $E$, for every $t \in[0, T]$.
As a consequence of Step 2 to 4 together with Arzelá-Ascoli theorem we can conclude that $P$ is completely continuous.
Step 5: $P$ has a closed graph.

Let $z_{n} \rightarrow z_{*}, h_{n} \in P\left(z_{n}\right)$ with $h_{n} \rightarrow h_{*}$. We shall prove that $h_{*} \in P\left(z_{*}\right)$.
In fact $h_{n} \in P\left(z_{n}\right)$ means that there is exists $v_{n} \in S_{F, y_{n} \rho\left(s, y_{n s}+\bar{z}_{n s}\right)+\bar{z}_{n} \rho\left(s, y_{n s}+\bar{z}_{n s}\right)}$ such that, for each $t \in\left[0, t_{1}\right]$,

$$
h_{n}(t)=\int_{0}^{t} S_{\alpha}(t-s) v_{n}(s) d s+\int_{0}^{t} S_{\alpha}(t-s) B u_{n}(s) d s
$$

where

$$
u_{n}(t)=\tilde{W}^{-1}\left[x_{1}-\int_{0}^{T} S_{\alpha}(T-s) v_{n}(s) d s\right](t)
$$

We must show that there exists $v_{*} \in S_{F, y_{*} \rho\left(s, y_{* s}+\bar{z}_{* s}\right)+\bar{z}_{*} \rho\left(s, y_{* s}+\bar{z}_{* s}\right)}$ such that, for each $t \in\left[0, t_{1}\right]$,

$$
h_{*}(t)=\int_{0}^{t} S_{\alpha}(t-s) v_{*}(s) d s+\int_{0}^{t} S_{\alpha}(t-s) B u_{*}(s) d s
$$

where

$$
u_{*}(t)=\tilde{W}^{-1}\left[x_{1}-\int_{0}^{T} S_{\alpha}(T-s) v_{*}(s) d s\right](t)
$$

Consider the following linear continuous operator $\Upsilon: L^{1}\left(\left[0, t_{1}\right], E\right) \longrightarrow C\left(\left[0, t_{1}\right], E\right)$ defined by

$$
(\Upsilon v)(t)=\int_{0}^{t} S_{\alpha}(t-s)\left[v(s)+B \tilde{W}^{-1}\left(x_{1}-\int_{0}^{T} S_{\alpha}(T-\tau) v(\tau) d \tau\right)(s)\right] d s
$$

By Lemma 2.8, we know that $\Upsilon_{o} S_{F}$ is a closed graph operator. Moreover, for every $t \in\left[0, t_{1}\right]$, we obtain

$$
h_{n}(t) \in \Upsilon\left(S_{F, y_{n} \rho\left(s, y_{n s}+\bar{z}_{n s}\right)+\bar{z}_{n} \rho\left(s, y_{n s}+\bar{z}_{n s}\right)}\right)
$$

Since $z_{n} \rightarrow z_{*}$ and $h_{n} \rightarrow h_{*}$, it follows, that for every $t \in\left[0, t_{1}\right]$,

$$
h_{*}(t)=\int_{0}^{t} S_{\alpha}(t-s) v_{*}(s) d s+\int_{0}^{t} S_{\alpha}(t-s) B u_{*}(s) d s
$$


Similarly, for any $t \in\left(t_{i}, t_{i+1}\right], i=1, \ldots, m$, we have

$$
\begin{aligned}
h_{n}(t) & =T_{\alpha}\left(t-t_{i}\right)\left[y_{n}\left(t_{i}^{-}\right)+\bar{z}_{n}\left(t_{i}^{-}\right)+I_{i}\left(y_{n}\left(t_{i}^{-}\right)+\bar{z}_{n}\left(t_{i}^{-}\right)\right)\right] \\
& +\int_{t_{i}}^{t} S_{\alpha}(t-s) v_{n}(s)+\int_{t_{i}}^{t} S_{\alpha}(t-s) B u_{n}(s) d s
\end{aligned}
$$

where

$$
\begin{aligned}
u_{n}(t)= & \tilde{W}^{-1}\left[x_{1}-T_{\alpha}\left(T-t_{i}\right)\left(y_{n}\left(t_{i}^{-}\right)+\bar{z}_{n}\left(t_{i}^{-}\right)+I_{i}\left(y_{n}\left(t_{i}^{-}\right)+\bar{z}_{n}\left(t_{i}^{-}\right)\right)\right)\right. \\
& \left.-\int_{t_{i}}^{T} S_{\alpha}(T-s) v_{n}(s) d s\right](t)
\end{aligned}
$$

We shall prove that there exists $v_{*} \in S_{F, y_{*} \rho\left(s, y_{* s}+\bar{z}_{* s}\right)+\bar{z}_{*} \rho\left(s, y_{* s}+\bar{z}_{* s}\right)}$ such that, for each $t \in\left(t_{i}, t_{i+1}\right]$,

$$
\begin{aligned}
h_{*}(t) & =T_{\alpha}\left(t-t_{i}\right)\left[y_{*}\left(t_{i}^{-}\right)+\bar{z}_{*}\left(t_{i}^{-}\right)+I_{i}\left(y_{*}\left(t_{i}^{-}\right)+\bar{z}_{*}\left(t_{i}^{-}\right)\right)\right] \\
& +\int_{t_{i}}^{t} S_{\alpha}(t-s) v_{*}(s) d s+\int_{t_{i}}^{t} S_{\alpha}(t-s) B u_{*}(s) d s
\end{aligned}
$$

where

$$
\begin{aligned}
u_{*}(t)= & \tilde{W}^{-1}\left[x_{1}-T_{\alpha}\left(T-t_{i}\right)\left(y_{*}\left(t_{i}^{-}\right)+\bar{z}_{*}\left(t_{i}^{-}\right)+I_{i}\left(y_{*}\left(t_{i}^{-}\right)+\bar{z}_{*}\left(t_{i}^{-}\right)\right)\right)\right. \\
& \left.-\int_{t_{i}}^{T} S_{\alpha}(T-s) v_{*}(s) d s\right](t)
\end{aligned}
$$

Denote

$$
\widehat{u}(t)=\tilde{W}^{-1}\left[x_{1}-T_{\alpha}\left(T-t_{i}\right)\left(y\left(t_{i}^{-}\right)+\bar{z}\left(t_{i}^{-}\right)+I_{i}\left(y\left(t_{i}^{-}\right)+\bar{z}\left(t_{i}^{-}\right)\right)\right)\right](t)
$$

Since $I_{i}$ and $\tilde{W}^{-1}$ are continuous, we have

$$
\widehat{u}_{n}(t) \longrightarrow \widehat{u}_{*}(t), \quad \text { for } \quad t \in\left(t_{i}, t_{i+1}\right], i=1, \ldots, m
$$

Clearly, we have

$$
\begin{aligned}
& \|\left(h_{n}(t)-T_{\alpha}\left(t-t_{i}\right)\left[y_{n}\left(t_{i}^{-}\right)+\bar{z}_{n}\left(t_{i}^{-}\right)+I_{i}\left(y_{n}\left(t_{i}^{-}\right)+\bar{z}_{n}\left(t_{i}^{-}\right)\right)\right]-\int_{t_{i}}^{t} S_{\alpha}(t-s) B \widehat{u}_{n}(s) d s\right) \\
& -\left(h_{*}(t)-T_{\alpha}\left(t-t_{i}\right)\left[y_{*}\left(t_{i}^{-}\right)+\bar{z}_{*}\left(t_{i}^{-}\right)+I_{i}\left(y_{*}\left(t_{i}^{-}\right)+\bar{z}_{*}\left(t_{i}^{-}\right)\right)\right]-\int_{t_{i}}^{t} S_{\alpha}(t-s) B \widehat{u}_{*}(s) d s\right) \| \\
& \rightarrow 0 \text { as } n \rightarrow \infty
\end{aligned}
$$

Consider the linear continuous operator $\Upsilon: L^{1}\left(\left(t_{i}, t_{i+1}\right], E\right) \longrightarrow C\left(\left(t_{i}, t_{i+1}\right], E\right)$,

$$
\begin{aligned}
v \longmapsto(\Upsilon v)(t) & =\int_{t_{i}}^{t} S_{\alpha}(t-s)\left[v(s)+B \tilde{W}^{-1}\left(x_{1}-T_{\alpha}\left(T-t_{i}\right)\left(y_{n}\left(t_{i}^{-}\right)+\bar{z}_{n}\left(t_{i}^{-}\right)\right.\right.\right. \\
& \left.\left.\left.+I_{i}\left(y_{n}\left(t_{i}^{-}\right)+\bar{z}_{n}\left(t_{i}^{-}\right)\right)\right)-\int_{t_{i}}^{T} S_{\alpha}(T-\tau) v(\tau) d \tau\right)(s)\right] d s
\end{aligned}
$$

In view of Lemma 2.8, we deduce that $\Upsilon_{o} S_{F}$ is a closed graph operator. Also, from the definition of $\Upsilon$, we have that, for every $t \in\left(t_{i}, t_{i+1}\right], i=1, \ldots, m$,

$$
\left(h_{n}(t)-T_{\alpha}\left(t-t_{i}\right)\left[y_{n}\left(t_{i}^{-}\right)+\bar{z}_{n}\left(t_{i}^{-}\right)+I_{i}\left(y_{n}\left(t_{i}^{-}\right)+\bar{z}_{n}\left(t_{i}^{-}\right)\right)\right]\right) \in \Upsilon\left(S_{F, y_{n} \rho\left(s, y_{n s}+\bar{z}_{n s}\right)+\bar{z}_{n} \rho\left(s, y_{n s}+\bar{z}_{n s}\right)}\right)
$$

Since $z_{n} \rightarrow z_{*}$, for some $v_{*} \in S_{F, y_{*} \rho\left(s, y_{* s}+\bar{z}_{* s}\right)+\bar{z}_{*} \rho\left(s, y_{* s}+\bar{z}_{* s}\right)}$ it follows from Lemma 2.8 that, for every $t \in\left(t_{i}, t_{i+1}\right]$, we have

$$
\begin{aligned}
h_{*}(t) & =T_{\alpha}\left(t-t_{i}\right)\left[y_{*}\left(t_{i}^{-}\right)+\bar{z}_{*}\left(t_{i}^{-}\right)+I_{i}\left(y_{*}\left(t_{i}^{-}\right)+\bar{z}_{*}\left(t_{i}^{-}\right)\right)\right] \\
& +\int_{t_{i}}^{t} S_{\alpha}(t-s) v_{*}(s) d s+\int_{0}^{t} S_{\alpha}(t-s) B u_{*}(s) d s
\end{aligned}
$$

Therefore $P$ has a closed graph.
Hence by Lemma 2.9. $P$ has a fixed point $z$ on $D_{r}$, which is the mild solution of the system (3), then problem (3) is controllable on $(-\infty, T]$. This completes the proof of the theorem.

## 4. An Example

Consider the impulsive fractional integro-differential inclusion:

$$
\begin{array}{rlrl}
\frac{\partial_{t}^{q}}{\partial t^{q}} v(t, \zeta) & \in \frac{\partial^{2}}{\partial \zeta^{2}} v(t, \zeta)+\int_{-\infty}^{t} a_{1}(s-t) v\left(s-\rho_{1}(t) \rho_{2}(|v(t-s, \zeta)|), \xi\right) d s+t^{2} \sin |v(t, \zeta)| \\
& +\mu(t, \zeta), & & t \in\left(t_{k}, t_{k+1}\right], \zeta \in[0, \pi] \\
v(t, 0) & =v(t, \pi)=0, & & t \in[0, T],  \tag{7}\\
v(t, \zeta) & =v_{0}(\theta, \zeta), & & \theta \in(-\infty, 0], \zeta \in[0, \pi] \\
\Delta v\left(t_{k}\right)(\zeta) & =\int_{-\infty}^{t_{k}} p_{k}\left(t_{k}-y\right) d y \cos \left(v\left(t_{k}\right)(\zeta)\right), & & k=1,2, \ldots, m .
\end{array}
$$

where $0<q<1, \mu:[0, T] \times[0, \pi] \rightarrow[0, \pi], p_{k}: \mathbb{R} \rightarrow \mathbb{R}, k=1,2, \ldots, m$, and $a_{1}: \mathbb{R} \rightarrow \mathcal{P}(\mathbb{R})$ is a convex-valued multivalued map, and $\rho_{i}:[0,+\infty) \rightarrow[0,+\infty), i=1,2$ are continuous functions.

Set $E=L^{2}([0, \pi])$ and $D(A) \subset E \rightarrow E$ be the operator $A \omega=\omega^{\prime \prime}$ with domain

$$
D(A)=\left\{\omega \in E: \omega, \omega^{\prime} \text { are absolutely continuous, } \omega^{\prime \prime} \in E, \omega(0)=\omega(\pi)=0\right\}
$$

Then

$$
A \omega=\sum_{n=1}^{\infty} n^{2}\left(\omega, \omega_{n}\right) \omega_{n}, \quad \omega \in D(A)
$$

where $\omega_{n}(x)=\sqrt{\frac{2}{\pi}} \sin (n x), n \in \mathbb{N}$ is the orthogonal set of eigenvectors of $A$. It is well known that $A$ is the infinitesimal generator of an analytic semigroup $\{T(t)\}_{t \geq 0}$ in $E$ and is given by

$$
T(t) \omega=\sum_{n=1}^{\infty} e^{-n^{2} t}\left(\omega, \omega_{n}\right) \omega_{n}, \quad \forall \omega \in E, \text { and every } t>0
$$

From these expressions, it follows that $\{T(t)\}_{t \geq 0}$ is a uniformly bounded compact semigroup, so that $R(\lambda, A)=$ $(\lambda-A)^{-1}$ is a compact operator for all $\lambda \in \rho(A)$, that is, $A \in \mathbb{A}^{\alpha}\left(\theta_{0}, \omega_{0}\right)$.
For the phase space, we choose $\mathcal{B}=C_{0} \times L^{2}(g, X)$, see Example 2.7 for details.
Set

$$
\begin{gathered}
x(t)(\zeta)=v(t, \zeta), \quad t \in[0, T], \zeta \in[0, \pi] \\
\phi(\theta)(\zeta)=v_{0}(\theta, \zeta), \quad \theta \in(-\infty, 0], \zeta \in[0, \pi] \\
F(t, \varphi, x(t))(\zeta)=\int_{-\infty}^{0} a_{1}(s) \varphi(s, \xi) d s+t^{2} \sin |x(t)(\zeta)|, \quad t \in[0, T], \zeta \in[0, \pi] . \\
\rho(t, \varphi)=s-\rho_{1}(s) \rho_{2}(|\varphi(0)|) \\
I_{k}\left(x\left(t_{k}^{-}\right)\right)(\zeta)=\int_{-\infty}^{0} p_{k}\left(t_{k}-y\right) d y \cos \left(x\left(t_{k}\right)(\zeta)\right), \quad k=1,2, \ldots, m \\
B u(t)(\zeta)=\mu(t, \zeta)
\end{gathered}
$$

Under the above conditions, we can represent the system (7) in the abstract form (3). Assume that the operator $W: L^{2}(J, E) \rightarrow E$ defined by

$$
W u(\cdot)=\int_{0}^{T} S_{\alpha}(T-s) \mu(s, \cdot) d s
$$

has a bounded invertible operator $\tilde{W}^{-1}$ in $L^{2}(J, E) / \operatorname{ker} W$.
The following result is a direct consequence of Theorem 3.9 .
Proposition 4.1. Let $\varphi \in \mathcal{B}$ be such that $\left(H_{\varphi}\right)$ holds, and assume that the above conditions are fulfilled, then system (7) is controllable on $(-\infty, T]$.

Acknowledgement: The work of J.J. Nieto has been partially supported by Agencia Estatal de Investigacion (AEI) of Sapin under grant MTM2016-75140-P, co-financed by the European Community fund FEDER, and XUNTA de Galicia under grant GRC2015-004.

## References

[1] S. Abbas, M. Benchohra, Stability results for fractional differential equations with state-dependent delay and not instantaneous impulses, Math. Slovaca 67 (2017), 875-894.
[2] S. Abbas, M. Benchohra, G.M. N'Guérékata, Topics in Fractional Differential Equations, Springer, New York, 2012.
[3] S. Abbas, M. Benchohra, G.M. N'Guérékata, Advanced Fractional Differential and Integral Equations, Nova Science Publishers, New York, 2015.
[4] R.P. Agarwal, M. Belmekki and M. Benchohra, A survey on semilinear differential equations and inclusions involving Riemann-Liouville fractional derivative, Adv Differ. Equat., 2009(2009) Article ID 981728, 1-47.
[5] R.P. Agarwal, B. De Andrade, and G. Siracusa, On fractional integro-difierential equations with state-dependent delay, Comput. Math. Appl., 62 (2011), 1143-1149.
[6] K. Aissani and M. Benchohra, Impulsive fractional differential inclusions with infinite delay, Electron. J. Differential Equations, 2013 (265) (2013), 1-13.
[7] K. Aissani and M. Benchohra, Controllability of impulsive fractional differential equations with infinite delay, Lib. Math. (N.S.), 33 (2013), 47-64.
[8] K. Aissani and M. Benchohra, Controllability of fractional integrodifferential equations with state-dependent delay, J. Integral Equations Appl., 28 (2016), no. 2, 149-167.
[9] K. Aissani, M. Benchohra and M.A. Darwish, Controllability of fractional order integro-differential inclusions with infinite delay, Electron. J. Qual. Theory Differ. Equ., 2014, No. 52, 1-18.
[10] D. Araya and C. Lizama, Almost automorphic mild solutions to fractional differential equations, Nonlinear Anal. TMA 69 (2008), 3692-3705.
[11] M.M. Arjunan and V. Kavitha, Controllability of impulsive fractional evolution integrodifferential equations in Banach spaces, J. Korean Soc. Ind. Appl. Math. 15 (3) (2011), 177-190.
$[12]$ D.D. Bainov and P.S. Simeonov, Systems with Impulse Effect, Ellis Horwood Ltd., Chichister, 1989.
[13] K. Balachandran and J.Y. Park, Controllability of fractional integrodifferential systems in Banach spaces, Nonlinear Anal. Hybr. Syst. 3 (4) (2009), 363-367.
[14] M. Benchohra, J. Henderson and S.K. Ntouyas, Impulsive Differential Equations and Inclusions, Hindawi Publishing Corporation, Vol 2, New York, 2006.
[15] M. Benchohra, K. Ezzinbi and S. Litimein, The existence and controllability results for fractional order integro-differential inclusions in Fréchet spaces, Proc. A. Razmadze Math. Inst. 162 (2013), 1-23.
[16] M. Benchohra, I. Medjadj, J.J. Nieto, P. Prakash, Global existence for functional differential equations with state-dependent delay, J. Funct. Spaces Appl., 2013, 863561.
[17] H.F. Bohnenblust and S. Karlin, On a theorem of Ville. Contribution to the theory of games, Ann. Math. Stud., No. 24, Princeton Univ, (1950), 155-160.
[18] Y.K. Chang, A. Anguraj and M. Mallika Arjunan, Existence results for impulsive neutral functional differential equations with infinite delay, Nonlinear Anal. Hybr. Syst., 2(2008), 209-218.
[19] Y.K. Chang, D.N. Chalishajar, Controllability of mixed Volterra-Fredholm-type integro-differential inclusions in Banach spaces, J. Franklin Inst., 345 (2008), 499-507.
[20] L. Debnath and D. Bhatta, Integral Transforms and Their Applications(Second Edition), CRC Press, 2007.
[21] K. Deimling, Multivalued Differential Equations, Walter De Gruyter, Berlin-New York, 1992.
[22] X.L. Ding, J.J. Nieto, Controllability of nonlinear fractional delay dynamical systems with prescribed controls, Nonlinear Anal. Model. Control, 23 (2018), 1-18.
[23] S. Djebali, L. Gorniewicz, and A. Ouahab, Solution Sets for Differential Equations and Inclusions., Walter de Gruyter \& Co., Berlin, 2013.
[24] L. Górniewicz, Topological Fixed Point Theory of Multivalued Mappings, Mathematics and its Applications, 495, Kluwer Academic Publishers, Dordrecht, 1999.
[25] M. Haase, The Functional Calculus for Sectorial Operators, of Operator Theory: Advances and Applications, Birkhäuser, Basel, Switzerland, 2006.
[26] J.K. Hale and J. Kato, Phase space for retarded equations with infinite delay, Funk. Ekvacioj, 21 (1978), 11-41.
[27] E. Hernández, A. Prokopczyk, and L. Ladeira, A note on partial functional differential equations with state-dependent delay, Nonlinear Anal. RWA, 7 (2006), 510-519.
[28] E. Hernandez and H.R. Henriquez, Impulsive partial neutral differential equations, Appl. Math. Lett., 19 (2006), 215-222.
[29] Y. Hino, S. Murakami, and T. Naito, Functional Differential Equations with Unbounded Delay, Springer-Verlag, Berlin, 1991.
[30] Sh. Hu and N. Papageorgiou, Handbook of Multivalued Analysis, Volume I: Theory, Kluwer Academic Publishers, Dordrecht, Boston, London, 1997.
[31] V. Kavitha, and M.M. Arjunan, Controllability of impulsive quasi-linear fractional mixed volterra-fredholm-type integrodifferential equations in Banach spaces, J. Nonlinear Sci. Appl., 4 (2) (2011), 152-169.
[32] S. Kumar, and N. Sukavanam, Approximate Controllability of Fractional Order Neutral Control Systems with Delay, Int. J. Nonlinear Sci., 13 (4) (2012), 454-462.
[33] V. Lakshmikantham, D.D. Bainov and P.S. Simeonov, Theory of Impulsive Differential Equations, World Scientific, NJ, 1989.
[34] A. Lasota and Z. Opial, An application of the Kakutani-Ky Fan theorem in the theory of ordinary differential equations, Bull. Acad. Pol. Sci. Ser. Sci. Math. Astronom. Phys., 13 (1965), 781-786.
[35] W.S. Li, Y.K. Chang, J.J. Nieto, Solvability of impulsive neutral evolution differential inclusions with state-dependent delay, Math. Comput. Model., 49 (2009), 1920-1927.
[36] M. Meghnafi, M. Benchohra, K. Aissani, Impulsive fractional evolution equations with state-dependent delay. Nonlinear Stud. 22 (2015), no. 4, 659-671.
[37] N.A. Perestyuk, V.A. Plotnikov, A.M. Samoilenko and N. V. Skripnik, Differential Equations with Impulse Effects Multivalued Right-hand Sides with Discontinuities, Walter de Gruyter \& Co., Berlin, 2011.
[38] I. Podlubny, Fractional Differential Equations, Academic press, New York, 1993.
[39] M.D. Quinn and N. Carmichael, An approach to nonlinear control problems using the fixed point methods, degree theory and pseudo-inverses, Numer. Funct. Anal. Optim. 7 (1984-1985), 197-219.
[40] R. Sakthivel, R. Yong, and N.I. Mahmudov, on the approximate controllability of semilinear fractional differential systems, Comput. Math. Appl. 62 (2011), 1451-1459.
[41] A.M. Samoilenko and N.A. Perestyuk, Impulsive Differential Equations, World Scientific, Singapore, 1995.
[42] X.B. Shu, Y.Z. Lai, Y. Chen. The existence of mild solutions for impulsive fractional partial differential equations, Nonlinear Anal. TMA 74 (2011), 2003-2011.
[43] S. Suganya, Mani M. Arjunan, Existence of mild solutions for impulsive fractional integro-differential inclusions with
state-dependent delay, Mathematics 2017 (2017) pages 1-16.
[44] J. Wang and Y. Zhou, Existence and controllability results for fractional semilinear differential inclusions., Nonlinear Anal. Real World Appl., 12 (2011), 3642-3653.
[45] Z. Yan, Controllability of fractional-order partial neutral functional integrodifferential inclusions with infinite delay, J. Franklin Inst. 348 (2011), 2156-2173.
[46] Y. Zhou, Basic Theory of Fractional Differential Equations, World Scientific, Singapore, 2014.
[47] Y. Zhou, Fractional Evolution Equations and Inclusions: Analysis and Control, Academic Press Elsevier, 2016.


[^0]:    Email addresses: aissani_k@yahoo.fr (Khalida Aissani), benchohra@yahoo.com (Mouffak Benchohra), juanjose.nieto.roig@usc.es (Juan J. Nieto)

