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Abstract

In this paper, sufficient conditions are provided for the controllability of impulsive fractional evolution in-
clusions with state-dependent delay in Banach spaces. We used a fixed-point theorem for condensing maps
due to Bohnenblust–Karlin and the theory of semigroup for the achievement of the results. An Illustrative
example is presented.
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1. Introduction

Differential inclusions of fractional order have attracted great interest due to their applications in char-
acterizing many problems in physics, biology, mechanics and so on; see, for instance [2, 3, 4, 46, 47]. The
theory of impulsive differential equations is a new and important branch of differential equations, which has
an extensive physical background, for instance, we refer to [6, 12, 14, 18, 28, 33, 37, 41].
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One of the basic qualitative behaviors of a dynamical system is controllability, it means that it is possible
to steer a dynamical control system from an arbitrary initial state to an arbitrary final state using the set of
admissible controls. As a result of its great application, the controllability of such systems all have received
more and more attention, we refer the work for more details [7, 9, 11, 13, 15, 19, 31, 32, 40, 44]. Yan [45]
established the controllability of fractional-order partial neutral functional integrodifferential inclusions with
infinite delay. In [36], the authors provided some sufficient conditions ensuring the existence of mild solution
of the problem

Dα
t x(t) = Ax(t) + f(t, xρ(t,xt), x(t)), t ∈ Jk = (tk, tk+1], k = 0, 1, . . . ,m,

∆x(tk) = Ik(x(t−k )), k = 1, 2, . . . ,m,

x(t) = φ(t), t ∈ (−∞, 0].

(1)

The controllability of fractional integro-differential equation of the form

Dq
tx(t) = Ax(t) +Bu(t) +

∫ t

0
a(t, s)f(s, xρ(s,xs), x(s))ds, t ∈ J = [0, T ],

x(t) = φ(t), t ∈ (−∞, 0],

(2)

has been considered by Aissani and Benchohra in [8].
Motivated by the papers cited above, in this work, we consider the controllability for a class of impulsive

fractional inclusions with state-dependent delay described by

Dα
tk
x(t) ∈ Ax(t) + F (t, xρ(t,xt), x(t)) +Bu(t), t ∈ Jk = (tk, tk+1], k = 0, 1, . . . ,m,

∆x(tk) = Ik(x(t−k )), k = 1, 2, . . . ,m,

x(t) = φ(t), t ∈ (−∞, 0],

(3)

where Dα
tk

is the Caputo fractional derivative of order 0 < α < 1, A : D(A) ⊂ E → E is the infinitesimal
generator of an α-resolvent family (Sα(t))t≥0, F : J × B × E −→ P(E) is a multivalued map (P(E) is the
family of all nonempty subsets of E) and ρ : J×B → (−∞, T ] are appropriated functions, J = [0, T ], T > 0,
B is a bounded linear operator from E into E, the control u ∈ L2(J ;E), the Banach space of admissible
controls. Here, 0 = t0 < t1 < . . . < tm < tm+1 = T, Ik : E → E, k = 1, 2, . . . ,m, are given functions,
∆x(tk) = x(t+k )− x(t−k ), x(t+k ) = lim

h→0
x(tk + h) and x(t−k ) = lim

h→0
x(tk − h) denote the right and the left limit

of x(t) at t = tk, respectively. We denote by xt the element of B defined by xt(θ) = x(t + θ), θ ∈ (−∞, 0].
Here xt represents the history up to the present time t of the state x(·). We assume that the histories xt
belongs to some abstract phase space B, to be specified later, and φ ∈ B.

2. Preliminaries

In this section, we state some notations, definitions and preliminary facts about fractional calculus and
the multivalued analysis.

Let (E, ‖ · ‖) be a Banach space.
C = C(J,E) be the Banach space of continuous functions from J into E with the norm

‖y‖C = sup { ‖y(t)‖ : t ∈ J }.

By AC(J,E) we denote the space of absolutely continuous function from J into E.
ACn(J,E) = {y ∈ Cn−1(J,E) : y(n−1) ∈ AC(J,E)}.

L(E) be the Banach space of all linear and bounded operators on E.
L1(J,E) the space of E−valued Bochner integrable functions on J with the norm

‖y‖L1 =

∫ T

0
‖y(t)‖dt.
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Denote by Pcl(X) = {Y ∈ P (X) : Y closed}, Pb(X) = {Y ∈ P (X) : Y bounded}, Pcp(X) = {Y ∈
P (X) : Y compact}, Pcp,c(X) = {Y ∈ P (X) : Y compact, convex},
Pcl,c(E) = {Y ∈ P (E) : Y closed, convex}.

A multivalued map G : X → P (X) is convex (closed) valued if G(X) is convex (closed) for all x ∈ X.
G is bounded on bounded sets if G(B) = ∪x∈BG(x) is bounded in X for all B ∈ Pb(X) (i.e. sup

x∈B
{sup{‖y‖ :

y ∈ G(x)}} <∞).
G is called upper semi-continuous (u.s.c.) on X if for each x0 ∈ X the set G(x0) is a nonempty, closed

subset of X, and if for each open set U of X containing G(x0), there exists an open neighborhood V of x0
such that G(V ) ⊆ U.

G is said to be completely continuous if G(B) is relatively compact for every B ∈ Pb(X). If the multi-
valued map G is completely continuous with nonempty compact values, then G is u.s.c. if and only if G has
a closed graph (i.e. xn −→ x∗, yn −→ y∗, yn ∈ G(xn) imply y∗ ∈ G(x∗)). For more details on multivalued
maps see the books of Deimling [21], Djebali et al. [23], Górniewicz [24] and Hu and Papageorgiou [30] .

Definition 2.1. The multivalued map F : J × B × E −→ P(E) is said to be Carathéodory if

(i) t 7−→ F (t, x, y) is measurable for each (x, y) ∈ B × E;

(ii) (x, y) 7−→ F (t, x, y) is upper semicontinuous for almost all t ∈ J.

Definition 2.2. Let α > 0 and f ∈ L1(J,E). The Riemann-Liouville integral is defined by

Iα0 f(t) =
1

Γ(α)

∫ t

0

f(s)

(t− s)1−α
ds.

For more details on the Riemann-Liouville fractional derivative, we refer the reader to [20].

Definition 2.3. [38]. The Caputo derivative of order α for a function f ∈ ACn(J,E) is defined by

Dα
0 f(t) =

1

Γ(n− α)

∫ t

0

f (n)(s)

(t− s)α+1−nds = In−α0 f (n)(t), t > 0, n− 1 ≤ α < n.

If 0 ≤ α < 1, then

Dα
0 f(t) =

1

Γ(1− α)

∫ t

0

f ′(s)

(t− s)α
ds.

Obviously, the Caputo derivative of a constant is equal to zero.

In order to defined the mild solution of the problems (3) we recall the following definition.

Definition 2.4. A closed and linear operator A is said to be sectorial if there are constants ω ∈ R, θ ∈
[π2 , π],M > 0, such that the following two conditions are satisfied:

1.
∑
(θ,ω)

:= {λ ∈ C : λ 6= ω, |arg(λ− ω)| < θ} ⊂ ρ(A) (ρ(A) being the resolvent set of A).

2. ‖R(λ,A)‖L(E) ≤
M

|λ− ω|
, λ ∈

∑
(θ,ω)

.

Sectorial operators are well studied in the literature. For details see [25].

Definition 2.5. [10]. If A is a closed linear operator with domain D(A) defined on a Banach space E and
α > 0, then we say that A is the generator of an α-resolvent family if there exists ω ≥ 0 and a strongly
continuous function Sα : R+ →L(E) such that {λα : Re(λ) > ω} ⊂ ρ(A) and

(λαI −A)−1x =

∫ ∞
0

e−λtSα(t)xdt, Re λ > ω, x ∈ E.

In this case, Sα(t) is called the α-resolvent family generated by A.
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Definition 2.6. (see Definition 2.1 in [5]). If A is a closed linear operator with domain D(A) defined on a
Banach space E and α > 0, then we say that A is the generator of a solution operator if there exist ω ≥ 0
and a strongly continuous function Sα : R+ →L(E) such that {λα : Re(λ) > ω} ⊂ ρ(A) and

λα−1(λαI −A)−1x =

∫ ∞
0

e−λtSα(t)xdt, Re λ > ω, x ∈ E,

in this case, Sα(t) is called the solution operator generated by A.

In this paper, we will employ an axiomatic definition for the phase space B which is similar to those
introduced by Hale and Kato [26]. Specifically, B will be a linear space of functions mapping (−∞, 0] into
E endowed with a seminorm ‖ · ‖B, and satisfies the following axioms:

(A1) If x : (−∞, T ] −→ E is such that x0 ∈ B, then for every t ∈ J, xt ∈ B and

‖x(t)‖ ≤ C‖xt‖B,

where C > 0 is a constant.

(A2) There exist a continuous function C1(t) > 0 and a locally bounded function C2(t) ≥ 0 in t ≥ 0 such
that

‖xt‖B ≤ C1(t) sup
s∈[0,t]

‖x(s)‖+ C2(t)‖x0‖B,

for t ∈ [0, T ] and x as in (A1).

(A3) The space B is complete.

Example 2.7. The phase space Cr × Lp(g,X).
Let r ≥ 0, 1 ≤ p < ∞, and let g : (−∞,−r) → R be a nonnegative measurable function which satisfies

the conditions (g − 5), (g − 6) in the terminology of [29]. Briefly, this means that g is locally integrable and
there exists a nonnegative, locally bounded function Λ on (−∞, 0], such that g(ξ + θ) ≤ Λ(ξ)g(θ), for all
ξ ≤ 0 and θ ∈ (−∞,−r)\Nξ, where Nξ ⊆ (−∞,−r) is a set with Lebesgue measure zero.

The space Cr × Lp(g,X) consists of all classes of functions ϕ : (−∞, 0] → X, such that ϕ is continuous
on [−r, 0], Lebesgue-measurable, and g‖ϕ‖p on (−∞,−r). The seminorm in ‖.‖B is defined by

‖ϕ‖B = sup
θ∈[−r,0]

‖ϕ(θ)‖+

(∫ −r
−∞

g(θ)‖ϕ(θ)‖pdθ
) 1
p

.

The space B = Cr × Lp(g,X) satisfies axioms (A1), (A2), (A3). Moreover, for r = 0 and p = 2, this

space coincides with C0 × L2(g,X), H = 1,M(t) = Λ(−t)
1
2 ,K(t) = 1 +

(∫ 0
−r g(τ)dτ

) 1
2
, for t ≥ 0 (see [29],

Theorem 1.3.8 for details).

Let SF,x be a set defined by

SF,x = {v ∈ L1(J,E) : v(t) ∈ F (t, xρ(t,xt), x(t)) a.e. t ∈ J}.

Lemma 2.8. [34]. Let F : J × B × E −→ Pcp,c(E) be an L1-Carathéodory multivalued map and let Ψ be a
linear continuous mapping from L1(J,E) to C(J,E), then the operator

Ψ ◦ SF : C(J,E) −→ Pcp,c(C(J,E)),

x 7−→ (Ψ ◦ SF )(x) := Ψ(SF,x)

is a closed graph operator in C(J,E)× C(J,E).

The next result is known as the Bohnenblust–Karlin’s fixed point theorem.

Lemma 2.9. (Bohnenblust–Karlin [17]). Let X be a Banach space and D ∈ Pcl,c(X). Suppose that the
operator G : D → Pcl,c(D) is upper semicontinuous and the set G(D) is relatively compact in X. Then G
has a fixed point in D.
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3. Main Result

In this section, we prove our main result. We need the following lemma ([42]).

Lemma 3.1. Consider the Cauchy problem

Dα
t x(t) = Ax(t) + F (t) +Bu(t), 0 < α < 1,

x(0) = x0,
(4)

where F is a function satisfying the uniform Hölder condition with exponent β ∈ (0, 1] and A is a sectorial
operator, then the Cauchy problem (4) has a unique mild solution which is given by

x(t) = Tα(t)x0 +

∫ t

0
Sα(t− s)F (s)ds+

∫ t

0
Sα(t− s)Bu(s),

where

Tα(t) =
1

2πi

∫
B̂r

eλt
λα−1

λα −A
dλ,

Sα(t) =
1

2πi

∫
B̂r

eλt
1

λα −A
dλ,

B̂r denotes the Bromwich path, Sα(t) is called the α-resolvent family and Tα(t) is the solution operator,
generated by A.

Theorem 3.2. [42]. If α ∈ (0, 1) and A ∈ Aα(θ0, ω0), then for any x ∈ E and t > 0, we have

‖Tα(t)‖L(E) ≤Meωt and ‖Sα(t)‖L(E) ≤ Ceωt(1 + tα−1), t > 0, ω > ω0.

Let
M̃T = sup

0≤t≤T
‖Tα(t)‖L(E), M̃s = sup

0≤t≤T
Ceωt(1 + tα−1),

so we have
‖Tα(t)‖L(E) ≤ M̃T , ‖Sα(t)‖L(E) ≤ tα−1M̃s.

Let us consider the set

B1 =
{
x : (−∞, T ]→ E such that x|Jk ∈ C(Jk, E) and there exist

x(t+k ) and x(t−k ) with x(tk) = x(t−k ), x0 = φ, k = 1, 2, . . . ,m
}
,

endowed with the seminorm

‖x‖B1 = sup{|x(s)| : s ∈ [0, T ]}+ ‖φ‖B, x ∈ B1,

where x|Jk is the restriction of x to Jk = (tk, tk+1], k = 1, 2, . . . ,m.
From Lemma 3.1, we define the mild solution of system (3) as follows:

Definition 3.3. A function x : (−∞, T ] → E is called a mild solution of (3) if the restriction of x(·)
to the interval Jk, (k = 0, 1, . . . ,m) is continuous and there exists v(·) ∈ L1(Jk, E), such that v(t) ∈
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F (t, xρ(t,xt), x(t)) a.e t ∈ [0, T ], and x satisfies the following integral equation:

x(t) =



φ(t), t ∈ (−∞, 0];∫ t

0
Sα(t− s)v(s)ds+

∫ t

0
Sα(t− s)Bu(s)ds, t ∈ [0, t1];

Tα(t− t1)(x(t−1 ) + I1(x(t−1 ))) +

∫ t

t1

Sα(t− s)v(s)ds

+

∫ t

t1

Sα(t− s)Bu(s)ds, t ∈ (t1, t2];

...

Tα(t− tm)(x(t−m) + Im(x(t−m))) +

∫ t

tm

Sα(t− s)v(s)ds

+

∫ t

tm

Sα(t− s)Bu(s)ds, t ∈ (tm, T ].

(5)

Definition 3.4. The problem (3) is said to be controllable on the interval J if for every initial function φ ∈ B
and x1 ∈ E there exists a control u ∈ L2(J,E) such that the mild solution x(·) of (3) satisfies x(T ) = x1.

Set
R(ρ−) = {ρ(s, ϕ) : (s, ϕ) ∈ J × B, ρ(s, ϕ) ≤ 0}.

We always assume that ρ : J ×B → (−∞, T ] is continuous. Additionally, we introduce following hypothesis:

(Hϕ) The function t → ϕt is continuous from R(ρ−) into B and there exists a continuous and bounded
function Lφ : R(ρ−)→ (0,∞) such that

‖φt‖B ≤ Lφ(t)‖φ‖B for every t ∈ R(ρ−).

Remark 3.5. The condition (Hϕ), is frequently verified by continuous and bounded functions. For more
details see, e.g., [29].

Remark 3.6. In the rest of this section, C∗1 and C∗2 are the constants

C∗1 = sup
s∈J

C1(s) and C
∗
2 = sup

s∈J
C2(s).

Lemma 3.7. [27] If x : (−∞, T ]→ X is a function such that x0 = φ, then

‖xs‖B ≤ (C∗2 + Lφ)‖φ‖B + C∗1 sup{|y(θ)|; θ ∈ [0,max{0, s}]}, s ∈ R(ρ−) ∪ J,

where Lφ = sup
t∈R(ρ−)

Lφ(t).

Let us list the following assumptions.

(H1) The resolvent family Sα(t) is compact for t > 0.

(H2) The multivalued map F : J × B × E −→ Pcp,cv(E) is Carathéodory.

(H3) There exist a function µ ∈ L1(J,R+) and a continuous nondecreasing function ψ : R+ → (0,+∞) such
that

‖f(t, v, w)‖ ≤ µ(t)ψ (‖v‖B + ‖w‖) , (t, v, w) ∈ J × B × E.

(H4) Ik : E → E is continuous, and there exists Ω > 0 such that

Ω = max
1≤k≤m

{‖Ik(x)‖E , x ∈ Dr} .
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(H5) The linear operator W : L2(J,E)→ E defined by

Wu =

∫ T

0
Sα(T − s)Bu(s)ds,

has a pseudo inverse operator W̃−1, which takes values in L2(J,E)/ kerW and there exist two positive
constants M1 and M2 such that

‖B‖L(E) ≤M1, ‖W̃−1‖L(E) ≤M2. (6)

Remark 3.8. The question of the existence of the operator W̃−1 and of its inverse is discussed in the paper
by Quinn and Carmichael (see [39]).

Theorem 3.9. Assume that (Hϕ), (H1)− (H5) hold. Then the IVP (3) is controllable on (−∞, T ].

Proof. We transform the problem (3) into a fixed-point problem. Consider the multivalued operator
N : B1 −→ P(B1) defined by N(h) = {h ∈ B1} with

h(t) =



φ(t), t ∈ (−∞, 0];∫ t

0

Sα(t− s)v(s)ds+

∫ t

0

Sα(t− s)Bu(s)ds, t ∈ [0, t1];

Tα(t− t1)(x(t−1 ) + I1(x(t−1 ))) +

∫ t

t1

Sα(t− s)v(s)ds

+

∫ t

t1

Sα(t− s)Bu(s)ds, t ∈ (t1, t2];

...,

Tα(t− tm)(x(t−m) + Im(x(t−m))) +

∫ t

tm

Sα(t− s)v(s)ds

+

∫ t

tm

Sα(t− s)Bu(s)ds, t ∈ (tm, T ].

Using hypothesis (H5) for an arbitrary function x(·) define the control

u(t) =



W̃−1
[
x1 −

∫ T

0
Sα(T − s)v(s)ds

]
(t), t ∈ [0, t1];

W̃−1
[
x1 − Tα(T − t1)(x(t−1 ) + I1(x(t−1 )))

−
∫ T

t1

Sα(T − s)v(s)ds
]
(t), t ∈ (t1, t2];

...,
W̃−1

[
x1 − Tα(T − tm)(x(t−m) + Im(x(t−m)))

−
∫ T

tm

Sα(T − s)v(s)ds
]
(t), t ∈ (tm, T ].

It is clear that the fixed points of the operator N are mild solutions of the problem (3).
Let us define y(·) : (−∞, T ] −→ E as

y(t) =


φ(t), t ∈ (−∞, 0];

0, t ∈ J .

Then y0 = φ. For each z ∈ C(J,E) with z(0) = 0, we denote by z the function defined by

z(t) =


0, t ∈ (−∞, 0];

z(t), t ∈ J .
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Let xt = yt + zt, t ∈ (−∞, T ]. It is easy to see that x(·) satisfies (5) if and only if z0 = 0 and for t ∈ J , we
have

z(t) =



∫ t

0
Sα(t− s)v(s)ds+

∫ t

0
Sα(t− s)Bu(s)ds, t ∈ [0, t1];

Tα(t− t1)
[
y(t−1 ) + z(t−1 ) + I1(y(t−1 ) + z(t−1 ))

]
+

∫ t

t1

Sα(t− s)v(s)ds+

∫ t

t1

Sα(t− s)Bu(s)ds, t ∈ (t1, t2];

...,
Tα(t− tm) [y(t−m) + z(t−m) + Im(y(t−m) + z(t−m))]

+

∫ t

tm

Sα(t− s)v(s)ds+

∫ t

tm

Sα(t− s)Bu(s)ds, t ∈ (tm, T ],

where v(s) ∈ SF,yρ(s,ys+zs)+zρ(s,ys+zs) .
Let

B2 = {z ∈ B1 such that z0 = 0}.

For any z ∈ B2, we have

‖z‖B2 = sup
t∈J
‖z(t)‖+ ‖z0‖B

= sup
t∈J
‖z(t)‖.

Thus (B2, ‖ · ‖B2) is a Banach space. We define the operator P : B2 −→ P(B2) by : P (z) = {h ∈ B2} with

h(t) =



∫ t

0
Sα(t− s)v(s)ds+

∫ t

0
Sα(t− s)Bu(s)ds, t ∈ [0, t1];

Tα(t− t1)
[
y(t−1 ) + z(t−1 ) + I1(y(t−1 ) + z(t−1 ))

]
+

∫ t

t1

Sα(t− s)v(s)ds+

∫ t

t1

Sα(t− s)Bu(s)ds, t ∈ (t1, t2];

...,
Tα(t− tm) [y(t−m) + z(t−m) + Im(y(t−m) + z(t−m))]

+

∫ t

tm

Sα(t− s)v(s)ds+

∫ t

tm

Sα(t− s)Bu(s)ds, t ∈ (tm, T ],

where v(s) ∈ SF,yρ(s,ys+zs)+zρ(s,ys+zs) .
It is clear that the operator N has a fixed point if and only if P has a fixed point. So let us prove that P has
a fixed point. We shall show that the operators P satisfy all conditions of Lemma 2.9. For better readability,
we break the proof into a sequence of steps.
Choose

r > M̃T (r + Ω)

(
1 + M̃SM1M2

Tα

α

)
+ M̃SM1M2

Tα

α
‖x1‖

+

(
1 + M̃SM1M2

Tα

α

)
M̃S

Tα

α
ψ((C∗2 + Lφ)‖φ‖B + (C∗1 + 1)r)‖µ‖L1 ,

and consider the set
Dr = {z ∈ B2 : z(0) = 0, ‖z‖B2 ≤ r}.

It is clear that Dr is a closed, convex, bounded set in B2.
Step 1: P is convex for each z ∈ B2.
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Indeed, if h1 and h2 belong to P, then there exist v1, v2 ∈ SF,yρ(s,ys+zs)+zρ(s,ys+zs) such that, for t ∈ J and
i = 1, 2, we have

hi(t) =



∫ t

0

Sα(t− s)vi(s)ds

+

∫ t

0

Sα(t− s)BW̃−1
[
x1 −

∫ T

0

Sα(T − τ)vi(τ)dτ
]
ds, t ∈ [0, t1];

Tα(t− t1)
[
y(t−1 ) + z(t−1 ) + I1(y(t−1 ) + z(t−1 ))

]
+

∫ t

t1

Sα(t− s)vi(s)ds

+

∫ t

t1

Sα(t− s)BW̃−1
[
x1 − Tα(T − t1)[y(t−1 ) + z(t−1 )

+I1(y(t−1 ) + z(t−1 ))]−
∫ T

t1

Sα(T − τ)vi(τ)dτ
]
ds, t ∈ (t1, t2];

...,

Tα(t− tm) [y(t−m) + z(t−m) + Im(y(t−m) + z(t−m))] +

∫ t

tm

Sα(t− s)vi(s)ds

+

∫ t

tm

Sα(t− s)BW̃−1
[
x1 − Tα(T − tm)[y(t−m) + z(t−m)

+Im(y(t−m) + z(t−m))]−
∫ T

tm

Sα(T − τ)vi(τ)dτ
]
ds, t ∈ (tm, T ].

Let d ∈ [0, 1]. Then for each t ∈ [0, t1], we get

dh1(t) + (1− d)h2(t) =

∫ t

0

Sα(t− s) [dv1(s) + (1− d)v2(s)] ds+

∫ t

0

Sα(t− s)BW̃−1

×
[
x1 −

∫ T

0

Sα(T − τ) (dv1(τ) + (1− d)v2(τ)) dτ
]
ds.

Similarly, for any t ∈ (ti, ti+1], i = 1, . . . ,m, we have

dh1(t) + (1− d)h2(t) =

∫ t

ti

Sα(t− s) [dv1(s) + (1− d)v2(s)] ds

+ Tα(t− ti)
[
y(t−i ) + z(t−i ) + Ii(y(t−i ) + z(t−i ))

]
+

∫ t

ti

Sα(t− s)BW̃−1
[
x1 − Tα(T − ti)[y(t−i ) + z(t−i )

+ Ii(y(t−i ) + z(t−i ))]−
∫ T

ti

Sα(T − τ) (dv1(τ) + (1− d)v2(τ)) dτ
]
ds.

Since SF,yρ(s,ys+zs)+zρ(s,ys+zs) is convex (because F has convex values), we get

dh1 + (1− d)h2 ∈ P (z).
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Step 2: P (Dr) ⊂ Dr. Let h ∈ P (z) and z ∈ Dr, for t ∈ [0, t1], we have

‖h(t)‖ ≤
∫ t

0

‖Sα(t− s)‖L(E)‖v(s)‖ds+

∫ t

0

‖Sα(t− s)‖L(E)‖Bu(s)‖ds

≤ M̃S

∫ t

0

(t− s)α−1µ(s)ψ(‖yρ(s,ys+zs) + zρ(s,ys+zs)‖+ ‖y(s) + z(s)‖)ds

+ M̃SM1M2

∫ t

0

(t− s)α−1
[
‖x1‖+ M̃S

∫ T

0

(T − τ)α−1‖v(τ)‖dτ

]
ds

≤ M̃S

∫ t

0

(t− s)α−1µ(s)ψ(‖yρ(s,ys+zs) + zρ(s,ys+zs)‖+ ‖y(s) + z(s)‖)ds

+ M̃SM1M2

∫ t

0

(t− s)α−1
[
‖x1‖

+ M̃S

∫ T

0

(T − τ)α−1µ(τ)ψ(‖yρ(τ,yτ+zτ ) + zρ(τ,yτ+zτ )‖+ ‖y(τ) + z(τ)‖)|dτ
]
ds

≤ M̃S
Tα

α
ψ((C∗2 + Lφ)‖φ‖B + (C∗1 + 1)r)

∫ t

0

µ(s)ds+ M̃SM1M2
Tα

α
‖x1‖

+ M̃2
SM1M2

T 2α

α2
ψ((C∗2 + Lφ)‖φ‖B + (C∗1 + 1)r)

∫ t

0

µ(s)ds

≤ M̃SM1M2
Tα

α
‖x1‖+

(
1 + M̃SM1M2

Tα

α

)
M̃S

Tα

α

× ψ((C∗2 + Lφ)‖φ‖B + (C∗1 + 1)r)‖µ‖L1 .

Moreover, when t ∈ (ti, ti+1], i = 1, . . . ,m, we have the estimate

‖h(t)‖ ≤ ‖Tα(t− ti)
[
z(t−i ) + Ii(z(t

−
i ))
]
‖E +

∫ t

ti

‖Sα(t− s)‖L(E)‖v(s)‖ds

+

∫ t

ti

‖Sα(t− s)‖L(E)‖BW̃−1
[
x1 − Tα(T − ti)[z(t−i ) + Ii(z(t

−
i ))]

−
∫ T

ti

Sα(T − τ)v(τ)dτ
]
‖ds

≤ M̃T (r + Ω) + M̃S

∫ t

0

(t− s)α−1µ(s)ψ(‖yρ(s,ys+zs) + zρ(s,ys+zs)‖+ ‖y(s) + z(s)‖)ds

+ M̃SM1M2

∫ t

0

(t− s)α−1
[
‖x1‖+ M̃T (r + Ω) + M̃S

∫ T

0

(T − τ)α−1‖v(τ)‖dτ
]
ds

≤ M̃T (r + Ω)

(
1 + M̃SM1M2

Tα

α

)
+ M̃SM1M2

Tα

α
‖x1‖

+

(
1 + M̃SM1M2

Tα

α

)
M̃S

Tα

α
ψ((C∗2 + Lφ)‖φ‖B + (C∗1 + 1)r)‖µ‖L1 < r.

Step 3: P maps bounded sets of Dr into equicontinuous sets of Dr.
Let τ1, τ2 ∈ [0, t1], with τ1 < τ2, we have

‖h(τ2)− h(τ1)‖ ≤ Q1 +Q2,

where

Q1 =

∫ τ2

τ1

‖Sα(τ2 − s) (v(s) +Bu(s)) ‖ds

Q2 =

∫ τ1

0

‖ (Sα(τ2 − s)− Sα(τ1 − s)) (v(s) +Bu(s)) ‖ds.
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Actually, Q1 and Q2 tend to 0 as τ1 → τ2 independently of z ∈ Dr. Indeed, in view of (H3) and (6), we have

Q1 =

∫ τ2

τ1

‖Sα(τ2 − s) (v(s) +Bu(s)) ‖ds

≤
∫ τ2

τ1

‖Sα(τ2 − s)‖L(E)‖v(s)‖ds+

∫ τ2

τ1

‖Sα(τ2 − s)‖L(E)‖Bu(s)‖ds

≤ M̃s(τ2 − τ1)α

α
ψ((C∗2 + Lφ)‖φ‖B + (C∗1 + 1)r)‖µ‖L1

+
M1M2M̃s(τ2 − τ1)α

α

[
‖x1‖+ M̃s

Tα

α
ψ((C∗2 + Lφ)‖φ‖B + (C∗1 + 1)r)

]
‖µ‖L1 .

Hence, we deduce that
lim
τ1→τ2

Q1 = 0.

Also,

Q2 =

∫ τ1

0

‖ (Sα(τ2 − s)− Sα(τ1 − s)) (v(s) +Bu(s)) ‖ds

≤
∫ τ1

0

‖ (Sα(τ2 − s)− Sα(τ1 − s)) ‖L(E) (‖v(s)‖+ ‖Bu(s)‖) ds

≤
∫ τ1

0

‖ (Sα(τ2 − s)− Sα(τ1 − s)) ‖L(E)‖v(s)‖ds

+ M1

∫ τ1

0

‖ (Sα(τ2 − s)− Sα(τ1 − s)) ‖L(E)‖u(s)‖ds

≤ ψ((C∗2 + Lφ)‖φ‖B + (C∗1 + 1)r)‖µ‖L1

∫ τ1

0

‖ (Sα(τ2 − s)− Sα(τ1 − s)) ‖L(E)ds

+ M1M2

[
‖x1‖+ M̃s

Tα

α
ψ((C∗2 + Lφ)‖φ‖B + (C∗1 + 1)r)‖µ‖L1

]
×

∫ τ1

0

‖Sα(τ2 − s)− Sα(τ1 − s)‖L(E)ds.

Since ‖Sα(τ2 − s)− Sα(τ1 − s)‖L(E) ≤ 2M̃s(t1 − s)α−1 ∈ L1(J,R+) for s ∈ [0, t1] and Sα(τ2 − s)− Sα(τ1 − s)→ 0 as
τ1 → τ2, Sα is strongly continuous. This implies that

lim
τ1→τ2

Q2 = 0.

Similarly, for τ1, τ2 ∈ (ti, ti+1], i = 1, . . . ,m, we have

‖h(τ2)− h(τ1)‖ ≤ ‖Tα(τ2 − ti)− Tα(τ1 − ti)‖L(E)

[
‖z(t−i )‖+ ‖Ii(z(t−i ))‖

]
+Q′1 +Q′2

≤ ‖Tα(τ2 − ti)− Tα(τ1 − ti)‖L(E)(r + Ω) +Q′1 +Q′2,

where

Q′1 =

∫ τ2

τ1

‖Sα(τ2 − s) (v(s) +Bu(s)) ‖ds

≤ M̃s(τ2 − τ1)α

α
ψ((C∗2 + Lφ)‖φ‖B + (C∗1 + 1)r)‖µ‖L1 +

M1M2M̃s(τ2 − τ1)α

α

×
[
‖x1‖+ M̃T (r + Ω) + M̃s

Tα

α
ψ((C∗2 + Lφ)‖φ‖B + (C∗1 + 1)r)

]
‖µ‖L1 .
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Hence, we deduce that lim
τ1→τ2

Q′1 = 0,

Q′2 =

∫ τ1

0

‖Sα(τ2 − s)− Sα(τ1 − s) (v(s) +Bu(s)) ‖ds

≤ ψ((C∗2 + Lφ)‖φ‖B + (C∗1 + 1)r)‖µ‖L1

∫ τ1

0

‖ (Sα(τ2 − s)− Sα(τ1 − s)) ‖ds

+ M1M2

[
‖x1‖+ M̃T (r + Ω) + M̃s

Tα

α
ψ((C∗2 + Lφ)‖φ‖B + (C∗1 + 1)r)‖µ‖L1

]
×

∫ τ1

0

‖Sα(τ2 − s)− Sα(τ1 − s)‖L(E)ds.

As ‖Sα(τ2 − s) − Sα(τ1 − s)‖L(E) ≤ 2M̃s(t1 − s)α−1 ∈ L1(J,R+) for s ∈ [0, t1] and Sα(τ2 − s) − Sα(τ1 − s) → 0 as
τ1 → τ2, since Sα is strongly continuous. This implies that lim

τ1→τ2
Q′2 = 0. Since Tα is also strongly continuous, so

Tα(τ2 − ti)− Tα(τ1 − ti)→ 0 as τ1 → τ2. Thus, from the above inequalities, we have

lim
τ1→τ2

‖h(τ2)− h(τ1)‖ = 0.

So, P (Dr) is equicontinuous.
Step 4: The set (PDr)(t) is relatively compact for each t ∈ J, where

(PDr)(t) = {h(t) : h ∈ P (Dr)}.

Let 0 < t ≤ s ≤ t1 be fixed and let ε be a real number satisfying 0 < ε < t. For z ∈ Dr we define

hε(t) =

∫ t−ε

0

Sα(t− s)v(s)ds+

∫ t−ε

0

Sα(t− s)Bu(s)ds,

where v ∈ SF,yρ(s,ys+zs)+zρ(s,ys+zs) . Using the compactness of Sα(t) for t > 0, we deduce that the set

Hε = {hε(t) : hε ∈ P (Dr)}

is relatively compact in E. Moreover,

‖h(t)− hε(t)‖ ≤
∥∥∥∥∫ t

t−ε
Sα(t− s)v(s)ds

∥∥∥∥+

∥∥∥∥∫ t

t−ε
Sα(t− s)Bu(s)ds

∥∥∥∥ .
Similarly, for any t ∈ (ti, ti+1] with i = 1, . . . ,m. Let ti < t ≤ s ≤ ti+1 be fixed and let ε be a real number satisfying
0 < ε < t. For z ∈ Dr we define

hε(t) = Tα(t− ti)
[
y(t−i ) + z(t−i ) + Ii(y(t−i ) + z(t−i ))

]
+

∫ t−ε

ti

Sα(t− s)v(s)ds+

∫ t−ε

ti

Sα(t− s)Bu(s)ds,

where v ∈ SF,yρ(s,ys+zs)+zρ(s,ys+zs) . Since Sα(t) is a compact operator, the set

Hε = {hε(t) : h ∈ P (Dr)}

is relatively compact. Moreover,

‖h(t)− hε(t)‖ ≤
∥∥∥∥∫ t

t−ε
Sα(t− s)v(s)ds

∥∥∥∥+

∥∥∥∥∫ t

t−ε
Sα(t− s)Bu(s)ds

∥∥∥∥ .
On the other hand, using the continuity of the operator Tα(t), it follows that (PDr)(t) is relatively compact in E, for
every t ∈ [0, T ].
As a consequence of Step 2 to 4 together with Arzelá–Ascoli theorem we can conclude that P is completely continuous.
Step 5: P has a closed graph.
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Let zn → z∗, hn ∈ P (zn) with hn → h∗. We shall prove that h∗ ∈ P (z∗).
In fact hn ∈ P (zn) means that there is exists vn ∈ SF,ynρ(s,yns+zns)+znρ(s,yns+zns) such that, for each t ∈ [0, t1],

hn(t) =

∫ t

0

Sα(t− s)vn(s)ds+

∫ t

0

Sα(t− s)Bun(s)ds,

where

un(t) = W̃−1

[
x1 −

∫ T

0

Sα(T − s)vn(s)ds

]
(t).

We must show that there exists v∗ ∈ SF,y∗ρ(s,y∗s+z∗s)+z∗ρ(s,y∗s+z∗s) such that, for each t ∈ [0, t1],

h∗(t) =

∫ t

0

Sα(t− s)v∗(s)ds+

∫ t

0

Sα(t− s)Bu∗(s)ds,

where

u∗(t) = W̃−1

[
x1 −

∫ T

0

Sα(T − s)v∗(s)ds

]
(t).

Consider the following linear continuous operatorΥ : L1([0, t1], E) −→ C([0, t1], E) defined by

(Υv)(t) =

∫ t

0

Sα(t− s)

[
v(s) +BW̃−1

(
x1 −

∫ T

0

Sα(T − τ)v(τ)dτ

)
(s)

]
ds.

By Lemma 2.8, we know that ΥoSF is a closed graph operator. Moreover, for every t ∈ [0, t1], we obtain

hn(t) ∈ Υ(SF,ynρ(s,yns+zns)+znρ(s,yns+zns)).

Since zn → z∗ and hn → h∗, it follows, that for every t ∈ [0, t1],

h∗(t) =

∫ t

0

Sα(t− s)v∗(s)ds+

∫ t

0

Sα(t− s)Bu∗(s)ds,

for some v∗ ∈ SF,y∗ρ(s,y∗s+z∗s)+z∗ρ(s,y∗s+z∗s).
Similarly, for any t ∈ (ti, ti+1], i = 1, . . . ,m, we have

hn(t) = Tα(t− ti)
[
yn(t−i ) + zn(t−i ) + Ii(yn(t−i ) + zn(t−i ))

]
+

∫ t

ti

Sα(t− s)vn(s) +

∫ t

ti

Sα(t− s)Bun(s)ds,

where

un(t) = W̃−1
[
x1 − Tα(T − ti)

(
yn(t−i ) + zn(t−i ) + Ii(yn(t−i ) + zn(t−i ))

)
−
∫ T

ti

Sα(T − s)vn(s)ds

]
(t).

We shall prove that there exists v∗ ∈ SF,y∗ρ(s,y∗s+z∗s)+z∗ρ(s,y∗s+z∗s) such that, for each
t ∈ (ti, ti+1],

h∗(t) = Tα(t− ti)
[
y∗(t

−
i ) + z∗(t

−
i ) + Ii(y∗(t

−
i ) + z∗(t

−
i ))
]

+

∫ t

ti

Sα(t− s)v∗(s)ds+

∫ t

ti

Sα(t− s)Bu∗(s)ds,

where

u∗(t) = W̃−1
[
x1 − Tα(T − ti)

(
y∗(t

−
i ) + z∗(t

−
i ) + Ii(y∗(t

−
i ) + z∗(t

−
i ))
)

−
∫ T

ti

Sα(T − s)v∗(s)ds

]
(t).
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Denote
û(t) = W̃−1

[
x1 − Tα(T − ti)

(
y(t−i ) + z(t−i ) + Ii(y(t−i ) + z(t−i ))

)]
(t).

Since Ii and W̃−1 are continuous, we have

ûn(t) −→ û∗(t), for t ∈ (ti, ti+1], i = 1, . . . ,m.

Clearly, we have∥∥∥∥(hn(t)− Tα(t− ti)
[
yn(t−i ) + zn(t−i ) + Ii(yn(t−i ) + zn(t−i ))

]
−
∫ t

ti

Sα(t− s)Bûn(s)ds

)
−
(
h∗(t)− Tα(t− ti)

[
y∗(t

−
i ) + z∗(t

−
i ) + Ii(y∗(t

−
i ) + z∗(t

−
i ))
]
−
∫ t

ti

Sα(t− s)Bû∗(s)ds
)∥∥∥∥

→ 0 as n→∞.

Consider the linear continuous operatorΥ : L1((ti, ti+1], E) −→ C((ti, ti+1], E),

v 7−→ (Υv)(t) =

∫ t

ti

Sα(t− s)
[
v(s) +BW̃−1 (x1 − Tα(T − ti)

(
yn(t−i ) + zn(t−i )

+ Ii(yn(t−i ) + zn(t−i ))
)
−
∫ T

ti

Sα(T − τ)v(τ) dτ) (s)

]
ds.

In view of Lemma 2.8, we deduce that ΥoSF is a closed graph operator. Also, from the definition of Υ, we have that,
for every t ∈ (ti, ti+1], i = 1, . . . ,m,(

hn(t)− Tα(t− ti)
[
yn(t−i ) + zn(t−i ) + Ii(yn(t−i ) + zn(t−i ))

])
∈ Υ(SF,ynρ(s,yns+zns)+znρ(s,yns+zns)).

Since zn → z∗, for some v∗ ∈ SF,y∗ρ(s,y∗s+z∗s)+z∗ρ(s,y∗s+z∗s) it follows from Lemma 2.8 that, for every t ∈ (ti, ti+1], we
have

h∗(t) = Tα(t− ti)
[
y∗(t

−
i ) + z∗(t

−
i ) + Ii(y∗(t

−
i ) + z∗(t

−
i ))
]

+

∫ t

ti

Sα(t− s)v∗(s)ds+

∫ t

0

Sα(t− s)Bu∗(s)ds.

Therefore P has a closed graph.
Hence by Lemma 2.9, P has a fixed point z on Dr, which is the mild solution of the system (3), then problem (3)

is controllable on (−∞, T ]. This completes the proof of the theorem.

4. An Example

Consider the impulsive fractional integro-differential inclusion:

∂qt
∂tq

v(t, ζ) ∈ ∂2

∂ζ2
v(t, ζ) +

∫ t

−∞
a1(s− t)v(s− ρ1(t)ρ2(|v(t− s, ζ)|), ξ)ds+ t2 sin |v(t, ζ)|

+ µ(t, ζ), t ∈ (tk, tk+1], ζ ∈ [0, π],

v(t, 0) = v(t, π) = 0, t ∈ [0, T ],

v(t, ζ) = v0(θ, ζ), θ ∈ (−∞, 0], ζ ∈ [0, π],

∆v(tk)(ζ) =

∫ tk

−∞
pk(tk − y)dy cos(v(tk)(ζ)), k = 1, 2, . . . ,m.

(7)

where 0 < q < 1, µ : [0, T ] × [0, π] → [0, π], pk : R → R, k = 1, 2, . . . ,m, and a1 : R → P(R) is a convex-valued
multivalued map, and ρi : [0,+∞)→ [0,+∞), i = 1, 2 are continuous functions.

Set E = L2([0, π]) and D(A) ⊂ E → E be the operator Aω = ω′′ with domain

D(A) = {ω ∈ E : ω, ω′ are absolutely continuous, ω′′ ∈ E,ω(0) = ω(π) = 0}.
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Then

Aω =

∞∑
n=1

n2(ω, ωn)ωn, ω ∈ D(A),

where ωn(x) =

√
2

π
sin(nx), n ∈ N is the orthogonal set of eigenvectors of A. It is well known that A is the infinitesimal

generator of an analytic semigroup {T (t)}t≥0 in E and is given by

T (t)ω =

∞∑
n=1

e−n
2t(ω, ωn)ωn, ∀ω ∈ E, and every t > 0.

From these expressions, it follows that {T (t)}t≥0 is a uniformly bounded compact semigroup, so that R(λ,A) =
(λ−A)−1 is a compact operator for all λ ∈ ρ(A), that is, A ∈ Aα(θ0, ω0).
For the phase space, we choose B = C0 × L2(g,X), see Example 2.7 for details.

Set
x(t)(ζ) = v(t, ζ), t ∈ [0, T ], ζ ∈ [0, π].

φ(θ)(ζ) = v0(θ, ζ), θ ∈ (−∞, 0], ζ ∈ [0, π].

F (t, ϕ, x(t))(ζ) =

∫ 0

−∞
a1(s)ϕ(s, ξ)ds+ t2 sin |x(t)(ζ)|, t ∈ [0, T ], ζ ∈ [0, π].

ρ(t, ϕ) = s− ρ1(s)ρ2(|ϕ(0)|).

Ik(x(t−k ))(ζ) =

∫ 0

−∞
pk(tk − y)dy cos(x(tk)(ζ)), k = 1, 2, . . . ,m.

Bu(t)(ζ) = µ(t, ζ).

Under the above conditions, we can represent the system (7) in the abstract form (3). Assume that the operator
W : L2(J,E)→ E defined by

Wu(·) =

∫ T

0

Sα(T − s)µ(s, ·)ds,

has a bounded invertible operator W̃−1 in L2(J,E)/ kerW.

The following result is a direct consequence of Theorem 3.9.

Proposition 4.1. Let ϕ ∈ B be such that (Hϕ) holds, and assume that the above conditions are fulfilled, then system
(7) is controllable on (−∞, T ].
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