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In this paper, sufficient conditions are provided for the controllability of impulsive fractional evolution in-
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1. Introduction

Differential inclusions of fractional order have attracted great interest due to their applications in char-
acterizing many problems in physics, biology, mechanics and so on; see, for instance [2, 3], 14, 46, [47]. The
theory of impulsive differential equations is a new and important branch of differential equations, which has
an extensive physical background, for instance, we refer to [0, 12l [14] [18], 28] [33] 37, [41].
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One of the basic qualitative behaviors of a dynamical system is controllability, it means that it is possible
to steer a dynamical control system from an arbitrary initial state to an arbitrary final state using the set of
admissible controls. As a result of its great application, the controllability of such systems all have received
more and more attention, we refer the work for more details [7, 9], 1T} 13}, 5] 19, 3], 32, 40} [44]. Yan [45]
established the controllability of fractional-order partial neutral functional integrodifferential inclusions with
infinite delay. In [36], the authors provided some sufficient conditions ensuring the existence of mild solution
of the problem

Dfta(t) = Ax(t) + f(t, ), 2(t)), te€ Jp = (te,ter1), k=0,1,...,m,
Ax(ty) = Ii(z(ty)), k=1,2,...,m, (1)
:C(t) = d)(t)a te (*OO, 0]

The controllability of fractional integro-differential equation of the form

Dixz(t) = Az(t) + Bu(t) +/0 a(t,s)f(s,Tp(sz,),x(s))ds, teJ=][0,T],

z(t) = ¢(t), te (—o0,0],

has been considered by Aissani and Benchohra in [§].
Motivated by the papers cited above, in this work, we consider the controllability for a class of impulsive
fractional inclusions with state-dependent delay described by

D?;.’L‘(t) € A.’L’(t) + F(tvxp(t,xt%x(t)) + Bu(t)a te Jy= (tkatk—HL k=0,1,...,m,
Az(tk) :Ik(x(t];))a k=1,2,...,m, (3)
z(t) = ¢(t), t € (—o0,0],
where Df is the Caputo fractional derivative of order 0 < a < 1, A: D(A) C £ — E is the infinitesimal
generator of an a-resolvent family (Su())t>0, F': J X B x E — P(FE) is a multivalued map (P(E) is the
family of all nonempty subsets of E) and p : J x B — (—o0, T] are appropriated functions, J = [0,T], T > 0,
B is a bounded linear operator from E into E, the control u € L?(.J; E), the Banach space of admissible

controls. Here, 0 =ty < t; < ... <ty < tpy1 =T,Ix : E - Ek = 1,2,...,m, are given functions,
Az(ty) = z(t]) — (L), () = }Lir% z(ty +h) and z(t, ) = }llin% x(t — h) denote the right and the left limit
— —

of x(t) at t = ty, respectively. We denote by z; the element of B defined by x;(0) = z(t + 6),0 € (—o0,0].
Here z; represents the history up to the present time t of the state x(-). We assume that the histories x;
belongs to some abstract phase space B, to be specified later, and ¢ € B.

2. Preliminaries

In this section, we state some notations, definitions and preliminary facts about fractional calculus and
the multivalued analysis.

Let (E,|| - ||) be a Banach space.

C = C(J, E) be the Banach space of continuous functions from J into E with the norm

lylle =sup { ly@®I : teJ}.

By AC(J, E) we denote the space of absolutely continuous function from J into E.
AC™(J,E) ={y e C" Y(J,E) :y»Y € AC(J,E)}.

L(E) be the Banach space of all linear and bounded operators on E.
L'(J, E) the space of E—valued Bochner integrable functions on J with the norm

T
Iyl = /0 ly(®)dt.



K. Aissani, M. Benchohra, J. J. Nieto, Adv. Theory Nonlinear Anal. Appl. 3 (2019), 18-34. 20

Denote by Py(X) = {Y € P(X) : Y closed}, PFp(X)={Y € P(X) :Y bounded}, Pp(X) = {Y €
P(X):Y compact}, P o(X) ={Y € P(X) : Y compact, convex},

Py.(E)={Y € P(E):Y closed, convex}.

A multivalued map G : X — P(X) is convex (closed) valued if G(X) is convex (closed) for all z € X.
G is bounded on bounded sets if G(B) = UzepG(x) is bounded in X for all B € P,(X) (i.e. sup{sup{||y| :

r€EB
y € G(x)}} < o0).

G is called upper semi-continuous (u.s.c.) on X if for each xp € X the set G(z) is a nonempty, closed
subset of X, and if for each open set U of X containing G(z), there exists an open neighborhood V' of xg
such that G(V) C U.

G is said to be completely continuous if G(B) is relatively compact for every B € P,(X). If the multi-
valued map G is completely continuous with nonempty compact values, then G is u.s.c. if and only if G has
a closed graph (i.e. x, — Zu, Yn — Yx, Yn € G(xy,) imply y. € G(z4)). For more details on multivalued
maps see the books of Deimling [21], Djebali et al. [23], Gérniewicz [24] and Hu and Papageorgiou [30] .

Definition 2.1. The multivalued map F': J x B x E — P(E) is said to be Carathéodory if
(i) t — F(t,z,y) is measurable for each (z,y) € B x E;
(ii) (x,y) — F(t,z,y) is upper semicontinuous for almost all t € J.

Definition 2.2. Let a > 0 and f € L'(J, F). The Riemann-Liouville integral is defined by
Lot f(s)
Igf(t) = / ds.
‘ I(a) Jo (

(a t—s)l—o

For more details on the Riemann-Liouville fractional derivative, we refer the reader to [20].

Definition 2.3. [38]. The Caputo derivative of order « for a function f € AC"(J, E) is defined by

o _ 1 ! f(n)(s) _ gn—a g(n)
DOf(t)_F(n—a)/o(t—s)aH”dS_IO (), t>0,n—1<a<n.

If0<a<1,then

apy — L tf(s)
Dof(t)‘m_a)/o (t— s

Obviously, the Caputo derivative of a constant is equal to zero.
In order to defined the mild solution of the problems we recall the following definition.

Definition 2.4. A closed and linear operator A is said to be sectorial if there are constants w € R,0 €
[5, 7], M >0, such that the following two conditions are satisfied:

1. Z ={AeC: N#w, largl\ —w)| <8} C p(A) (p(A) being the resolvent set of A).
(0,w)

M
2 1RO Dl € gy, Ae 2

Sectorial operators are well studied in the literature. For details see [25].

Definition 2.5. [10]. If A is a closed linear operator with domain D(A) defined on a Banach space E and
a > 0, then we say that A is the generator of an a-resolvent family if there exists w > 0 and a strongly
continuous function S, : Ry —L(E) such that {A* : Re(\) > w} C p(A) and

A\ — Al = / e MS,(t)xdt, ReA>w, z € E.
0

In this case, S4(t) is called the a-resolvent family generated by A.
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Definition 2.6. (see Definition 2.1 in [5]). If A is a closed linear operator with domain D(A) defined on a
Banach space E and « > 0, then we say that A is the generator of a solution operator if there exist w > 0
and a strongly continuous function S, : Ry —L(E) such that {\* : Re(\) > w} C p(A4) and

[ee]
AN — A)le = / e MS,(t)xdt, Rel>w, r€E,
0
in this case, S, (t) is called the solution operator generated by A.
In this paper, we will employ an axiomatic definition for the phase space B which is similar to those

introduced by Hale and Kato [26]. Specifically, B will be a linear space of functions mapping (—oo, 0] into
E endowed with a seminorm || - |5, and satisfies the following axioms:

(A1) If z: (—o0,T | — E is such that x¢ € B, then for every ¢t € J, z; € B and
lz@)] < Clla:ls,
where C' > 0 is a constant.

(A2) There exist a continuous function C(¢) > 0 and a locally bounded function Ca(¢) > 0 in ¢ > 0 such
that

2tz < C1(t) sup |z (s)]| + Ca(t)[[zoll5,

s€(0,t

for t € [0,T] and x as in (Al).
(A3) The space B is complete.

Example 2.7. The phase space C, x LP(g, X).

Let r > 0,1 < p < oo, and let g : (—oo, —7) — R be a nonnegative measurable function which satisfies
the conditions (g — 5), (g — 6) in the terminology of [29]. Briefly, this means that g is locally integrable and
there exists a nonnegative, locally bounded function A on (—o0,0], such that g(§ + 6) < A(£)g(0), for all
£ <0and 6 € (—oo,—7)\N¢, where N C (—o0, —7) is a set with Lebesgue measure zero.

The space C; x LP(g, X) consists of all classes of functions ¢ : (—o0, 0] — X, such that ¢ is continuous
on [—r, 0], Lebesgue-measurable, and g||¢||P on (—oo, —r). The seminorm in ||.||s is defined by

1

lolls = sup [10(6)] + ( / _Tg<9>||so<e>||pde) "

oe[—r,0] —00
The space B = C, x LP(g, X) satisfies axioms (A1), (A2), (A3). Moreover, for r = 0 and p = 2, this
1
space coincides with Cq x L?(g, X), H = 1, M (t) = A(ft)%,K(t) =1+ <f£)r g(T)dT) *, for t >0 (see [29],
Theorem 1.3.8 for details).

Let Sk, be a set defined by
Ska={v € LY(J,E) :v(t) € F(t, x4, () ae. t € J}.

Lemma 2.8. [F]]. Let F: J x Bx E — Pu,(E) be an L*-Carathéodory multivalued map and let ¥ be a
linear continuous mapping from L*(J, E) to C(J, E), then the operator

VoSp:C(J,E) — Pe o (C(J,E)),
z > (YoSp)(z) :=Y(SFz)
is a closed graph operator in C(J,E) x C(J, E).
The next result is known as the Bohnenblust—Karlin’s fixed point theorem.

Lemma 2.9. (Bohnenblust-Karlin [17]). Let X be a Banach space and D € Py (X). Suppose that the
operator G : D — Py (D) is upper semicontinuous and the set G(D) is relatively compact in X. Then G
has a fized point in D.
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3. Main Result
In this section, we prove our main result. We need the following lemma ([42]).

Lemma 3.1. Consider the Cauchy problem

Dfw(t) = Ax(t) + F(t) + Bu(t), 0<a<l, (4)

where F is a function satisfying the uniform Holder condition with exponent 5 € (0,1] and A is a sectorial
operator, then the Cauchy problem has a unique mild solution which s given by

z(t) = To(t)zo + /0 Sa(t — s)F(s)ds + /0 Sa(t — s)Buf(s),

where \a-1
1 a=
To(t) = — M T A\
=50 5 ae— A
1 1
So(t)=— [ €M dX,

2mi Jp, A —A

B, denotes the Bromwich path, Su(t) is called the a-resolvent family and To(t) is the solution operator,
generated by A.

Theorem 3.2. [/2]. If a« € (0,1) and A € A*(6y,wp), then for any x € E and t > 0, we have
1Ta ()l Ly < Me®t and ||Sa(t)|| 1) < Ce*' (14 th, >0, w > wp.
Let

My = sup [|Ta(t)|L(m), M, = sup Ce“t(1+1t*71),
0<t<T 0<t<T

so we have . .
1o ()l ey < Mr, [Sa(®)|lLE) <t M.

Let us consider the set
B :{x : (=00,T] = E such that x|, € C(Ji, E) and there exist
z(t}) and z(t;)) with z(ty) = z(ty), ©o = ¢,k =1,2,... ,m},
endowed with the seminorm
[zlls, = sup{|z(s)| : s € [0, T} + [[4ll5, = € B,

where x|, is the restriction of x to Ji = (g, tk+1],k=1,2,...,m.
From Lemma we define the mild solution of system as follows:

Definition 3.3. A function z : (—o00,T] — FE is called a mild solution of (3| if the restriction of z(-)
to the interval Jy,(k = 0,1,...,m) is continuous and there exists v(-) € L!(Jy, E), such that v(t) €
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F(t, xp(t,xt),x(t)) a.e t € [0,T], and z satisfies the following integral equation:

/

t € (—o0,0];
/s (t— ) s)ds+/0t5a(t—s)Bu(s)ds, t e [0,t];
Ta = 0)a(t7) + D) + [ St = o
() =1 + tltSa(t—s)Bu(s)ds, € (b1, b)) )
Tt — tw) (elt7) + Tt ))) + [ Salt — )u(s)ds
/ Sa(t — 5)Bu(s)ds : £ (b, T).

Definition 3.4. The problem (3] is said to be controllable on the interval J 1f for every initial function ¢ € B
and 1 € E there exists a control u € L?(J, E) such that the mild solution z(-) of (3) satisfies =(T) = 1.

Set
R(p™) ={p(s,0) : (s,) € J x B, p(s,p) < 0}.

We always assume that p : J x B — (—o0, T] is continuous. Additionally, we introduce following hypothesis:

(H,) The function ¢ — ¢ is continuous from R(p~) into B and there exists a continuous and bounded
function L? : R(p~) — (0, 00) such that

lgells < LO(t)lIglls  for every t € R(p™).

Remark 3.5. The condition (H,), is frequently verified by continuous and bounded functions. For more
details see, e.g., [29)].

Remark 3.6. In the rest of this section, CT and C3 are the constants

CT =sup Ci(s) and C5 = sup Ca(s).
seJ seJ

Lemma 3.7. [27] If x : (—o0,T| — X is a function such that xo = ¢, then
lzslls < (C5 + L) 65 + CF sup{ly(0)]; 0 € [0,maz{0,s}]}, s € R(p7) U J,

where LY = sup LO(t).
teR(p™)

Let us list the following assumptions.
(H1) The resolvent family S, (t) is compact for ¢ > 0.

(H2) The multivalued map F': J x B X E — Py, oy(E) is Carathéodory.

(H3) There exist a function u € L'(J,RT) and a continuous nondecreasing function ¢ : R* — (0, +-00) such
that
1f (&0, w)|| < p@) (lvlls + lwl), (¢ 0,w) € JxBxE.

(H4) Iy : E — E is continuous, and there exists € > 0 such that

Q= max {|1u(z)lp, @€ Dy}
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(H5) The linear operator W : L?(J, E) — E defined by

T
Wu :/0 Sa(T — s)Bu(s)ds,

has a pseudo inverse operator W', which takes values in L?(.J, E)/ ker W and there exist two positive
constants M7 and My such that

1Bl < M, WL < Mo. (6)

Remark 3.8. The question of the existence of the operator W~ and of its inverse is discussed in the paper
by Quinn and Carmichael (see [39]).

Theorem 3.9. Assume that (H,), (H1) — (H5) hold. Then the IVP () is controllable on (—oo,T].

Proof. We transform the problem into a fixed-point problem. Consider the multivalued operator
N:B — 77(31) defined by N(h) = {h € B} with

t € (—00,0];
/S (t—s)v ds—|—/S (t — s)Bu(s)ds, t €0,t];
To(t — t1)(2(t7) + L (x /s (t — s)v
h(t) = —l—/tl Sao(t — s)Bu(s)ds, t € (t1,ta];
Tt = tn)alt) + In(altz) + [ Salt = spo(s)ds
+/t So(t — s)Bu(s)ds, t € (tm, T].

Using hypothesis (H5) for an arbitrary function z(-) define the control

j xl / Sa(T — s) )ds]( ), t €[0,t1];
W [ To(T = 1) ((t7) + Li((t7)))
T
-1 -/ SQ(T—s)v(s)ds](t), t e (t,ta);

Wt = To(T = ) (@(t) + In(a(t5,))
T
| Su(T - s)v(s)ds] (1), t € (tm, T).

tm

It is clear that the fixed points of the operator N are mild solutions of the problem .
Let us define y(+) : (—o0,T] — E as

o(t),  te(-00,0]

y(t) =
0, ted.

Then yo = ¢. For each z € C(J, E) with z(0) = 0, we denote by Z the function defined by
0, t € (—o0,0[;

z(t), telJ.
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Let xy = ys + Zi,t € (—o00,T]. It is easy to see that z(-) satisfies if and only if z9p = 0 and for ¢t € J, we
have

( tSa(t — s)v(s)ds + /t Sa(t — s)Bu(s)ds, t €[0,t1];
0 0

Talt =) [y(t) +2(t0) + Iy (t) +2(0)]

(t) = + | Sa(t—s)v(s)ds+ [ Sa(t—s)Bu(s)ds, te€ (t1,ta];

Talt = tn) [9(t) + 2(t5) + Inu(t) + 2(057)

+ [ Sa(t—s)v(s)ds+ [ Sa(t —s)Bu(s)ds, t€ (tm,T),

tm tm

\

where v(s)
Let

< SF’yP(Says +Es)+zﬂ(5ays +Zs) "

By = {z € By such that 2zy=0}.

For any z € Bs, we have
1zlls, = supllz(t)] + [[20ll5
te

= sup||z(t)]|
teJ

Thus (Ba, | - ||,) is a Banach space. We define the operator P : By — P(B2) by : P(z) = {h € B2} with

( tSa(t — s)v(s)ds + /t Sa(t — s)Bu(s)ds, t €[0,1];
0 0
Ta(t —t1) [y(t7) +2(67) + D(y(t) +2(67)]

h(t) = + , Sa(t — s)v(s)ds + /tl Sa(t — s)Bu(s)ds, te (t1,ta];

*9

Talt — ) [0+ 3(67) + In(57) + Z(67)
—i—/ Sa(t—s)v(s)ds—i—/ Sa(t — s)Bu(s)ds, t € (tm,T),

\

where 'U(S) € SF’yP(S:yS‘FZs)+Zﬂ(5vys+zs).

It is clear that the operator N has a fixed point if and only if P has a fixed point. So let us prove that P has
a fixed point. We shall show that the operators P satisfy all conditions of Lemma[2.9] For better readability,
we break the proof into a sequence of steps.

Choose

[0}

—_— — T . Ta
r > MT(T-FQ) (1+M5M1M2a> —i—MleMQ;HmlH

Ar T\ ~ T¢ * *
# (1 Msdne ) B (05 + L)l + (CF + D)l

and consider the set
D, ={z€By:2(0)=0,|z|p, <1}

It is clear that D, is a closed, convex, bounded set in Bs.
Step 1: P is convex for each z € Bs.
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Indeed, if hy and ho belong to P, then there exist vy, v9 € Spvyp(s’ysﬁsﬁg
1 =1,2, we have

such that, for ¢t € J and

p(s,ys+Zs)

ot — s)vi(s)ds

/ Sa(t — $)BW ™ acl / S )dT}ds te0,t];
Tolt —t) [y(ty) +2(t7) + Li(y(ty) +2(t)] + :5 (t — s)vi(s)ds
tt So(t —s)BW ™1 [331 —To(T — t1)[y(ty) + 2(t7)
hi(t) = q +1, (ly(tf) +E())] - : Su(T — T)vi(T)dT} ds, te (tr,ta);

b

Ta(t — t) [y(t) + Z(t) + Ln (y(t5) + 2(t5))] + / Sa(t — s)vi(s)ds
b Salt = B [ T~ )t + (07)
m T
o (y(t) + 2] = | SalT = P)ui(r)dr|ds, LE (bm,T).

tm

Let d € [0, 1]. Then for each t € [0, 1], we get
dhi(t) + (1 —d)he(t) = /t Sa(t — 8) [dv1(s) + (1 — d)va(s)] ds + /t So(t —s)BW™!
0

X xl / So(T —7) (dvr () + (1 d)vg(T))dT}dS.

Similarly, for any t € (¢;,t;41],7 =1,...,m, we have

dhi(t) + (1 —d)he(t) = Sa(t — 8) [dv1(s) + (1 — d)va(s)] ds

t;

+ Ta(t—t:) [y(ty) +2(t7) + Lily(t;) + 2(t7))]

[ Sult B o T )+ 767)

T
+ L(y(;)+z)))] — /t So(T —7) (dv (1) + (1 — d)va (7)) d7|ds.

Since SFy, is convex (because F has convex values), we get

s,ys+7s) TZp(s,ys+7s)

dhy + (1 — d)hy € P(2).
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Step 2: P(D,) C D,. Let h € P(z) and z € D,., for t € [0,¢1], we have

ol

<

<

IN

IN

<

X

t t
/0 1St — )|y l1o(s)]|ds + / 1St — )]l 0| Bu(s)|ds
. t
s / (t = 9% () (Wotoume iz + Zotom o | + () + Z(5)]])ds

t
MleMg/ (t — S)ail
0

T
[l || +MS/O (T’T)allv(T)||d7"| ds

_ t
55 [ (0= 9 W00t 12,) + Zptez | + 139 +3(5) s
t
MMy [ (= 5) ]
0

T
s / (T = ) w (Y (prgsey + Zotraps oyl + () + Z(r)]]dr | ds

[e3 [e3

~ T ¢ —~ T
Ms—((C5 +L?)[|¢lls + (C + )r) / u(s)ds + MsMi My — | |
0

~ T20¢ . 8 . t
MMM (G5 + L)l + (G + 1) [ (o)

—~ T« —~ T\ ~ T
MSMlMQUHl’lH + <1 + MSM1M2a> MS;

D((C3 + L) élls + (CF + )r) el 2

Moreover, when ¢ € (t;,t;+1],2 = 1,...,m, we have the estimate

ol

<

+

IN

<

+

ITa(t =) [27) + LA D] s + [ 15t = 9l o)l
[ 18att = )iy 1B [ =TT = 0)[a(67) + L(-(6)
ZT
/t ST — Tyo(r)dr] |ds
Mir(r+ )+ 35 [ (¢ = 9 0600t 12 + Zpteaz | + 1305 +3(5) s
t T
Msh 0y [ =8 |+ M+ )+ 35 [ (T = 7)ol e as

—~ T —~ T
Mrp(r + Q) (1 + M5M1M2a> + M5M1M2?||1'1||

~ T\ ~ T¢
(1+ st - ) Bs (G5 + L9l + (CE -+ D)l <

Step 3: P maps bounded sets of D, into equicontinuous sets of D,..
Let 71,72 € [0,t1], with 71 < 72, we have

[h(72) = h(m) | < @1 + Q2,

where

Q=

Q2 =

/ " 1Su(r2 — 8) (o(s) + Bu(s) | ds

/0 1 (Salm2 — 8) — Sa(n — )) (u(s) + Bu(s)) |lds.
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Actually, @1 and Q3 tend to 0 as 71 — 72 independently of z € D,.. Indeed, in view of (H3) and @, we have

Q1 = /T2 [Sa(T2 = 5) (v(s) + Bu(s)) || ds

< [ 15 = @ + [ 1~ lace 1Bu(s)lds
MST—T‘X . .
S‘L%JLW%+WW%+WHMMMU
MMMST—TO‘ T« . .
* 12i2 ”UM+%QMQ+MWMHQ+WHM“

Hence, we deduce that

T1—T2

Also,

Q = /ﬁH@4wf$fSﬁﬁf$Mwﬁ+BM$M@
0

IN

/On [ (Sa(r2 = 8) = Sa(n1 = 8)) L) ([0(s)]] + | Buls)]) ds

IN

AHM&m—@—&m—@mmmmmm

+ M /0” | (Sa(m2 —5) = Sal(m1 — 5)) [l L) lluls)|ds

IN

9((C5 + Lol + (O + Dl [ 11 (Salra = 5) = Sulr = 9) lacerds
T«

+ MMy ||+ B (G5 Lol + (CF + D)l

X /0 [1Sa(T2 — 8) — SalT1 — 3)||L(E)ds.

Since [|Sa (T2 — 8) — Sa(1 — 8)llL(m) < 2]/\\4/5@1 —s)2 L e LYJ,R,) for s € [0,t1] and Sy (72 — 5) — Sa(m1 —8) — 0 as
T — Tg, S 18 strongly continuous. This implies that

T1—>T2
Similarly, for 71,7 € (t;,tit1],i = 1,...,m, we have

[h(r2) = ()| < || Ta(r2 —t;) — Ta(mi — t) |l nemy (2@ + 1Lz (5 )] + Q) + @4
< NTalr2 —ti) = Ta(m — ta)ll L) (r + Q) + Q) + Q5,

where
Q, = / 1Sa(72 — ) (v(s) + Bu(s)) |ds
< M2y (0 4+ 2ol + (CF + )l + A2
— T
< {llaall + M+ ©) + 3 2 0((05 + L0l + (5 4+ 1)l
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Hence, we deduce that lim Q) =0,
T1—>T2

Q, = /n 1Sa(T2 — ) = Sal(1 = s) (v(s) + Bu(s)) ||ds
0

IN

HC5 + L6l + (€5 +Unllsr [ 1(Sulra = 5) = Salrs = ) s
& MMy [l + B+ + 32005+ L)l + (€5 + D)l
x / 1Sa(r2 — 8) — Sal(m — 8)| oz ds.

0

As [|Sa(T2 = 8) = Sa(m1 — 8|y < 2M5(t1 —38)2 e LY(J,Ry) for s € [0,¢1] and Su(m2 — 8) — Sa(m1 —8) — 0 as

T1 — To, since S, is strongly continuous. This implies that lim Q) = 0. Since T, is also strongly continuous, so
T1—>T2

To(mo —t;) = To(m1 —t;) — 0 as 7y — 72. Thus, from the above inequalities, we have

lim ||h(m2) — h(m1)] = 0.

T1—T2

So, P(D,) is equicontinuous.
Step 4: The set (PD,)(t) is relatively compact for each ¢ € J, where

(PD,)(t) = {h(t) : h € P(Dy)}.

Let 0 <t < s <t; be fixed and let € be a real number satisfying 0 < € < t. For z € D,. we define

hs(t):/o_sSa(t—s)v(s)ds—i—/O_E Sa(t — 5)Bu(s)ds,

where v € Sky, ., . +7 ,- Using the compactness of S (t) for ¢t > 0, we deduce that the set

p(s,yst+Zs

H. = {h(t) : h. € P(D,)}

is relatively compact in E. Moreover,

t t
|h(t) — he(t)]] < ‘ Sa(t — s)v(s)ds|| + ‘ So(t — 8)Bu(s)ds|| .
t—e t—e
Similarly, for any ¢ € (¢;,t;41] with i =1,...,m. Let t; <t < s < t;41 be fixed and let ¢ be a real number satisfying
0 <e<t. For z € D, we define
he(t) = Ta(t—t) [y(t7) +2(t7) + Lly(t7) + 2(8))]

+ /t T Sl — s)o(s)ds + /t .H St — 5)Bu(s)ds,

where v € Sk, 1o 4504, Oilce Su(t) is a compact operator, the set
H. ={h.(t) : he P(D,)}

is relatively compact. Moreover,

Ih(t) — he(t)]] < ‘ /ti So(t — s)v(s)ds /ti So(t — s)Bu(s)ds

"

On the other hand, using the continuity of the operator T, (t), it follows that (PD,.)(t) is relatively compact in E, for
every t € [0, 7.

As a consequence of Step 2 to 4 together with Arzeld—Ascoli theorem we can conclude that P is completely continuous.
Step 5: P has a closed graph.
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Let z, — 2y, hyy € P(2,) with h,, — h,. We shall prove that h. € P(z,).
In fact h,, € P(z,) means that there is exists v, € SEy, p(s,yns+Zns)+Znp(s.yns+7ns) SUch that, for each ¢ € [0,%;],

/S s)op (s ds+/S (t — s)Buy(s)ds,

where

T
Up (t) = W1 [xl 7/0 So(T — s)vn(s)dsl (t).

We must show that there exists v« € Sk, p(s,y..+7.,)+2. p(s,y.s+7..) Such that, for each ¢ € [0,#,],

t) = /0 Sa(t — s)v.(s)ds + /0 Sa(t — 8)Bu(s)ds,

x1 —/0 Sa(T — s)v*(s)ds] (t).

Consider the following linear continuous operatorY : L1([0,t1], E) — C([0,t1], E) defined by

/St—s (s) + B! (931 /s T— 1) (T)dT)(s)]ds.

By Lemma we know that ToSp is a closed graph operator. Moreover, for every t € [0, 1], we obtain

where

u,(t) = W1

hn(t) € Y(SF g p(synetZna)tZnp(5.0ms+7ns))-

Since z, — 24 and hy, — h,, it follows, that for every t € [0, 1],

£ = /0 Su(t — s)ua(s)ds + /0 Su(t — 5)Bu(s)ds,

for some vy € SFy, p(s,yrs 4700 )+Z (5,500 +F0e) -
Similarly, for any t € (¢;,t;41],4 =1,...,m, we have

ha(t) = Talt —t:) [yn(t;) + Za(ty) + Liyn(t;) + Za(t))]
+ /t Sa(tfs)vn(s)Jr/t‘ So(t — $)Buy(s)ds,

where

un(t) = Vv-l[xl—Ta(T—t)( n(t7) + Za(t]) + Liga () + Zalt)))

/ Su <>ds]<>.

t;

We shall prove that there exists v« € Sk, p(s,y.et+2.0) 42, p(s,y.5+7..) Such that, for each
te (tiati+1]7

ha(t) = Talt —t) [y« (t7) + Zu(; )+I(y*( i)+ Z(t))]

t So(t — 8)vi(s)ds + Sa(t — 8)Bu(s)ds,

t; t;

_|_

where

wn(t) = W oy = TalT = 1) (3 () + 2. () + Ly (67) +2.(87)))

T
_ / Sa(T—s)v*(S)dS] (t).

i
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Denote
u(t) =Wt oy = To(T — ta) (y(t7) +2(t7) + Li(y(t;) +2(8)))] (1)

Since I; and W1 are continuous, we have
ﬁn(t) —>ﬂ*(t), fO’I“ te (ti,ti_;,_l},i: 1,....m.

Clearly, we have
H( Tolt —t:) [yn(t;) +Za(ty) + Li(ya(t;) + Zalt ))]—/tha(t—s)Ban(s)ds)
(h*(t)T“(t“) [+ (87) +Z(6) + Ly (1) + 2.4, ))]/:Sa(ts)Bﬂ*(s)ds)H

i

—0 asn— oo.

Consider the linear continuous operatorY : L*((t;, ti11], E) — C((ti, tis1], E),
t
— (T’U)(t) = Sa(t - S) [U(S) + BW_l ($1 - Ta(T - ti) (yn(t;) +En(t;)
ti
T
+  Lyn(t;) +Za(t]))) — So(T = 1)v(T) dT) (s)] ds.
ti

In view of Lemma we deduce that ToSF is a closed graph operator. Also, from the definition of T, we have that,
for every t € (t;,tip1],i=1,...,m,

(P (t) = Ta(t = 1) [yn(t7) + Za(t7) + Liyn () + Zn(t7)]) € TSPy p(s:9me 400420 p(5une+200))-

Since z,, — 2, for some v € Spy, p(o i t7.0) 47 p(s.y.0+7..) 1t fOllows from Lemma [2.8] that, for every ¢ € (i, ti11], we
have

ha(t) —ti) [ya (7)) + Z(87) + Li(ya (t7) + Za(t7))]

/ So(t — 8)vs(s ds+/ So(t — 8)Bus(s)ds.
Therefore P has a closed graph.

Hence by Lemma P has a fixed point z on D,., which is the mild solution of the system , then problem
is controllable on (—oo,T]. This completes the proof of the theorem.

4. An Example

Consider the impulsive fractional integro-differential inclusion:

% .0 e L vt + | arls=0u(s = pr(Opa(lett = 5.0)),ds + sin u(t, )

ota 0¢2 oo
+ /L(t,(), te (tkvtk+1]a C S [Ovﬂ']v
v(t,0) = ov(t,m) =0, t € 10,7, (7)
v(t, ) = vo(8,C), 0 € (—00,0], ¢ €[0,7],
Ao(t)(C) = / " plth — y)dy cos(u(t)(0)), k=1.2...m

where 0 < ¢ < 1,4 : [0,T] x [0,77] = [0,7],pr : R = Rk = 1,2,...,m, and a1 : R — P(R) is a convex-valued
multivalued map, and p; : [0,400) — [0,+00), i = 1,2 are continuous functions.
Set E = L?([0,7]) and D(A) C E — E be the operator Aw = w” with domain

D(A) ={w € E : w,w" are absolutely continuous, w” € E,w(0) = w(r) = 0}.
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Then -
Aw = Z n?(w,wn)wn, w € D(A),
n=1
2
where w,, (z) = 4/ — sin(nz),n € N is the orthogonal set of eigenvectors of A. It is well known that A is the infinitesimal
m

generator of an analytic semigroup {T'(¢)};>0 in E and is given by
> 2
T(t)w = Ze‘" Hw,wn)wn, VYw € E, and every t > 0.
n=1

From these expressions, it follows that {T'(¢)};>0 is a uniformly bounded compact semigroup, so that R(A, A) =
(A — A)~! is a compact operator for all A € p(A), that is, A € A%(fp,wo).
For the phase space, we choose B = Cy x L?(g, X), see Example for details.
Set
z(t)(¢) = v(t, (), t€[0.T], ¢ €0,
)

¢(9 (C) = v0(93€)7 AS (*O0,0], e [Oaﬁ]'
0
F(tpo®)Q) = [ a()p(sds+ e sinfa®)(Q)]. t€ 0.7, ¢ < 0.7
plts9) = = pr($)pa(I(0)]).
0

Ii(a(t;))(C) = / prlts — y)dycos(@(t)(C)),  k=1,2,...,m.

Bu(t)(¢) = ult, ).

Under the above conditions, we can represent the system in the abstract form . Assume that the operator
W : L*(J,E) — E defined by

T
Wa() = [ S = s)uls, s
0
has a bounded invertible operator W~ in L?(J, E)/ ker W.

The following result is a direct consequence of Theorem [3.9

Proposition 4.1. Let ¢ € B be such that (H,) holds, and assume that the above conditions are fulfilled, then system
(@) is controllable on (—oco,T).
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