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Categories internal to crossed modules 

Tunçar Şahan*1 and Jihad Jamil Mohammed 2 

Abstract 

In this study, internal categories in the category of crossed modules are characterized and it has been shown that there 
is a natural equivalence between the category of crossed modules over crossed modules, i.e. crossed squares and the 
category of internal categories within the category of crossed modules. Finally, we obtain examples of crossed 
squares using this equivalence. 

Keywords: Crossed module, internal category, crossed square

1. INTRODUCTION 

Crossed modules are first defined in the works of 
Whitehead [25-27] and has been found important in 
many areas of mathematics including homotopy 
theory, group representation theory, homology and 
cohomology on groups, algebraic K-theory, cyclic 
homology, combinatorial group theory and differential 
geometry. See [4-7] for applications of crossed 
modules.  Later, it was shown that the categories of 
internal categories in the category of groups and the 
category of crossed modules are equivalent [8-14]. 

Mucuk et al. [18] interpret the concept of normal 
subcrossed module and quotient crossed module 
concepts in the category of internal categories within 
groups, that is group-groupoids. The equivalences of 
the categories given in [8, Theorem 1] and [24, Section 
3] enable us to generalize some results on group-
groupoids to the more general internal groupoids for an 
arbitrary category of groups with operations (see for 
example [1], [15], [16] and [17]). 

Gerstenhaber [11] and Lichtenbaum, Schlessinger [13]   
have defined the concept of a crossed module on 
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associative and commutative algebras. In [2] the 
categories of crossed modules and of 2-crossed 
modules on commutative algebras are linked with an 
equivalence. 

Crossed squares are first described to be applied to 
algebraic K-theoretic problems [12]. Crossed squares 
are two-dimensional analogous of crossed modules and 
model all connected homotopy 3-types (hence all 3-
groups) and correspond in much the same way to pairs 
of normal subgroups while crossed modules model all 
connected homotopy 2-types and groups model all 
connected homotopy 1-types. 

Recently, freeness conditions for 2-crossed modules 
and crossed squares are given in [19] and [20]. See also 
[3] for commutative algebra case. 

Main objective of this study is to characterize internal 
categories within the category of crossed modules and 
to prove that the category of internal categories in the 
category of crossed modules and the category of 
crossed squares are equivalent. Hence this equivalence 
allow us to produce more examples of crossed squares. 
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2. PRELIMINARIES 

In this section we recall some well-known basic 
definitions and resultss. 

2.1. Extensions and crossed modules 

Following are detailed descriptions of the ideas given 
in [24] for the case of groups. An exact sequence of the 
form 

0 0i pA E B      

is called short exact sequence where 0 is the group with 
one element. Here i  is a monomorphism, p  is an 

epimorphism and ker p A . In a short exact sequence, 

group E  is called an extension of B  by A . An 
extension is called split if there exist a group 
homomorphism :s B E  such that 1Bps  . 

Let E  be a split extension of B  by A . Then the 
function 

     
:

,

E A B

e e sp e p e

  


 

is a bijection. The inverse of   is given by 

   1 ,a b a s b    . 

Thus it is possible to define a group structure on A B  
such that   is an isomorphism of groups. Let 

   1 1, , ,a b a b A B  . Then  

         
    
    

        
     

1
1 1 1 1

1 1
1 1

1 1

1 1 1 1

1 1

, , , ,

, ,

,

, .

a b a b a b a b

a b a b

a s b a s b

a s b a s b s b s b b b

a s b a s b b b

 

  





 

  

 

   

      

    

 

Here we note that a split extension of B  by A  defines 
an (left) action of B  on A  with 

    b a s b a s b     

 for a A  and b B . A B  is called the semi-direct 
product group of A  and B  with the operaton given 
above and denoted by A Bã .  

These kind of actions are called derived actions [23]. 
Every group A  has a split extension by itself in a 
natural way which gives rise to the conjugation action 
as 

0 0
p

s

iA A A A     ã  

where    ,0i a a ,  1 1,p a a a  and    0,s a a  for 

1,a a A . 

Definition 2.1 Let A  and B  be two groups and let B  
acts on A  on the left. Then a group homomorphism 

: A B   is called a crossed module if 
1 :A A A A B ã ã  and 1 :B A B B B  ã ã  are 

group homomorphisms [24]. 

A crossed module is denoted by  , ,A B  . It is useful 

to give the definition of crossed modules in terms of 
group operations and actions. 

Proposition 2.2 Let A  and B  be two groups, 
: A B   a group homomorphism and B  acts on A  

on the left. Then  , ,A B   is a crossed module if and 

only if 

(CM1)    b a b a b      and 

(CM2)   1 1a a a a a      

for all 1,a a A  and b B  [24]. 

Example 2.3 Following homomorphisms are standart 
examples of crossed modules. 

(i) Let X  be a topological space, A X  and 
x A . Then the boundary map   from the 

second relative homotopy group  2 , ,X A x  

to the fundamental group  1 ,X x  is a crossed 

module with the natural action given in [27]. 

(ii) Let G  be a group and N  a normal subgroup 

of G . Then the inclusion function incN G  
is a crossed module where the action of G  on 
N  is conjugation. 

(iii) Let G  be a group. Then the inner 
automorphism map Aut( )G G  is a crossed 

module. Here the action is given by 
( )g g    for all Aut( )G   and g G . 

(iv) Given any G -module, M , the trivial 
homomorphism 0 : M G  is a crossed G -
module with the given action of G  on M . 

A morphism ,A Bf f f  of crossed modules from 

 , ,A B   to  , ,A B     is a pair of group 
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homomorphisms :Af A A  and :Bf B B  such 

that B Af f   and      A B Af b a f b f a    for all 

a A  and b B . 

Crossed modules form a category with morphisms 
defined above. The category of crossed modules is 
denoted by XMod. 

Definition 2.4 Let  , ,A B   and  , ,S T   be two 

crossed modules. Then  , ,S T   is called a subcrossed 

module of  , ,A B   if S A , T B ,   is the 

restriction of   to S  and the action of T  on S  is the 
induced action from that of B  on A  [21,22]. 

Definition 2.5 Let  , ,A B   be a crossed module and 

 , ,S T   a subcrossed module of  , ,A B  . Then 

 , ,S T   is called a normal subcrossed module or an 

ideal of  , ,A B   if 

(i) T B , 

(ii) b s S   for all b B , s S  and 

(iii) t a a S    for all t T , a A  [21,22]. 

Example 2.6  Let    : , , , ,f A B A B     be a 

morphism of crossed modules. Then the kernel 

 |kerker ker , ker ,ker ,
AA B A B ff f f f f    of 

,A Bf f f  is a normal subcrossed module (ideal) of 

 , ,A B  . Moreover, the image 

 ImIm Im , Im ,Im |',
AA B A B ff f f f f    of 

,A Bf f f  is a subcrossed module of  , ,A B    . 

Definition 2.7  A topological crossed module 

 , ,A B   is a crossed module where A  and B  are 

topological groups such that the boundary 
homomorphism : A B   and the action of B  on A  
are continuous. 

Now we give the pullback notion in the category of 
crossed modules. 

Definition 2.8  Let  , ,A B  ,  , ,M P   and 

 , ,C D   be three crossed modules and 

   , : , , , ,A Bf f f A B M P    and 

   , : , , , ,C Dg g g C D M P    be two crossed 

module morphisms. Then the pullback crossed module 

of f  and g  is  , ,
A C B Df g f gA C B D      where the 

action of 
B Df gB D  on 

A Cf gA C  is given by 

      , , ,b d a c b a d c     

for all  ,
B Df gb d B D   and  ,

A Cf ga c A C  . 

2.2. Internal categories and Brown-Spencer 
Theorem 

Definition 2.9 Let   be a category with pullbacks. 
Then an internal category C  in   consist of two 
objects 1C  and 0C  in   and four structure morphisms 

1 0, :s t C C , 0 1:C C   and 1 1 1: s tm C C C  , 

where 1 1s tC C  is the pullback of s  and t , such that the 

following conditions hold: 

(i) 
0

1Cs t   ; 

(ii) 2sm s , 1tm t  ; 

(iii)    
1 1

1 1C Cm m m m    and 

(iv)    
1 1 1

,1 1 , 1C C Cm s m t   . 

Morphisms , ,s t   and m  are called source, target, 

identity object maps and composition respectively. An 
internal category in   will be denoted by 

 1 0, , , , ,C C C s t m  or only by C  for short. 

If there is a morphism 1 1:n C C  in   such that 

 1,m n s   and   ,1m n t , i.e. every morphism in 

1C  has an inverse up to the composition, then we say 

that  1 0, , , , , ,C C C s t m n  is an internal groupoid in 

 . 

Let C  and 'C  be two internal categories in  . Then 

a morphism  1 0,f f f  from C  to 'C  consist of a 

pair of morphisms 1 1 1:f C C  and 0 0 0:f C C  in   

such that 

(i) 1 0sf f s , 1 0tf f t , 

(ii) 0 1f f   and 

(iii)  1 1 1m f f f m  . 

Thus one can construct the category of internal 
categories in an arbitrary category   with pullbacks 
where the morphisms are morphisms of internal 
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categories as given above. This category is denoted by 

Cat   . 

An internal category in the category of groups is called 
a group-groupoid [8]. Group-groupoids are also the 
group objects in the category of small categories.  

Example 2.10 Let X  be a topological group. Then 
the set X  of all homotopy classes of paths in X  
defines a groupoid structure on the set of objects X . 
This groupoid is called the fundamental groupoid of X
. Moreover, X  is a group-groupoid [8].  

Let G  be an internal category in the category of 
groups, i.e. a group-groupoid. Then the object of 
morphisms 1G  and object of objects 0G  have group 

structures and there are four group homomorphisms 

1 0, :s t G G , 0 1:G G   and 1 1 1: s tm G G G   such 

that the conditions (i)-(iv) of Definition 2.9 are 
satisfied.  

Morphisms between group-groupoids are functors 
which are group homomorphisms. The category of 
group-groupoids is denoted by GpGd. 

Since 1 1 1: s tm G G G   is a group homomorphism 

then we can give the following lemma. 

Lemma 2.11 Let G  be an internal category in the 
category of groups. Then 

          , , , , ,m b a b a m b a m b a         

 i.e. 

       b b a a b a b a          

 whenever one side (hence both sides) make senses, for 
all 1, , ,a a b b G   [8]. 

Equation given in Lemma 2.11 is called the interchange 
law. Applications of interchange law can be given as in 
the following. 

Let G  be a group-groupoid. Then the partial 
composition in G  can be given in terms of group 

operations [8]. Indeed, let  ,a G x y  and  ,b G y z

. Then 

    
    

0 1 1

1 0 1

1

y y

y y

y

b a b a

b a

b a

    

   

  

 

   

and similarly 1yb a a b   . 

Corollary 2.12 Let G  be a group-groupoid. Then the 
elements of ker s  and ker t  are commute under the 
group operation [8]. 

One can give the inverse of a morphism in terms of 
group operation as another consequence of the 

interchange law. That is, let  ,a G x y . Then 

1 11 1 .y xa a a a      

Thus 1 1 1x ya a    . Similarly 1 1 1y xa a    . 

A final remark is that if 1, kera a s  and  t a x  then 

1 kerx a t    so commutes with 1a . This implies that 

   1 11 1x xa a a a        

and thus 

1 11 1 .x xa a a a      

Theorem 2.13 [Brown & Spencer Theorem] The 
category GpGd of group-groupoids and the category 
XMod of crossed modules are equivalent [8]. 

Proof: We sketch the proof since we need some details 
in the last section. Define a functor 

: GpGd XMod  

as follows: Let G  be a group-groupoid. Then 

   , ,G A B   is a crossed modules where kerA s

, 0B G ,   is the restriction of t  and the action of B  

on A  is given by 1 1x xx a a    . 

Conversely, define a functor 

: XMod GpGd  

as follows: Let  , ,A B   be a crossed module. Then the 

semi-direct product group A Bã  is a group-groupoid 

on B  where  ,s a b b ,    ,t a b a b  , 

   0,b b   and the composition is 

     , , ,a b a b a a b     

where  b a b   . Other details are straightforward 

so is omitted. 
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3. INTERNAL CATEGORIES WITHIN THE 
CATEGORY OF CROSSED MODULES 

In this section we will characterize internal categories 
in the category XMod. Let C  be an internal category 
in the category XMod of crossed modules over groups. 
Then C  consist of two crossed modules 

 1 1 1 1, ,C A B   and  0 0 0 0, ,C A B   and four crossed 

module morphisms as ,A Bs s s , 

1 0, :A Bt t t C C    which are called the source and 

the target maps respectively, 0 1, :A B C C     

which is called the identity object map and 

1 1 1, :A B s tm m m C C C    which is called the 

composition map. These are object to the followings: 

(i) 
0

1Cs t   ; 

(ii) 2sm s , 1tm t ; 

(iii)    
1 1

1 1C Cm m m m    and 

(iv)    
1 1 1

,1 1 , 1C C Cm s m t   . 

 

An internal category in the category XMod will be 

denoted by  1 0, , , , ,C C C s t m  or briefly by C  when 

no confusion arise. Identity objects  0A a  and 

 0B b  will be denoted by 
0

1a  and 
0

1b   for short, 

respectively. Also the composition of elements will be 
denoted by  

 1 1 1 1,Am a a a a    

and by 

 1 1 1 1,Bm b b b b    

for 1 1 1,a a A   and 1 1 1,b b B   with    1 1A As a t a   and 

   1 1B Bs b t b  . 

Example 3.1 Let ( , , )A B   be a crossed module over 

groups. We know that ( , , )A A B B      is also a 

crossed module. If we set 1 ( , , )C A A B B      , 

0 ( , , )C A B  , 1s  , 2t  ,     and define m  

with 1 2 1 2( , ) ( , ) ( , )a a a a a a  and 

1 2 1 2( , ) ( , ) ( , )b b b b b b  for all 1 2, ,a a a A  and 

1 2, ,b b b B  then 1 0( , , , , , )C C C s t m  becomes an 

internal category in Xmod. 

Example 3.2 Let ( , , )A B   be a crossed module over 

groups. Then (( , , ),( , , ), , , , )C A B A B s t m    

becomes an internal category in XMod where s , t  and 
  are identity maps. 

Example 3.3 Let ( , , )A B   be a topological crossed 

module. Then ( , , )A B    is also a crossed module. 

Moreover,  

( , , ) (( , , ),( , , ), , , , )A B A B A B s t m        

is an internal category in XMod. 

Now we will give the properties of an internal category 
with a few lemmas individually. 

Lemma 3.4 Let C  be an internal category in Xmod. 

Then for  0,1i  

(i) ( ) ( ) ( )i i i i i i ia a a a      , 

(ii)    i i i i i i ib a b a b      and 

(iii)  i i i i i ia a a a a       

for all ,i i ia a A   and i ib B . 

Proof: It follows from the fact that  , ,i i i iC A B   is a 

crossed module for  0,1i . 

Lemma 3.5 Let C  be an internal category in Xmod. 
Then 

(i)      1 1 1 1A A As a a s a s a    , 

     1 1 1 1B B Bs b b s b s b    ,  

     1 1 1 1A A At a a t a t a    , 

     1 1 1 1B B Bt b b t b t b    , 

(ii) 0 1A Bs s  , 0 1A Bt t  , 
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(iii)      1 1 1 1A B As b a s b s a   , 

     1 1 1 1A B At b a t b t a   , 

(iv)      0 0 0 0A A Aa a a a      ,

     0 0 0 0B B Bb b b b      , 

(v) 1 0A B    , 

(vi)      0 0 0 0A B Ab a b a     , 

(vii)        1 1 1 1 1 1 1 1a a a a a a a a            

with    1 1A As a t a  ,    1 1A As a t a   and

       1 1 1 1 1 1 1 1b b b b b b b b            

with    1 1B Bs b t b  ,    1 1B Bs b t b  , 

(viii)  1 1 1A Bm m    , 

(ix)        1 1 1 1 1 1 1 1b b a a b a b a          

for all 1 1 1 1 1, , ,a a a a A   , 1 1 1 1 1, , ,b b b b B    , 0 0 0,a a A , 

and 0 0 0,b b B  . 

Proof:  (i)-(iii) follows from the fact that , ,A Bs s s  

,A Bt t t  being morphisms of crossed modules. 

(iv)-(vi) follows from the fact that ,A B    being a 

morphism of crossed modules. In these conditions if we 

use the symbol   1    for identity morphisms then 

we get 

(iv)' 
00 0 0

1 1 1aa a a 
  , 

00 0 0
1 1 1bb b b 

  , 

(v)'    0 0 01 1 1a a    and 

(vi)' 
0 0 0 0

1 1 1b a b a   . 

(vii)-(ix) follows from the fact that ,A Bm m m  being 

a morphism of crossed modules. 

The identities given in condition (vii) of Lemma 3.5 are 
called interchange laws between group operations and 
compositions. As an application of interchange laws we 
will give the following corollary. 

Corollary 3.6 Let C  be an internal category in XMod. 
Then the compositions in 1A  and 1B  can be written in 

terms of group operations on 1A  and 1B , respectively, 

as 

   1 11 1 1 1 1 11 1
A As a s aa a a a a a         

and 

   1 11 1 1 1 1 11 1
B Bs b s bb b b b b b         

for 1 1,a a A  , 1 1,b b B   with    1 1A As a t a   and 

   1 1B Bs b t b  . 

Proof: We will prove the assumption for 1A . If 0  

denotes the identity (zero) elements of groups 1A  and 

0A  then 

 

       
      
 

1 1

1 1

1

1 1 1 1

1 1

1 1

0 1 1

1 0 1

1

A A

A A

A

s a s a

s a s a

s a

a a a a

a a

a a

 





    

   

  

 

   

and similarly 

 

       
      

 

1 1

1 1

1

1 1 1 1

1 1

1 1

0 1 1

0 1 1

1 .

A A

A A

A

s a s a

s a s a

s a

a a a a

a a

a a

 





   

  

  

 

   

By this corollary we obtain that if    1 1 0A As a t a  

, i.e. 1 ker Aa s   and 1 ker Aa t  , then 

1 1 1 1.a a a a     

So the elements of ker As  and ker At  are commutative. 

Similarly, the elements of ker Bs  and ker Bt  are 

commutative too. Moreover, for an element 1 1a A , 

   1 1

1
1 1 11 1

A As a t aa a A      is the inverse element of 

1a  up to the composition Am . Similarly for an element 

1 1b B ,    1 1

1
1 1 11 1

B Bs b t bb b B      is the inverse 

element of 1b  up to the composition .Bm  This means 

that  1 0, , , , , ,C C C s t m n  has a groupoid structure 

where 1 1, :A Bn n n C C   is a morphism of crossed 

modules where 

      1 1

1 1
1

1 1 1 1

:

1 1
A A

A

A s a t a

n A A

a n a a a


   

 

and 
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      1 1

1 1
1

1 1 1 1

:

1 1 .
B B

B

B s b t b

n B B

b n b b b


   

 

It is easy to see that 

       1 1 1 11 11 1 1 1
A A A As a t a t a s aa a      

for all 1 1a A  and similarly  

       1 1 1 11 11 1 1 1
B B B Bs b t b t b s bb b      

for all 1 1b B . 

 

Lemma 3.7 Let 1 1a A  and 1 1b B . Then 

  11 1
1 1 1 1b a b a

    . 

Proof: By the condition (ix) of Lemma 3.5  

 

       
1 1

1 1

1 1

1 1 1 1
1 1 1 1 1 1 1 1

( ) ( )

( ) ( )

( )

1 1

1

1

B A

B A

A

s b s a

s b s a

s b a

b a b a b b a a   





   

 





 

  

and similarly    
1 1

1 1
1 1 1 1 ( )1

At b ab a b a 
   . Thus 

  11 1
1 1 1 1b a b a

    . 

It is easy to see that an internal category in the category 
of crossed modules over groups is indeed a crossed 
module object in the category of internal categories 
within groups. 

Definition 3.8 Let C  and 'C  be two internal 
categories in XMod. A morphism (internal functor) 
from C  to 'C  is a pair of crossed module morphisms 

 1 1 1 0 0 0, , , :A B A Bf f f f f f f C C     

such that 0 1f s sf , 0 1f t tf , 1 0f f   and 

 1 1 1f m m f f  . 

Hence we can construct the category of internal 
categories (groupoids) within the category of crossed 
modules over groups where the morphisms are internal 
functors as defined above. This category will be 
denoted by Cat(Xmod). 

3.1.  Crossed squares 

Crossed squares are first defined in [12]. In this 
subsection we recall the definition of a crossed square 

as given in [7]. Further we prove that the category of 
crossed squares and that of internal categories within 
crossed modules are equivalent. Finally we give some 
examples of crossed squares using this equivalence. 

Definition 3.9 A crossed square over groups consists 
of four morphisms of groups : L M  , : L N  , 

: M P   and : N P   together with actions of the 

group P  on L , M , N  on the left, conventionally, (and 
hence actions of M  on L  and N  via   and of N  on 

L  and M  via  ) and a function :h M N L  . These 
are subject to the following axioms: 

(i)  ,   are P -equivariant and  ,   and 

     are crossed modules, 

(ii) ( , ) ( )h m n m n m     , ( , )h m n m n n    , 

(iii) ( ( ), ) ( )h l n l n l     , ( , ( ))h m l m l l    , 

(iv) ( , ) ( , ) ( , )h m m n m h m n h m n     , 

( , ) ( , ) ( , )h m n n h m n n h m n     , 

(v) ( , ) ( , )h p m p n p h m n     

for all l L , ,m m M , ,n n N  and p P  [7]. 

 

A crossed square will be denoted by  , , ,S L M N P . 

Example 3.10. Let ( , , )A B   be crossed module and 

( , , )S T   a normal subcrossed module of ( , , )A B  . 

Then 

 

forms a crossed square of groups where the action of 
B  on S  is induced action from the action of B  on A  
and the action of B  on T  is conjugation. The h map is 
defined by ( , )h t a t a a    for all t T  and 

a A  [21,22]. 

A topological example of crossed squares is the 
fundamental crossed square which is defined in [7] as 
follows: Suppose given a commutative square of 
spaces 
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Let ( )F f  be the homotopy fibre of f  and ( )F X  the 

homotopy fibre of ( ) ( )F g F a . Then the 

commutative square of groups 

  

is naturally equipped with a structure of crossed square. 
This crossed square is called the fundamental crossed 
square [7]. 

A morphism  , , ,L M N Pf f f f f  of crossed squares 

from  1 1 1 1 1, , ,S L M N P  to  2 2 2 2 2, , ,S L M N P  

consist of four group homomorphisms 1 2:Lf L L , 

1 2:Mf M M , 1 2:Nf N N  and 1 2:Pf P P  which 

are compatible with the actions and the functions 1h  

and 2h  such that the following diagram is 

commutative. 

 

Category of crossed squares over groups with 
morphisms between crossed squares defined above is 
denoted by X2Mod. Crossed squares are equivalent to 
crossed modules over crossed modules [22]. 

Now we prove our main theorem. 

Theorem 3.11. The category Cat(XMod) of internal 
categories within the category of crossed modules over 
groups and the category X2Mod of crossed squares 
over groups are equivalent. 

Proof: We first define a functor 

 :  2Cat XMod X Mod  as follows: Let 

 1 0, , , , , ,C C C s t m n  be an object in  Cat XMod . 

If we set ker AL s , ker BM s , 0N A , 0P B , 

1|ker As  , |ker AA st  , |ker BB st   and 0   then 

   , , ,C S L M N P    becomes a crossed square 

with the function ( , ) 1 1n nh m n m    for all m M  

and n N . 

Here  , ,L M   is a crossed module since it is the 

kernel crossed module of  

   1 1 1 0 0 0, : , , , , .A Bs s s A B A B    

Moreover we know that   , ,L N   and  , ,M P   are 

crossed modules by Brown & Spencer Theorem [8, 

Theorem 1]. Finally  , ,N P   is already a crossed 

module since it is  0 0 0, ,A B  . Here the actions of P  

on N  is already given, on M  is given by 

1 1p pp m m     and on L  is given by 1pp l l    

(where the action on the right side of the equation is the 
action of 1B  on 1A ) for p P , m M  and l L . Now 

we need to show that the conditions given in the 
Definition 3.9 is satisfied. 

(i) We need to show that  ,   are P -equivariant 
and    is a crossed module. Let l L , and 

p P . Then 

1 1( ) (1 ) 1 ( ) 1 ( )p p pp l l l p l            

and 

 ( ) (1 ) 1 ( ) ( )A p B p Ap l t l t t l p l          

so   and   are P -equivariant. Now we need to 

show that  , ,L P   is a crossed module. So 

(CM1) Let l L , and p P . Then 

   
  
  

 

p l p l

p l

p l p

p l p
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(CM2) Let ,l l L . Then  

 

    
  

  

  
   

1

1

1

1 1

l

l

l

l l

l l l l

l

l

l

l

l l l

 

 



 

  







 

   

 

 

 

  

  

 

(ii) Let m M  and n N . Then 

 
   

   
 

( , ) 1 1

1 1

1 1

n n

n n

n n

h m n m

m

m m

m n m

 

 

 

  

  

   

   

 

 and 

 
   
     
 

( , ) 1 1

1 1

1 1

n n

n n

n n

h m n m

m

m

m n n

m n n

 

 

  



   

   

   

  

  

 

(iii) Let l L , m M  and n N . Then 

 
 

( ( ), ) ( ) 1 1

1 1

1 1

( )

n n

n n

n n

h l n l

l l

l l

l n l

   

   

   

   

 

 and 

 

      

    
  
     

 

0

0

, 1 1

1 1

1

1 1

(( 1 ) (1 ))

l l

l l

l

l

l

h m l m

m l l

m l l

m l l

m l l

m l l

 

 







  

 







   

    

   

    

    

  

 

(iv) Let ,m m M  and ,n n N . Then 

   
 
   
 
   

, 1 1

1 1

1 1 1 1

1 1 1 1

, ,

n n

n n

n n n n

n n n n

h m m n m m

m m

m m m

m m m

m h m n h m n

     

   

       

      

  

 

 and 

 
 

   
   

, 1 1

1 1 1 1

1 1 1 1 1 1

, ,

n n n n

n n n n

n n n n n n

h m n n m

m

m m

h m n n h m n

  

 

  

   

    

       

  

 

(v) Let m M , n N  and p P . Then 

   
 
     

   
 
 

, 1 1 ,

1 1 1 1

1 1 1 1 1 1

1 1 1 1

1 1 1

,

p p

p p p n p n

p p p n p n

p n p n

p n n

h p m p n h m p n

m

m

m

m

p h m n

 

     

    

      

     

   

 

  

Now let 

 1 1 1 0 0 0, , , :A B A Bf f f f f f f C C     

be a morphism in  Cat XMod . Then 

    1|ker 1|ker 0 0, , , :
A B

A B A B
s sf f f f f S S    

is a morphism of crossed squares. 

Conversely define a functor  

 : 2X Mod Cat XMod  

as follows: Let  , , ,S L M N P  be a crossed square 

over groups. Then 

      1 1 1 1 0 0 0 0, , , , , , , , ,S C A B C A B s t m       

is an internal category within the category of crossed 
modules over groups where 

   1 1 1, , , ,A B L N M P   ã ã , 

   0 0 0, , , ,A B N P  , 

 ,As l n n ,  ,Bs m p p , 
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   ,At l n l n  ,    ,Bt m p m p  , 

   0,A n n  ,    0,B p p  , 

       , , ,l l n l n l l n      

and 

      , , , .m m p m p m m p      

We know that 0C  is a crossed module over groups. 

First we need to show that  , ,L N M P  ã ã  is a 

crossed module with the action of M Pã  on L Nã  is 

         , , , , .m p l n m p l h m p n p n        

(CM1) Let  ,l n L N ã  and  ,m p M P ã . 

Then 

             
      

, , , ,

, , , .

m p l n m p l h m p n p n

m p l n m p

   

 

        

   
 

(CM2) Let    , , ,l n l n L N   ã . Then 

             
     

, , , ,

, , , .

l n l n l n l n

l n l n l n

         

   
 

Thus  1 , ,C L N M P   ã ã  is a crossed module. 

Now we need to show that  S C   satisfies the 

conditions given in Lemma 3.5. We know that 
, , , , , ,A B A B A B As s t t m   and Bm  are group 

homomorphisms. So the conditions (i), (iv) and (vii) 
holds. 

(ii) Let  ,l n L N ã . Then 

    
    

   

,

,

,

A

A

B

s l n n

s l n

s l n

 

 

 





 

 

 and 

    
    
    
     

   

,

,

,

A

B

B

t l n l n

l n

l n

t l n

t l n

  

  

  

 

 

 

 

 



 

 

(iii) Let  ,l n L N ã  and  ,m p M P ã . Then 

        , , , ,A B As m p l n p n s m p s l n      

and 

         

   

, , ,

, , .

A

B A

t m p l n m p l h m p n

p n

t m p t l n

     

 

 

 

(v) Let n N . Then 

   
  

    
 
 

1 1

0

0,

0,

0 ,

.

A

B

B

n n

n

n

n

n

  

 

 

 

 



 







 

(vi) Let n N  and p P . Then 

   
   

   

0,

0, 0,

.

A

B A

p n p n

p n

p n



 

  

 

 

 

(viii) Let    , , ,l n l n L N   ã  such that 

 n l n   . Then 

         
    

    
      
      

1 1

1 1

, , , , ,

,

,

,

, , , .

A

B

m l n l n l n l n

l l n

l l n

l l n

m l n l n

 

 

 

  

 

    

  

 

 

  

 

(ix) Let    , , ,l n l n L N   ã  and 

   , , ,m p m p M P   ã   such that 

 n l n    and  p m p   . Firstly,  

   
  

 
     

 
   

, ,

,

,

,

,

, , .

h m m p n h m m m m p n

m h m m p n

h m p n

h m m m m p n

h m p n

h m p n h m p n

       

    

 

     

 

    

 

 Then  
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, , , ,

, ,

m p m p l n l n

m m p l l n

   

    

 
 

and  

   
         

, ,

, , , ,

m m p l l n

m p l n m p l n

   

     
 

Thus  S C   is an object in Cat(XMod). Now let 

   1 1 1 1 1 2 2 2 2 2: , , , , , ,f S L M N P S L M N P    

be a morphism of crossed squares. Then 

   , , , :L N M P N Pf f f f f f f C C      is a 

morphism in Cat(XMod) where 1( )S C   and 

2( )S C  . 

Finally we show that composition of these functors are 
naturally isomorphic to the identity functors on 
Cat(XMod) and X2Mod respectively. For any object 
C  in Cat(XMod) the natural isomorphism 

 :1U Cat XMod  is given by  

 1 1 1 0 0 0, , ,A B A B
CU f f f f f f    

where 

 
11 1 1 ( ) 1( ) 1 , ( )

A

A
s a Af a a s a  , 

 
11 1 1 ( ) 1( ) 1 , ( )

B

B
s b Bf b b s b  , 

00 1A
Af   

and 
00 1B

Bf   for all 1 1a A  and 1 1b B . 

Conversely, for any object ( , , , )S L M N P  in X2Mod 

the natural isomorphism : 1T   2X Mod
 is given by 

 1 1, , 1 , 1S L M N N P PT f f f f      . This 

completes the proof. 

 

Now we can give examples of crossed squares which 
are obtained from examples of internal categories 
within the category of crossed modules. 

Example 3.12 Let ( , , )A B   be a crossed module. 

Then the diagram 

 

has a structure of a crossed square where 
( , )h b a b a a    for all a A  and b B . 

Example 3.13 Let ( , , )A B   be a crossed module. Then 

the diagram 

 

forms a crossed square where ( ,0) 0h a   for all .a A  

Example 3.14 Let ( , , )A B   be a topological crossed 

module. Then we know that ( , , , , , )A A A AA A s t m   and 

( , , , , , )B B B BB B s t m   are group-groupoids. Then 

 

has a crossed square structure where 
([ ], ) [ ]h a a a     for all [ ] ker Bs   and a A . 

Here the path ( ) :[0,1]a a A     is given by 

( )( ) ( )a a r r a a       for all [0,1]r . 

4. CONCLUSION 

We proved that the category Cat(XMod) of internal 
categories within the category of crossed modules over 
groups and the category X2Mod of crossed squares 
over groups are equivalent. Since crossed squares 
model all connected homotopy 3-types so are internal 
categories in within the category of crossed modules.  

For further work, in a similar way of thinking one can 
obtain same results in a more generic algebraic 
category namely the category of groups with operations 
or in higher dimensional crossed modules [10]. Also in 
the light of the results given in [18], notions of normal 
subcrossed square and of quotient crossed square can 
be obtained. 
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