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On Zweier convergent vector valued multiplier spaces 

 

Ramazan Kama*1 

 

Abstract 

In this paper, we introduce the Zweier convergent vector valued multiplier spaces 𝑀
ஶ(∑ 𝑇𝑥 ) 

and 𝑀௪
ஶ (∑ 𝑇𝑥 ). We study some topological and algebraic properties on these spaces. 

Furthermore, we study some inclusion relations concerning these spaces. 

Keywords: vector valued multiplier space, Zweier matrix, summing operator, operator valued 
series. 

 

 

1. INTRODUCTION 

Let ℕ and ℝ be the sets of all positive integers and 
real numbers, respectively. We shall denote the 
space of all real valued sequences by 

 𝑤 = {𝑥 = (𝑥) ∶ 𝑥 ∈ ℝ}. 

Any vector subspace of 𝑤 is called as a sequence 
space. Let 𝑙ஶ, 𝑐 and 𝑐 denote the spaces of all 
bounded, convergent and null sequences 𝑥 = (𝑥) 
with real terms, respectively, normed by ‖𝑥‖ஶ =
sup
∈ℕ

|𝑥|.  

A sequence space 𝑋 with linear topology is called 
a K-space provided each of the maps 𝑝: 𝑋 → ℝ 
defined by 𝑝(𝑥) = 𝑥 is continuous for all 𝑖 ∈ ℕ. 
If 𝑥 ∈ 𝑋, then 𝑒⨂𝑥 denote the sequence with 𝑥 
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in the 𝑖௧ coordinate and zero in the other 
coordinates. If ℑ ⊂ ℕ, 𝜒ℑ  denote the 
characteristic function of ℑ  and 𝑥 = (𝑥) is any 
sequence, 𝜒ℑ𝑥 denote the coordinatewise product 
of 𝜒ℑ  and 𝑥. A sequence space 𝑋 is monoton if 
𝜒ℑ𝑥 ∈ 𝑋 for every ℑ ⊂ ℕ and 𝑥 ∈ 𝑋. 

Let 𝑋 and 𝑌 be sequence spaces and 𝐴 = (𝑎) be 
an infinite matrix of real numbers 𝑎, where 
𝑛, 𝑖 ∈ ℕ. Then, we say that 𝐴 defines a matrix 
mapping from 𝑋 to 𝑌. If for every sequence 𝑥 =
(𝑥) ∈ 𝑋 the sequence 𝐴𝑥 = ((𝐴𝑥)), the 𝐴 − 
transform of 𝑥 ∈ 𝑋 in 𝑌, where (𝐴𝑥) = ∑ 𝑎𝑥  
for each 𝑛 ∈ ℕ. The matrix domain 𝑋 of an 
infinite matrix 𝐴 in a sequence space 𝑋 is defined 
by 

 𝑋 = {𝑥 = (𝑥) ∈ 𝑤 ∶ 𝐴𝑥 ∈ 𝑋} 
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which is a sequence space [4, 6, 11].  

Şengönül [15] defined the sequence 𝑦 = (𝑦) 
which is frequently used as the 𝑍ఈ − 
transformation of the sequence 𝑥 = (𝑥) i.e.  

𝑦 = 𝛼𝑥 + (1 − 𝛼)𝑥ିଵ, 

where 𝑥ିଵ = 0, 1 <  𝑘 <  ∞ and 𝑍ఈ denotes 
the matrix 𝑍ఈ = (𝑧) defined by 

(𝑧) = ൝
𝛼,         if 𝑖 = 𝑗,

1 − 𝛼, if 𝑖 − 1 = 𝑗,
     0,           otherwise.

 

Following Başar and Altay [5], Şengönül [15] 
introduced the Zweier sequence spaces 𝑍 and 𝑍 
as follows: 

𝑍 = ൛𝑥 = (𝑥) ∈ 𝑤 ∶ 𝑍𝑥 ∈ 𝑐ൟ, 

𝑍 = ൛𝑥 = (𝑥) ∈ 𝑤 ∶ 𝑍𝑥 ∈ 𝑐ൟ. 

For details on Zweier sequence spaces we also 
refer to [8–10]. 

Let 𝑋, 𝑌 be normed spaces, 𝐿(𝑋, 𝑌) be also the 
space of continuous linear operators from 𝑋 into 
𝑌 and ∑ 𝑇  be a series in 𝐿(𝑋, 𝑌). 𝜆 be a vector 
space of 𝑋 −valued sequences which contains 
𝑐(𝑋), the space of all sequences which are 
eventually 0. By 𝑙ஶ(𝑋) and 𝑐(𝑋), we denote the 
𝑋 − valued sequence spaces of bounded and 
convergence to zero, respectively. The series 
∑ 𝑇  is 𝜆 − multiplier convergent if the series 
∑ 𝑇 𝑥 converges in 𝑌 for every sequence 𝑥 =
(𝑥) ∈ 𝜆. The series ∑ 𝑇  is 𝜆 − multiplier 
Cauchy if the series ∑ 𝑇 𝑥 is Cauchy in 𝑌 for 
every sequence 𝑥 = (𝑥) ∈ 𝜆. For more 
information about vector valued multiplier spaces 
and multiplier convergent series, see [2, 7, 8, 13]. 

Let ∑ 𝑇  be a series in 𝐿(𝑋, 𝑌). Then, we will 
define the spaces 

𝑀
ஶ( 𝑇𝑥



) = {𝑥 = (𝑥)

∈ 𝑙ஶ(𝑋): 𝑍 −  𝑇



𝑥  exists} 

and 

𝑀௪
ஶ ( 𝑇𝑥



) = {𝑥 = (𝑥)

∈ 𝑙ஶ(𝑋): 𝑤𝑍 −  𝑇



𝑥  exists} 

endowed sup norm, where 

𝑍 −  𝑇



𝑥 = lim
→ஶ

(1 − 𝛼)  𝑇𝑥


ିଵ

ୀଵ

+ 𝛼  𝑇𝑥




ୀଵ

 

and 

𝑤𝑍 −  𝑇



𝑥 = lim
→ஶ

(1 − 𝛼)  𝑓(𝑇𝑥
)

ିଵ

ୀଵ

+ 𝛼  𝑓(𝑇𝑥
)



ୀଵ

 

𝑓 ∈ 𝑌∗ (dual of 𝑌). Notice that 𝑀
ஶ(∑ 𝑇𝑥 ) ⊂

𝑀௪
ஶ (∑ 𝑇𝑥 ) ⊂ 𝑙ஶ(𝑋). 

In [1, 12], authors introduced some subspaces of 
𝑙ஶ by means of multiplier convergent series and 
studied some properties of this spaces. Also, in [3, 
14], the above spaces studied in the case of some 
convergence. 

In this paper, we will show that the spaces 
𝑀

ஶ(∑ 𝑇𝑥 ) and 𝑀௪
ஶ (∑ 𝑇𝑥 ) are Banach 

spaces by means of 𝑐(𝑋) − multiplier 
convergent series. Also, we will give some 
characterizations of 𝑙ஶ(𝑋) and 𝑐(𝑋) − 
multiplier convergent series by using summing 
operators related to the series ∑ 𝑇 . 

2. THE ZWEIER SUMMABILITY SPACE 

Before starting this section, we give the following 
propostion will be used for establishing some 
results of this study: 

Proposition 2.1. ∑ 𝑇   𝑐(𝑋) − multiplier 
convergent series if and only if the set 
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𝐸 = ൝ 𝑇





𝑥: ‖𝑥‖ ≤ 1, 𝑛

∈ ℕ ൡ                       (1) 

is bounded [14]. 

The following theorem gives the completeness of 
the space 𝑀

ஶ(∑ 𝑇𝑥 ). 

Theorem 2.2. Let 𝑋 and 𝑌 are normed spaces and 
∑ 𝑇  is a series in 𝐿(𝑋, 𝑌). If 

(i) 𝑋 and 𝑌 are Banach spaces, 

(ii) The series ∑ 𝑇   𝑐(𝑋) − multiplier 
convergent, 

then 𝑀
ஶ(∑ 𝑇𝑥 ) is a Banach space. 

Proof. Since the series ∑ 𝑇  is 𝑐(𝑋) −multiplier 
convergent, by Proposition 2.1, there exists M >
0 such that 

𝑀 = sup ൝ะ 𝑇





𝑥ะ : ‖𝑥‖ ≤ 1, 𝑛 ∈ ℕൡ. 

We suppose that (𝑥) be a Cauchy sequence in 
𝑀

ஶ(∑ 𝑇 ). Since 𝑀
ஶ(∑ 𝑇 ) ⊂ 𝑙ஶ(𝑋) and 𝑙ஶ(𝑋) 

is a Banach space (since 𝑋 is a Banach space), 
there exists 𝑥 = (𝑥

) ∈ 𝑙ஶ(𝑋) such that 
lim


𝑥 = 𝑥. We will show that 𝑥 ∈ 𝑀

ஶ(∑ 𝑇 ). 

We take 𝜀 >  0. Then, there exists 𝑚 ∈ ℕ such 
that 

‖𝑥 − 𝑥‖ <
𝜀 

3𝑀
 

for 𝑚 ≥ 𝑚. Since 
ଷெ 

ఌ
‖𝑥 − 𝑥‖ < 1, 

3𝑀 

𝜀
ะ(1 − 𝛼)  𝑇(𝑥

 − 𝑥
)

ିଵ

ୀଵ

+ 𝛼  𝑇(𝑥
 − 𝑥

)



ୀଵ

ะ ≤ 𝑀 

and so 

ะ(1 − 𝛼)  𝑇(𝑥
 − 𝑥

)

ିଵ

ୀଵ

+ 𝛼  𝑇(𝑥
 − 𝑥

)



ୀଵ

ะ

<
𝜀

3
                                                 (2) 

for 𝑚 ≥ 𝑚 and 𝑛 ∈ ℕ. On the other hand, since 
(𝑥) is a Cauchy sequence in 𝑀

ஶ(∑ 𝑇 ) there 
exists sequence (𝑦) ⊂ 𝑌 such that 

ะ(1 − 𝛼)  𝑇𝑥
 + 𝛼  𝑇𝑥

 − 𝑦



ୀଵ

ିଵ

ୀଵ

ะ

<
𝜀

3
  (3) 

for 𝑛 ≥ 𝑛. If we take 𝑝 >  𝑞 ≥  𝑚 , from (2) 
and (3), then we have ฮ𝑦 − 𝑦ฮ < 𝜀. Hence, 
(𝑦) is a Cauchy sequence. Let lim


𝑦 = 𝑦  and 

suppose that ‖𝑦 − 𝑦‖ <
ఌ

ଷ
 . Consequently,  

ะ(1 − 𝛼)  𝑇𝑥
 + 𝛼  𝑇𝑥

 − 𝑦



ୀଵ

ିଵ

ୀଵ

ะ 

≤ ะ(1 − 𝛼)  𝑇(𝑥
 − 𝑥

)

ିଵ

ୀଵ

+ 𝛼  𝑇(𝑥
 − 𝑥

)



ୀଵ

ะ 

+ ะ(1 − 𝛼)  𝑇𝑥
 + 𝛼  𝑇𝑥

 − 𝑦



ୀଵ

ିଵ

ୀଵ

ะ

+ ‖𝑦 − 𝑦‖ <
𝜀

3
+

𝜀

3
+

𝜀

3
= 𝜀 

for 𝑛 ≥ 𝑛. This means that 𝑥 ∈ 𝑀
ஶ(∑ 𝑇 ). 

In the next theorem we show that the converse of 
above theorem is hold. But, it does not need to be 
the spaces 𝑋 and 𝑌 are complete. 

Theorem 2.3. If 𝑀
ஶ(∑ 𝑇 ) is a Banach space, 

then ∑ 𝑇   𝑐(𝑋) − multiplier convergent series. 

Proof. We consider the sequence 𝑥 = (𝑥) ∈
𝑐(𝑋). From the closedness of 𝑀

ஶ(∑ 𝑇 ) and 
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𝑐(𝑋) ⊂ 𝑀
ஶ(∑ 𝑇 ), the inclusion 𝑐(𝑋) ⊂

𝑀
ஶ(∑ 𝑇 ) is hold.  

Then, the series ∑ 𝑇 𝑥 is subseries Zweier 
convergent beause of 𝑐(𝑋) is a monoton space. 
So, ∑ 𝑇 𝑥 is weakly subseries Zweier 
convergent series. Using Orlicz-Pettis theorem 
([1, Theorem 4.1]), we obtain that the series 
∑ 𝑇 𝑥 is subseries norm convergent, and hence 
∑ 𝑇  is 𝑐(𝑋) − multiplier convergent. 

Remark 2.4.  (1) In Theorem 2.2, if 𝑌 is not a 
Banach space, then there exists a sequence 𝑦 =
(𝑦) in 𝑌 and  𝐹 ∈ 𝑌∗∗\𝑌 such that 

‖𝑦‖ <
1

33
 and  𝑦



= 𝐹 

for every 𝑖 ∈ ℕ. Also, note that 𝑍 − ∑ 𝑦 = 𝐹.  
We take 𝑥 ∈ 𝑋 with ‖𝑥‖ = 1. By Hahn-Banach 
theorem, we choose  𝑥

∗  ∈  𝑋∗ such that 𝑥
∗(𝑥) =

‖𝑥‖.  We denote sequence  𝑇 ∈ 𝐿(𝑋, 𝑌)  by 
 𝑇 𝑥 = 𝑥

∗ (𝑥)3 𝑦  for each 𝑖 ∈ ℕ. It is obtain 
that ∑ 𝑇  𝑖𝑠 𝑐(𝑋) − multiplier Cauchy. 
Consider the sequence  𝑥 = ൫𝑥/3൯ ∈ 𝑐(𝑋).  
Then 𝑥 = ∑ 𝑒

ୀଵ ⊗ x /3 ∈ 𝑀
ஶ(∑ 𝑇 )  for 

every  𝑛 ∈ ℕ  and  𝑥 → 𝑥/3 ,  but since 

𝑍 −  𝑇𝑥



= 𝑍 − 
1

3
𝑥

∗


(𝑥)3𝑦

= 𝑍 −  𝑦



= 𝐹, 

𝑀
ஶ(∑ 𝑇 )  is not a Banach space. 

(2) It is well know that if lim


𝑥 = 𝑥 , then 𝑍 −

lim


𝑥 = 𝑥 , and also ∑ 𝑥 = 𝑥 , then 𝑍 −

∑ 𝑥 = 𝑥 . Therefore, if 

 𝑀ஶ( 𝑇



) = ൝𝑥 = (𝑥)

∈ 𝑙ஶ(𝑋):  𝑇𝑥 



existsൡ, 

then we obtain the inclusion  𝑀ஶ(∑ 𝑇 ) ⊂
𝑀

ஶ(∑ 𝑇 ).  

(3) Let 𝑋 and 𝑌 be normed spaces. We denote the 
summing operator associate with the series ∑ 𝑇    

𝑆: 𝑀
ஶ( 𝑇



) → 𝑌,   𝑆(𝑥) = 𝑍 −  𝑇𝑥 .



 

Then, the summing operator 𝑆 is continuous if and 
only if the series  ∑ 𝑇  is 𝑐(𝑋) − multiplier 
Cauchy. Let us suppose that 𝑆 is continuous. 
Since 𝑐(𝑋) ⊂ 𝑀

ஶ(∑ 𝑇 ), and if 𝑥 = (𝑥) ∈
𝑐(𝑋)  with ‖𝑥‖ ≤ 1  such that  𝑥 = 0  for all 
𝑖 > 𝑘, we have that 

‖𝑆ଵ𝑥ଵ + ⋯ + 𝑆𝑥‖ = ‖𝑆𝑥‖ ≤ ‖𝑆‖. 

Therefore 

sup


൝ะ 𝑇𝑥



ୀଵ

ะ : ‖𝑥‖ ≤ 1, 𝑘 ∈ ℕൡ ≤ ‖𝑆‖ 

and hence, the series ∑ 𝑇  is 𝑐(𝑋) − multiplier 
Cauchy by Proposition 2.1. 

Now, suppose that ∑ 𝑇  is 𝑐(𝑋) − multiplier 
Cauchy. Then, by Proposition 2.1, the set  𝐸 =

൛ฮ∑ 𝑇𝑥

ୀଵ ฮ ∶ ‖𝑥‖ ≤ 1, 𝑘 ∈ ℕൟ is bounded. We 

take  ‖𝑒‖ ≤ 𝐾  for every 𝑒 ∈ 𝐸.  Let  𝑥 = (𝑥) ∈
𝑀

ஶ (∑ 𝑇İ )  with ‖𝑥‖ ≤ 1. Thus  𝑍 − ∑ 𝑇𝑥

ୀଵ  

exists, and hence 

‖𝑆(𝑥)‖ = ะ𝑍 −  𝑇𝑥



ୀଵ

ะ ≤ 𝐾 

for 𝑘 ∈ ℕ. This means that 𝑆 is continuous. 

(4) We suppose that 𝑌 is a Banach space. Then, 
we will show that the summing operator S is 
compact if and only if the series ∑ 𝑇  is 𝑙ஶ(𝑋) − 
multiplier convergent. Indeed, let S be compact 
and  𝑥 = (𝑥) ∈ 𝑙ஶ(𝑋).  If we define the 
following set that is bounded on the space 
𝑀

ஶ (∑ 𝑇İ )  

 𝑀 = ൝ 𝑒 ⊗ 𝑥

∈ℑ

: ℑ 𝑖𝑠 𝑓𝑖𝑛𝑖𝑡𝑒,   ‖𝑥‖ ≤ 1ൡ , 

then 𝑆(𝑀) = 𝑍 − ∑ 𝑇𝑥∈ℑ : ℑisfinite, ‖𝑥‖ ≤ 1 
is relatively compact. Hence, the   series  ∑ 𝑇𝑥   
is subseries norm Zweier summability ([13, 
Theorem 2.48]), and so the series ∑ 𝑇𝑥   is 
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subseries norm convergent by Orlicz-Pettis 
theorem. That is ∑ 𝑇  is 𝑙ஶ(𝑋) − multiplier 
convergent series. 

Conversely, let ∑ 𝑇  is 𝑙ஶ(𝑋) − multiplier 
convergent series, then 𝑍 − ∑ 𝑇𝑥   is uniformly 
convergent series for ‖𝑥‖ ≤ 1 ([13, Corollary 
11.11]). If we define the operators 
𝑆: 𝑀

ஶ (∑ 𝑇İ ) → 𝑌 by 𝑆(𝑥) = 𝑍 − ∑ 𝑇𝑥

ୀଵ  

for 𝑛 ∈ ℕ, then 

‖𝑆 − 𝑆‖ = ะ𝑍 −  𝑇𝑥 − 𝑍 −  𝑇𝑥

ஶ

ୀଵ



ୀଵ

ะ

= ะ𝑍 −  𝑇𝑥

ஶ

ୀାଵ

ะ → 0 

for ‖𝑥‖ ≤ 1, as 𝑛 → ∞. Therefore, 𝑆 is compact. 

By Theorem 2.2, Theorem 2.3 and Remark 2.4, 
we can obtain the following corollary: 

Corollary 2.5. If 𝑋 and 𝑌 are Banach spaces and  
∑ 𝑇  is a series in 𝐿(𝑋, 𝑌), then the following 
statements are equivalent: 

(i) ∑ 𝑇   𝑐(𝑋) − multiplier convergent series. 

(ii)  𝑀ஶ ∑ 𝑇  is a Banach space. 

(iii) 𝑐(𝑋)  ⊆  𝑀ஶ ∑ 𝑇 . 

(iv)  𝑀
ஶ (∑ 𝑇 ) is a Banach space. 

(v) 𝑐(𝑋)  ⊆  𝑀
ஶ (∑ 𝑇 ). 

3. THE WEAK ZWEIER SUMMABILITY 
SPACE 

In this section, we will extend that to the space 
 𝑀௪

ஶ  (∑ 𝑇 ) some of the conclusions obtained in 
the preceding section for the space  𝑀

ஶ (∑ 𝑇 ). 
We begin this section by the following theorem. 

Theorem 3.1. If 𝑋 and 𝑌 are Banach spaces and 
the series ∑ 𝑇   𝑐(𝑋) −multiplier convergent, 
then 𝑀௪

ஶ (∑ 𝑇𝑥 ) is a Banach space. 

Proof. Let (𝑥) ⊂ 𝑀௪
ஶ (∑ 𝑇𝑥 ) be a Cauchy 

sequence. Then, lim


𝑥 = 𝑥 in 𝑙ஶ(𝑋). We will 

prove that 𝑥 ∈ 𝑀௪
ஶ (∑ 𝑇 ). 

If the proof of Theorem 2.2 is followed, then there 
exists 𝑚 ∈ ℕ such that 

ะ(1 − 𝛼)  𝑇(𝑥
 − 𝑥

)

ିଵ

ୀଵ

+ 𝛼  𝑇(𝑥
 − 𝑥

)



ୀଵ

ะ

<
𝜀

3
                                                 (4) 

for 𝑚 ≥ 𝑚 and 𝑛 ∈ ℕ. If 𝑝 > 𝑞 ≥ 𝑚 are fixed, 
then a functional 𝑓 ∈ 𝑆∗ (unit sphere in 𝑌∗) can 
be found such that ฮ𝑦 − 𝑦ฮ = ห𝑓൫𝑦 − 𝑦൯ห. 
Since (𝑥) is a Cauchy sequence in 𝑀

ஶ(∑ 𝑇 ), 
there exists sequence (𝑦) ⊂ 𝑌 such that 

ะ(1 − 𝛼)  𝑓(𝑇𝑥
)

ିଵ

ୀଵ

+ 𝛼  𝑓(𝑇𝑥
) − 𝑓(𝑦)



ୀଵ

ะ

<
𝜀

3
                                                 (5) 

for 𝑛 ≥ 𝑛. From (4) and (5), we have 
ฮ𝑦 − 𝑦ฮ < 𝜀. Thus, (𝑦) is a Cauchy sequence. 
Since 𝑌 is a Banach space, there exists 𝑦  ∈ 𝑌 
such that       ‖𝑦 − 𝑦‖ <

ఌ

ଷ
 . Finally, we obtain 

that the following inequalities, 

อ(1 − 𝛼)  𝑓(𝑇𝑥
) + 𝛼  𝑓(𝑇𝑥

) − 𝑓(𝑦)



ୀଵ

ିଵ

ୀଵ

อ 

≤ อ(1 − 𝛼)  𝑓(𝑇(𝑥
 − 𝑥

))

ିଵ

ୀଵ

+ 𝛼  𝑓(𝑇(𝑥
 − 𝑥

))



ୀଵ

อ 
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+ อ(1 − 𝛼)  𝑓(𝑇𝑥
)

ିଵ

ୀଵ

+ 𝛼  𝑓(𝑇𝑥
) − 𝑓(𝑦)



ୀଵ

อ

+ |𝑓(𝑦) − 𝑓(𝑦)| <
𝜀

3
+

𝜀

3
+

𝜀

3
= 𝜀 

for 𝑛 ≥ 𝑛. In the other words, 𝑤𝑍 − ∑ 𝑇𝑥
 =

ୀଵ

𝑦, and so 𝑥 ∈ 𝑀௪
ஶ (∑ 𝑇 ). 

Theorem 3.2. If 𝑀௪
ஶ (∑ 𝑇 ) is a Banach space, 

then ∑ 𝑇   𝑐(𝑋) − multiplier convergent series. 

Proof. As in the proof of Theorem 2.3, if 
𝑀௪

ஶ (∑ 𝑇 ) is a Banach space, then 𝑐(𝑋) ⊂
𝑀௪

ஶ (∑ 𝑇 ). From the monotonity of 𝑐(𝑋), the 
series ∑ 𝑇 𝑥 is weakly subseries Zweier 
convergent and hence ∑ 𝑇  is 𝑐(𝑋) − multiplier 
convergent. 

Remark 3.3.  (1) In Theorem 3.1, if 𝑌 is not a 
Banach space and consider the sequence  𝑥 =

൫𝑥/3൯ ∈ 𝑐(𝑋), following the Remark 2.4 (1), 
then we obtain that 𝑤𝑍 − ∑ 𝑇 𝑥 = 𝐹 for 𝐹 ∈

𝑌∗∗. Thus, 𝑥 = ൫𝑥/3൯ ∉ 𝑀௪
ஶ (∑ 𝑇 ). That is, 

𝑀௪
ஶ (∑ 𝑇 )  is not a Banach space. 

(2) Since 𝑤 − ∑ 𝑥 = 𝑥 implies 𝑤𝑍 − ∑ 𝑥 =
𝑥, therefore, if 

𝑀௪
ஶ( 𝑇



) = ൝𝑥 = (𝑥) ∈ 𝑙ஶ(𝑋)

∶ 𝑤 −  𝑇𝑥 



existsൡ, 

then 𝑀௪
ஶ(∑ 𝑇 ) ⊂ 𝑀௪

ஶ (∑ 𝑇 ).  

(3) Let 𝑋 and 𝑌 be normed spaces. We can also 
define the summing operator associate with the 
series ∑ 𝑇   

𝑆: 𝑀௪
ஶ  ( 𝑇İ



) → 𝑌,

𝑆(𝑥) = 𝑤𝑍 −  𝑇İ



𝑥 . 

As we did Remark 2.4 (3), one can see that the 
summing operator 𝑆 is continuous if and only if 
the series ∑ 𝑇  is 𝑐(𝑋) − multiplier Cauchy. 

(4) Let 𝑌 be a Banach space. If 𝑆 is compact, from 
Remark 2.4 (4), then the set 𝑆(𝑀) is weakly 
relatively compact, and hence ∑ T୧୧  is 𝑙ஶ(𝑋) − 
multiplier convergent series. On the other hand, 
let us suppose that 𝑌 is complete and the series 
∑ T୧୧  is 𝑙ஶ(𝑋) − multiplier convergent. Then, 
wZ − ∑ Tİ୧ x୧  is uniformly convergent for ‖x୧‖ ≤
1 ([13, Corollary 11.11]).  Therefore, we have that 

 ‖𝑆 − 𝑆‖ = ะ𝑤𝑍 −  𝑇𝑥 − 𝑤𝑍 −  𝑇𝑥

ஶ

ୀଵ



ୀଵ

ะ

= ะ𝑤𝑍 −  𝑇𝑥

ஶ

ୀାଵ

ะ → 0 

for ‖x୧‖ ≤ 1, as n → ∞, where the operators   
𝑆: 𝑀௪

ஶ  (∑ 𝑇İ ) → 𝑌 is defined by 𝑆(𝑥) =
𝑤𝑍 − ∑ 𝑇𝑥


ୀଵ  for 𝑛 ∈ ℕ. This implies that 𝑆 is 

compact.  

By the previous theorems and remark above, we 
can give the following corollaries: 

Corollary 3.4. If 𝑋 and 𝑌 are Banach spaces and  
∑ 𝑇  is a series in 𝐿(𝑋, 𝑌), then the following 
conditions are equivalent: 

(i) ∑ 𝑇   𝑐(𝑋) − multiplier convergent series. 

(ii) 𝑀௪
ஶ ∑ 𝑇  is a Banach space. 

(iii) 𝑐(𝑋)  ⊆ 𝑀௪
ஶ ∑ 𝑇 . 

(iv) 𝑀௪
ஶ  (∑ 𝑇 ) is a Banach space. 

(v) 𝑐(𝑋)  ⊆ 𝑀௪
ஶ ∑ 𝑇 . 

Corollary 3.5. If 𝑌 is Banach space, then the 
following are equivalent:  

(i) 𝑆 is compact. 

(ii) 𝑆 is a weakly compact. 

(iii) ∑ 𝑇  is 𝑙ஶ(𝑋) − multiplier convergent 
series. 
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Finally, we will give a sufficient condition for the 
equivalence of both spaces, which are defined in 
the introduction. 

Proposition 3.6. Let 𝑋 and 𝑌 be normed spaces. 
If ∑ 𝑇  is 𝑙ஶ(𝑋) − multiplier Cauchy series, 
𝑀

ஶ (∑ 𝑇İ ) =  𝑀௪
ஶ  (∑ 𝑇İ ).   

Proof. We prove that the inclusion 𝑀௪
ஶ  (∑ 𝑇İ ) ⊂

 𝑀
ஶ (∑ 𝑇İ )  is hold. If we take 𝑥 = (𝑥) ∈

𝑀௪
ஶ  (∑ 𝑇İ ), then there exists 𝑦 ∈ 𝑌 such that 

𝑍 −  𝑓(𝑇𝑥)



= 𝑓(𝑦) 

for every 𝑓 ∈ 𝑌∗. Also, since the series ∑ T୧୧  is 
𝑙ஶ(𝑋) − multiplier Cauchy, the series ∑ 𝑇𝑥   is 
Cauchy in 𝑌. Thus, there exists 𝐹 ∈ 𝑌∗∗ such that 

𝑍 −  𝑇𝑥



= 𝐹. 

If consider the uniqueness of limit, then we have 
𝐹 = 𝑦 . Thus, 𝑥 = (𝑥) ∈  𝑀

ஶ (∑ 𝑇İ ).  
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