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Remarks on generalized quantum gates
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Abstract

In this paper, we give a characterization of generalized quantum gates.
We also show that many important operators are generalized quantum
gates, moreover, some of these operators can be represented as the
convex combination of only two unitary operators. Our results answer
what kinds of operations a duality quantum computing admits. We
point out that the set of all generalized quantum gates coincides with
the set of all restricted allowable generalized quantum gates. Thus,
our results are also valid for restricted allowable generalized quantum
gates.
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1. Introduction

Quantum gate, which is represented by unitary operator mathematically, is a
fundamental tool in designing quantum circuits and quantum algorithms in quan-
tum computers. Quantum computations are just executed by a series of quantum
gates.

In [1], Professor Long proposed a new type of computing machine, the duality
quantum computer, which exploits the wave-particle duality of quantum systems.
A quantum wave can be decomposed into parts using slits or beam splitters, for
example. The subwaves can move along separate paths and then be combined at
which point they interfere. Therefore, one can perform different gate operations
at different paths, a property called the duality parallelism. This enables us to
perform computation using not only products of unitary operations, but also linear
combinations of unitary operations, which was called the duality gates or the gen-
eralized quantum gates ([1]). In this sense, the duality computer offers additional
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capability in information processing which is superior to quantum parallelism in
ordinary quantum computer.

In duality quantum computer, the quantum wave divider operation and quan-
tum wave combiner operation are allowed ([1]). In such a picture, the duality gate,

or generalized quantum gate, can be written as
∑d−1
i=0 piUi, where Ui are unitary

operators, d is the number of slits that the duality quantum computer passes, and
pi is the probability that the duality quantum computer passes through the i-th
slit, and

∑
i pi = 1. The quantum wave divider operation and quantum wave com-

biner operation and the properties of generalized quantum gates were discussed in
[2]-[6]. In [7], a necessary condition for a contraction to be a generalized quantum
gate was given. Furthermore, using spectral resolution, a characterization that a
contraction is not a generalized quantum gate was given in [8].

In [9], the allowable generalized quantum gates were introduced which is of

the form
∑d−1
i=0 ciUi, where Ui are unitary operators, ci are complex numbers

with module less than or equal to 1 and constrained by |
∑d−1
i=0 ci| ≤ 1. In [10],

the authors discussed the realization of allowable generalized quantum gates. In
[11], the restricted allowable generalized quantum gates were considered satisfy-

ing 0 <
∑d−1
i=0 |ci| ≤ 1. The connections with other problems and some further

generalizations and applications are also investigated in [12]-[13]. For the review
of the development of duality quantum computing, duality quantum information
processing and duality quantum communication during the past few years and
related work, please refer to [14]-[16].

In this paper, we give a characterization of generalized quantum gates. We also
show that many important operators are generalized quantum gates, moreover,
some of these operators can be represented as the convex combination of only
two unitary operators. Our results answer what kinds of operations a duality
computing admits. We point out that the set of all generalized quantum gates
coincides with the set of all restricted allowable generalized quantum gates. Thus,
our results are also valid for restricted allowable generalized quantum gates.

2. Preliminaries

Let H be a separable complex Hilbert space, B(H) the set of all bounded linear
operators on H, G(H) the set of all generalized quantum gates on H, A ∈ B(H).
Denote the range and the null space of A by R(A) and N(A), respectively. If
‖A‖ ≤ 1, then A is said to be contractive. The set of all contractions in B(H) is
denoted by B(H)1. If p is a positive integer and (A∗A)p − (AA∗)p is a positive
operator, then A ∈ B(H) is called a p-hyponormal operator. Specifically, when
p = 1, A is called a hyponormal operator. The set of all normal operators, inverse
operators, finite rank operators and compact operators on H is denoted by N(H),
Inv(H), F (H) and K(H), respectively.

Let A ∈ B(H), if for each x ∈ N(A)⊥, we have ‖Ax‖ = ‖x‖, then A is called
a partial isometry, where N(A)⊥ is called the initial space of A, and R(A) the
final space. If N(A) = 0, then A is called an isometry. A surjective isometry is a
unitary operator.

The following lemma is a well-known result for partial isometry.



2.1. Lemma ([17]). For U ∈ B(H), the following statements are equivalent:
(1) U is a partial isometry;
(2) U∗ is a partial isometry;
(3) U∗U is the orthogonal projection on N(U)⊥;
(4) UU∗ is the orthogonal projection on R(U).

If A ∈ B(H), the ascent asc(A) of A is defined to be the smallest nonnegative
integer k (if it exists) which satisfies that N(Ak) = N(Ak+1). If such k does not
exist, then the ascent of A is defined as infinity. Similarly, the descent des(A) of
A is defined as the smallest nonnegative integer k (if it exists) for which R(Ak) =
R(Ak+1) holds. If such k does not exist, then des(A) is defined as infinity, too. If
the ascent and the descent of T are finite, then they are equal ([18]).
A ∈ B(H) is said to be semi-Fredholm if the range R(A) is closed and at least

one of dimN(A) and dimN(A∗) is finite, and the Fredholm index ind (A) of A is
defined by ind (A) = dimN(A)− dimN(A∗). A ∈ B(H) is said to be Fredholm if
A is semi-Fredholm and −∞ < ind (A) <∞.

Let A ∈ B(H). For each positive integer n, define An to be the restriction
of A to R(An). If there is a positive integer n0 such that R(An0

) is closed and
An0

is Fredholm, then A is called B-Fredholm. It follows from [19] that if A is
B-Fredholm and n0 satisfies the above properties, then Am is Fredholm and ind
(Am) =ind (An) for all m ≥ n0. Thus, we can define the index of a B-Fredholm
operator A as the index of the Fredholm operator An, where n is any positive
integer such that R(An) is closed and An is a Fredholm operator.

We first introduce the following important operator classes ([18], [20]-[23]).

2.2. Definition. (i) T ∈ B(H) is called Browder, if T is Fredholm operator and
asc(T ) = des(T ) <∞.

(ii) T ∈ B(H) is said to be Drazin invertible, if there exists TD ∈ B(H) such
that TTD = TDT, TDTTD = TD, T k+1TD = T k for some nonnegative integer k.

(iii) T ∈ B(H) is said to be generalized Drazin invertible, if there exist A,B ∈
B(H) such that B is quasi-nilpotent and TA = AT,ATA = A, TAT = A+B.

(iv) T ∈ B(H) is called Weyl, if T is Fredholm with index 0.
(v) T ∈ B(H) is called B-Weyl, if T is a B-Fredholm with index 0.

The above operators have the following characterizations ([18],[20]-[23]).

2.3. Lemma. (i) T ∈ B(H) is Browder iff T = T1 ⊕ T2, where T1 is invertible
and T2 is nilpotent on some finite dimensional space.

(ii) T ∈ B(H) is Drazin invertible iff T = T1 ⊕ T2, where T1 is invertible and
T2 is nilpotent.

(iii) T ∈ B(H) is generalized Drazin invertible iff T = T1 ⊕ T2, where T1 is
invertible and T2 is quasi-nilpotent.

(iv) T ∈ B(H) is B-Fredholm iff T = T1 ⊕ T2, where T1 is Fredholm and T2 is
nilpotent.

(v) T ∈ B(H) is B-Weyl iff T = T1 ⊕ T2, where T1 is Fredholm with index 0
and T2 is nilpotent.

In [2], Gudder essentially proved the following result.

2.4. Theorem ([2]). If dimH <∞, then G(H) = B(H)1.



In [7], Wang, Du and Dou proved the following theorem.

2.5. Theorem ([7]). If A ∈ B(H)1 is a finite-rank perturbation of a semi-
Fredholm partial isometry with ind (A) 6= 0, then A 6∈ G(H).

It follows from this result that Theorem 2.4 does not hold when dimH = ∞.
But we have the following result.

2.6. Lemma ([24]). If A ∈ B(H) and ‖A‖ < 1 − 2
n for some n > 2, then there

exist unitary operators U1, U2, · · · , Un such that

A =
1

n
(U1 + U2 + · · ·+ Un).

Denote B(H)◦1 = {A ∈ B(H) : ‖A‖ < 1}. Then from the above lemma, the
following result follows.

2.7. Theorem ([7]). B(H)◦1 ⊆ G(H).

By using spectral resolution, Du and Dou in [8] established the necessary and
sufficient conditions for A 6∈ G(H) when A ∈ B(H)1. As a corollary, they obtained
the following result.

2.8. Theorem ([8]). If A ∈ B(H)1, then A is not a generalized quantum gate if
and only if A is a semi-Fredholm with ind (A) 6= 0 and A is a compact perturbation
of a partial isometry.

3. Main Results

In this section, we give a characterization of generalized quantum gates and
show that many important operators are generalized quantum gates.

First, we need the following important lemma.

3.1. Lemma ([8]). Let A ∈ B(H)1. Then there exist two unitary operators U1

and U2 in B(H) such that

A =
1

2
(U1 + U2)

if and only if dimN(A) = dimN(A∗).

3.2. Remark. The above lemma shows that each contractive normal operator is a
generalized quantum gate. However, the conclusion does not hold for contractive
p-hyponormal operator. In fact, if A is the forward shift on H, then it is easy
to check that A is a contractive p-hyponormal operator, but not a generalized
quantum gate.

3.3. Proposition. If A,B ∈ G(H), then AB ∈ G(H) and A⊕B ∈ G(H ⊕H).

Proof. It follows from the fact A,B ∈ G(H) that there exist unitary operators
U1, · · · , Un, V1, · · · , Vm such that

(3.1) A =

n∑
i=1

piUi , B =

m∑
j=1

qjVj ,



where pi > 0, i = 1, 2, · · · , n, qj > 0, j = 1, 2, · · · ,m,
∑n
i=1 pi =

∑m
j=1 qj = 1.

Thus,

AB =

n∑
i=1

piUi

m∑
j=1

qjVj =

n∑
i=1

m∑
j=1

piqjUiVj ,

A⊕B =

n∑
i=1

piUi ⊕
m∑
j=1

qjVj =

m∑
j=1

n∑
i=1

piqj(Ui ⊕ Vj).

Noting that
∑n
i=1

∑m
j=1 piqj = 1 and the facts that the product as well as the

direct sum of unitary operators are still unitary operators, we obtain AB ∈ G(H),
and A⊕B ∈ G(H ⊕H). �

3.4. Remark. The following two examples show that the converse of Proposition
3.3 does not hold.

3.5. Example. Let A,B be operators on H defined by

A : H → H, {z1, z2, z3, · · · } 7→ {z1,
1

2
z2,

1

2
z3, · · · },

B : H → H, {z1, z2, z3, · · · } 7→ {0, z1, z2, · · · }.
Then

AB : H → H, {z1, z2, z3, · · · } 7→ {0,
1

2
z1,

1

2
z2,

1

2
z3, · · · }.

Note that A ∈ Inv(H), ‖A‖ = 1, ‖AB‖ = 1
2 . Then it follows from Theorem

2.7 and Lemma 3.1 that A,AB ∈ G(H), but by Theorem 2.8 we obtain that
B 6∈ G(H).

3.6. Example. Let A be the forward shift on H, that is,

A : H → H, {z1, z2, z3, · · · } 7→ {0, z1, z2, · · · },
B = A∗, and C = I −AB. Then

A⊕B =
1

2

(
A C
0 B

)
+

1

2

(
A −C
0 B

)
.

Note that

(
A C
0 B

)
and

(
A −C
0 B

)
are both unitary operators. Then it

follows from Proposition 3.3 that A ⊕ B ∈ G(H ⊕H). But it is easy to see that
neither A nor B is in G(H).

Now, we give the following characterization of generalized quantum gates.

3.7. Theorem. Let A ∈ B(H)1. Then A ∈ G(H) ⇐⇒ An ∈ G(H) for each
positive integer n.

Proof. The necessity follows from Proposition 3.3 immediately. Sufficiency. Firstly,
we show that if A 6∈ G(H) and ind (A) < 0, then A can be represented as the
compact perturbation of an isometry.

In fact, it follows from Theorem 2.8 that A = U + K, where U is a partial
isometry and K is compact. Noting that ind (U) = ind (U + K) = ind (A) < 0,
we have dim N(U) <∞.



If the operator U is written in the following form with respect to the space
decomposition H = N(U)⊥ ⊕N(U):

U =

(
U1 0
U2 0

)
,

then

U∗U =

(
U∗1 U∗2
0 0

)(
U1 0
U2 0

)
=

(
U∗1U1 + U∗2U2 0

0 0

)
.

It follows from the fact that U is a partial isometry and Lemma 2.1 that U∗U is
the orthogonal projection on N(U)⊥. Therefore, U∗1U1 + U∗2U2 = IN(U)⊥ . More-
over, it follows from ‖U∗U‖ = 1 that ‖U∗2U2‖ ≤ 1. Also, note that dim N(U) <∞.
So U∗2U2 is a positive contractive finite rank operator. Denote

U∗2U2 =

k∑
i=1

ai|αi〉〈αi|,

where 0 < ai ≤ 1 and {|αi〉}ki=1 is the orthogonal set in N(U)⊥. If we extend
{|αi〉} into an orthonormal basis {|α1〉, |α2〉, · · · , |αk〉, |β1〉, |β2〉, · · · } of N(U)⊥,
then we have

U∗1U1 = IN(U)⊥ − U∗2U2 = IN(U)⊥ −
k∑
i=1

ai|αi〉〈αi|

=
∑
j

|βj〉〈βj |+
k∑
i=1

(1− ai)|αi〉〈αi|.

Moreover, it is easy to see that

〈βj |U∗1U1|βj〉 = 〈βj |βj〉 = 1, j = 1, 2, · · · ,

〈αi|U∗1U1|αi〉 = 1− ai, i = 1, 2, · · · , k.

If 0 < ai < 1, i = 1, 2, · · · , k, take bi =
√

1
1−ai − 1, i = 1, 2, · · · , k, and let

Ũ1|αi〉 = biU1|αi〉, i = 1, 2, · · · , k,

Ũ1|βj〉 = 0, j = 1, 2, · · · .
Then it is easy to see that

〈αi|(U1 + Ũ1)∗(U1 + Ũ1)|αi〉 = (1 + bi)
2〈αi|U∗1U1|αi〉(3.2)

= (1 + bi)
2(1− ai) = 1, i = 1, 2, · · · , k,

and

(3.3) 〈βj |(U1 + Ũ1)∗(U1 + Ũ1)|βj〉 = 〈βj |U∗1U1|βj〉 = 1, j = 1, 2, · · · .

If there exists some i, such that ai is 1, for example, assume that am = 1, 0 <

ai < 1, i = 1, 2, · · · , k, i 6= m. Take bi =
√

1
1−ai − 1, i = 1, 2, · · · , k, i 6= m, and let

Ũ1|αm〉 = |αm〉, Ũ1|αi〉 = biU1|αi〉, i = 1, 2, · · · , k, i 6= m,

Ũ1|βj〉 = 0, j = 1, 2, · · · .



Then we can check that (3.2) and (3.3) still hold. Thus, U1 + Ũ1 is an isometry

on N(U)⊥ and Ũ1 is a finite rank operator. Hence, A can be written as

A = U +K =

(
U1 0
U2 0

)
+K

=

(
U1 + Ũ1 0

0 I

)
+

(
−Ũ1 0
U2 −I

)
+K = V + F +K,

where V is an isometry, F is a finite rank operator and K is a compact operator.
So A can be written in the form A = V + L, where V is an isometry and L is
compact.

Now, in order to prove the sufficiency, we consider two cases:
Case (I). ind (A) < 0. It is obvious that the conclusion holds for n = 1. If the

conclusion holds for n = k, that is, Ak ∈ G(H)⇒ A ∈ G(H), we need to prove it
also holds for n = k + 1, that is, Ak+1 ∈ G(H) ⇒ A ∈ G(H). If A 6∈ G(H), then
A = V + L, where V is an isometry and L is compact, by induction assumption
we know that Ak 6∈ G(H), thus Ak = V1 + L1, where V1 is an isometry and L1 is
compact. Therefore, Ak+1 = AkA = V1V + V1L+ L1V + L1L, where V1V is still
an isometry and V1L+ L1V + L1L is still compact. On the other hand, it follows
from the fact that A is a semi-Fredholm operator with ind (A) 6= 0 that Ak+1 is a
semi-Fredholm operator with ind (Ak+1) 6= 0. Thus, it follows from Theorem 2.4
that Ak+1 6∈ G(H).

Case (II). ind (A) > 0. In Case (I) we have proved that if A 6∈ G(H) and
ind (A) < 0, then An 6∈ G(H). Note that A ∈ G(H) ⇐⇒ A∗ ∈ G(H). Thus, if
A 6∈ G(H) and ind (A) > 0, we have A∗ 6∈ G(H) and ind (A∗) < 0. It follows
from the proof of Case (I) that (An)∗ = (A∗)n 6∈ G(H), thus An 6∈ G(H). The
sufficiency is proved. �

3.8. Remark. If we get rid of the assumption A ∈ B(H)1, then the sufficiency

does not hold. In fact, if A =

(
1
3I 2I
0 0

)
, then A2 =

(
1
9I

2
3I

0 0

)
. It is easy to

see that ‖A‖ > 2, ‖A2‖ < 1. Thus, it follows from Theorem 2.3 that A2 ∈ G(H).
But it is obvious that A 6∈ G(H).

3.9. Remark. The following example shows that AB ∈ G(H) can not guarantee
that BA ∈ G(H). Let

A =

(
I 9I
0 0

)
, B =

(
1
3I

1
4I

0 0

)
.

Then AB =

(
1
3I

1
4I

0 0

)
, BA =

(
1
3I 3I
0 0

)
, ‖AB‖ < 1, ‖BA‖ > 1. Thus, it

follows from Theorem 2.7 that AB ∈ G(H), but BA 6∈ G(H).

Moreover, the following example shows that A,B ∈ B(H)1, AB ∈ G(H) does
not imply that BA ∈ G(H).

3.10. Example. Let A,B be the operators on H defined as follows:

A : H → H, {x1, x2, x3, · · · } 7→ {0, 0, 0, x1, 0, 0, 0, x2, · · · },



B : H → H, {x1, x2, x3, · · · } 7→ {x2, x4, x6, · · · }.
Then we have

AB : H → H, {x1, x2, x3, · · · } 7→ {0, 0, 0, x2, 0, 0, 0, x4, · · · },

BA : H → H, {x1, x2, x3, · · · } 7→ {0, x1, 0, x2, 0, x3, · · · },
and

(AB)∗ : H → H, {x1, x2, x3, · · · } 7→ {0, x4, 0, x8, 0, x12, · · · },
(BA)∗ : H → H, {x1, x2, x3, · · · } 7→ {x2, x4, x6, · · · }.

Note that AB ∈ B(H)1 and dim N(AB) =dim N((AB)∗) = ∞. Then it follows
from Lemma 3.1 that AB ∈ G(H). On the other hand, it is easy to see that dim
N(BA) = 0 and dim N((BA)∗) = ∞, so BA is a semi-Fredholm operator with
ind (BA) 6= 0. Also, it is easy to verify that BA is an isometry. Thus, it follows
from Theorem 2.8 that BA 6∈ G(H).

Finally, by using Proposition 3.3, we show that many important operators are
generalized quantum gates.

First, note that the invertible operators and nilpotent operators are both Fred-
holm operators with index 0, while the quasi-nilpotent operators are not semi-
Fredholm operators. Then it follows from Theorem 2.8 that the contractive in-
vertible operators, contractive nilpotent operators, contractive quasi-nilpotent op-
erators and contractive Weyl operators are all generalized quantum gates. More-
over, it follow from Lemma 2.3 and Proposition 3.3 that the contractive Browder
operators, contractive Drazin invertible operators, contractive generalized Drazin
operators and contractive B-Weyl operators are all generalized quantum gates, too.
Note that the Weyl operators are Fredholm operators with index 0. So it follows
from Theorem 2.8 that the contractive Weyl operators are generalized quantum
gates. On the other hand, since the index of each B-Fredholm operator is not al-
ways 0, the contractive B-Fredholm operator is not always a generalized quantum
gate.

Furthermore, we show that many operators are not only generalized quantum
gates, but can also be represented as the convex combination of two unitary op-
erators.

3.11. Theorem. Let A ∈ B(H) be a Drazin invertible operator (resp. Browder
operator, Weyl operator, B-Weyl operator). Then the following statements are
equivalent:

(1) A ∈ G(H).
(2) A ∈ B(H)1.
(3) A = 1

2 (U1 + U2), where U1 and U2 are unitary operators.

Proof. We only prove the case when A is a Drazin invertible operator. It is obvious
that (3) ⇒ (1) and (1) ⇒ (2) hold. Now, we prove (2) ⇒ (3). In fact, since A is
Drazin invertible, by Lemma 2.3, we have

A =

(
A1 0
0 A2

)
: H1 ⊕H2 → H1 ⊕H2,

where A1 is invertible and A2 are nilpotent. It is obvious that both A1 and A2 are
contractions. We assert that dim N(A2) = dim N(A∗2). Indeed, if dim (H2) <∞,



then dim N(A2) = dim N(A∗2) < ∞; if dim (H2) = ∞, it follows from A2 is
nilpotent that dim N(A2) = dim N(A∗2) = ∞, thus, dim N(A2) = dim N(A∗2),
and so dim N(A) = dim N(A∗). Therefore, it follows from Lemma 3.1 that there
exist unitary operators U1, U2 ∈ B(H) such that A = 1

2 (U1 + U2). �

3.12. Remark. If A ∈ B(H) is a quasi-nilpotent operator, then dim N(A) = dim
N(A∗) does not always hold. In fact, if A is the operator on H defined as follows:

A : H → H, {x1, x2, x3, x4, · · · } 7→ {0, x1,
1

2
x2,

1

3
x3, · · · },

then it is easy to see that dim N(A) = 0 6= 1 = dim N(A∗). This shows that
the generalized Drazin invertible operators can not always be represented as the
convex combination of two unitary operators.

3.13. Remark. It is obvious that a generalized quantum gate is a restricted
allowable generalized quantum gate. Now, we show the converse is also true. In

fact, if A =
∑d−1
i=0 ciUi, where Ui are unitary operators and 0 <

∑d−1
i=0 |ci| ≤ 1,

then A =
∑d−1
i=0 |ci|eiθiUi. Let pi = |ci|, Ũi = eiθiUi. Then A =

∑d−1
i=0 piŨi,

where
∑
pi ≤ 1, and Ũi are unitary operators. If

∑d−1
i=0 |ci| = 1, then

∑
pi = 1

and so A ∈ G(H). If
∑d−1
i=0 |ci| < 1, then

∑
pi < 1, and we have ‖A‖ < 1, that

is, A ∈ B(H)◦1. Thus, it follows from Theorem 2.7 that A ∈ G(H). So A is a
generalized quantum gate.

It follows from the above fact that our results are not only valid for the gen-
eralized quantum gates, but also for the restricted allowable generalized quantum
gates.
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