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Abstract

Let S be an associative ring with identity and N be a right S-module. We define the non-maximal graph p(N) of N
with all non-trivial submodules of N as vertices and two distinct vertices A, B are adjacent if and only if A + B is not
a maximal submodule of N. In this paper, we investigate the connectivity, completeness, girth, domination number,
cut edges, perfectness and r-partite of u(N). Moreover, we give connections between the graph-theoretic properties

of W(N) and algebraic properties of N.
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1. INTRODUCTION

Throughout this paper, S will be an associative ring
with identity. Let N be a right S-module. If X is a
proper submodule of N and there exists no Y such that
X <Y <N, then X is called a maximal submodule of
N. If X is not a maximal submodule of N, then X =N
or there exists Y < N such that X <Y <N. (See [2] for
unknown concepts in module theory.)

An undirected graph G is defined as the pair (V(G),
E(G)), where V(Q) is the set of vertices of G and E(G)
is the set of edges of G which have no orientation. For
two distinct vertices A and B, A — B means that A and
B are adjacent. By the null-graphs we mean that with
no edges. If [V(G)|> 2, a path from A to B is a series of
adjacent vertices A — Vi — V, —...— V,— B. The dis-
tance between two vertices A and B in a graph is the
number of edges in a shortest path connecting them and
denoted by d(A,B). If there is no path between A and
B, d(A,B) = 0. diam (G) = sup {d(A,B) : A,B eV(G)}
is a diameter of a graph G. A graph is connected if for
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any vertices A and B there is a path between A and B.
If there is no path, then G is disconnected. The girth of
G is the length of the shortest cycle of G and denoted
by g(G). A complete graph G is a graph with an edge
between every two vertices. A clique of a graph is its
maximal complete subgraph and the number of vertices
in the largest clique is called the clique number, de-
noted by w(G). D G is a dominating set if for all A e
V(G), there exists at least one B € D such that A and B
are adjacent. The domination number, y(G), of G is the
minimum cardinality of a dominating set of G. The
chromatic number, %(G), is the minimum number of
colours which can be assigned to the vertices of G such
that every two adjacent vertices have different colours.
If x(G) = w(QG), then G is called a perfect graph. (See
[3] for unknown concepts in graph theory.)

We define the non-maximal graph w(N) of N with all
non-trivial submodules of N as vertices and two distinct
vertices A, B are adjacent if and only if A+B is not a
maximal submodule of N. Firstly, we investigate the
connectivity, completeness and girth of p(N).
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Secondly, we study the domination number, cut edges,
pendent vertex of p(N). Moreover, we give a counter-
example such that p(N) may not be perfect and p(N)
cannot be a complete r-partite graph if N # N; @ N,
where Ni and N, are simple. This graph satisfies us to
use module algebraic properties in graph theory. Zero
divisor graphs, intersection graphs and their generali-
zations were investigated in [1, 4, 5, 7].

2. NON-MAXIMAL GRAPH p(N)

Definition 2.1. Let N be a module. pu(N) is called a non-
maximal graph where the set of vertices of wW(N) is all
non-trivial submodules of N denoted by V(u(N)) and A
and B are adjacent if A + B is not a maximal submodule
of N. E(u(N)) is the set of edges of w(N).

Example 2.2

i) Let N have no maximal submodules (for example
Zp*). Then W(N) is complete.

ii) W(Z4) and pW(Zs) are null-graphs. For n > 4, w(Z,") is
not complete and not connected, w((Z,")) = n-2.

iii) W(Z, @ Zy) (p # q primes) is a complete and con-
nected graph.

iv) W(Z," @®Z4) is connected, not complete and clique
number is 2n-3 for n > 3. wW(Z,> @ Z) is not connected,
not complete and clique number is 2.

V) WZs ® Z») is not complete, not connected and w
(W(Z4 @ Z»)) = the number of maximal submodules of
74 ®7Zr=3.

Proposition 2.3. Let N be a right S-module.
i) If w(u(N)) < oo, then Is(N) < oo,

ii) If N is a non-maximal vertex and deg(N) < oo, then
Is(N) < oo,

Proof. It follows from the proof of Lemma 3.1. and
Lemma 3.4. in [6]. [

Remark 2.4. Let soc(N) be a proper essential submod-
ule of N or soc(N) be a maximal submodule of N. Then
u(N) may not be connected. For example, in Z,> ® Z,
which is cyclic, there exists no path between Z; and Z,.
Moreover, Zs @ Z, is not connected and it is two gen-
erated.

Now, we investigate the connectivity of some special
modules in the following three theorems by consider-
ing Remark 2.4.
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Theorem 2.5.

i) If Rad (N) = 0, then u(N) is connected and diam
(W(N)) <3.

ii) If N is semisimple, then w(N) is connected.

iii) Let N be not cyclic, but Artinian module. If soc(N)
and cyclic submodules are not maximal in N, then p(N)
is connected.

Proof.

I) Let p(N) be not connected. Then there exists no path
between vertices X and Y.

a) Let X+Y <™*N. Since Rad (N) = 0, there exists a
maximal submodule Y such that X+Y;=N. If Y is not
a submodule of Y, then we have a path X — Y; — Y.
Otherwise, there exists a maximal submodule Y, such
that Y + Y>=N. Then we haveapath X — Y - Y2 —
Y.

b) Let X <Y <™*N. If X is in every maximal submod-
ule of N, then Rad(N) = 0 which is a contradiction. So
there exists a maximal submodule X<« Y| #Y. By X —
Y1 -Y, there is a contradiction.

ii) It follows from part (i).

iii) Let u(N) be not connected. Then there exists no
path between vertices X and Y.

A)Let X+ Y <"™N. ThenXNY=0and XD Y <™
N.

al) Let X not simple. Then there exists U <X and U ®
Y<X®@Y <" N.ByY -U - X, there is a contradic-
tion.

a2) Let Y not simple. Similarly, there is a contradiction.

a3) Let X and Y be simple. Then X @ Y <™* N where
X and Y are simple. Moreover, soc (N) <** N and
soc(N) <™* N by the part (ii), which is a contradiction.

b) Let X <Y <™*N and a € N — Y. Then we have
simple submodules E, F such that E < X and F < aS
such that E + F < soc(N). So, we have a path, which is
a contradiction.[]

Theorem 2.6. Let N be a module whose number of
generators > 3. Then p(N) is connected and diam

(L(N)) =3.

Proof. Assume that pu(N) is not connected. Then there
exists no path between vertices X and Y.
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A)Let X+ Y<"™N. ThenXNY=0and XD Y <™
N where X and Y are simple. Therefore, soc(N)= X &
Y <m*N and soc(N)=X @Y <**N. Leta € N —soc(N).
Then soc(N) +aS=Nand aS#N. Since X «aSand Y
+aS,wehaveapath X -Y @ aS - X ® aS -Y, which
is a contradiction.

b) Let X <Y <m*N.

bl) Let X <K N. If x € N -, then xS # N and Y+ xS
=N. Moreover, XS cannot be maximal. If X+xS is max-
imal, then there exists y € N — (X+xS) and then X + xS
+yS = N. Since X « N, xS + yS = N, which can not
be. So, we have a path, which is a contradiction.

b2) Let X be not small in N. Then there exists T <N
such that X+ T=N. Then Y +T = N. This gives a con-
tradiction. [

Theorem 2.7. Let N be not cyclic, and it has only one
maximal. Then pu(N) is connected.

Proof. Assume p(N) is not connected. Then there ex-
ists no path between vertices X and Y.

a) Let X+ Y <™ N. Then X "' Y =0 and hence X &
Y <™ N where X and Y are simple. Therefore, soc
N)=X®Y <™ N and soc(N)=X @Y <**N. Leta e
N — soc (N). Then we have a path (X — aS —Y), which
is a contradiction.

b) Let X <Y <™*N and a € N — Y. Then we have a
path (X —aS —Y), which is a contradiction. []

Now, we investigate the completeness of w(N). If N has
no maximal, then p(N) is complete for example Z,”.

Theorem 2.8. Let u(N) be a complete graph and N has
a maximal submodule. Then either N = N; @ N, where
N; and N are simple or N has only one submodule.

Proof. Let A <™ N and A; = A. There exists no A —
A. So, A is simple. Then A is both maximal and simple
submodule of N. Let A#Y £ N. Then A ® Y =N im-
plies that Y is simple and maximal otherwise N has
only one submodule A. [J

Now, we prove that g((N)) < 4.
Theorem 2.9. Let 1(N) have a cycle.

1) If N has at least three maximal submodules, then
g(u(N)) = 3.
2) Let N, N, be not maximal and N = N; + N, then
g(nN)) =3.

Sakarya University Journal of Science 23(3), 396-402, 2019

3) If N has two submodules such that B + C # N is not
maximal, then g(W(N)) = 3.

4) If N has only one maximal submodule, then g(1(N))
=3.

5) If N has only two maximal submodules, then g(u(N))
<4.

Proof.

1) Let Ny, N2 and N3 be maximals. Then (N; — N2 — N3),
which says g(u(N)) = 3.

2) Let N = N; +N, where N; and N, are not maximal.
If N1 " N2 #0 then N; —N; N2 — Na. Assume g(pu(N))
> 3. Then, N; n N> =0. Since N; and N are not simple,
there exists Y <N;jand Y2<N2. So Y @ Y2<N; @
Y2<N; @ N; =N and hence Y; @ Y is not maximal.
Therefore g(u(N)) = 3.

3) It is straightforward.

4) Let U be the only maximal submodule of N. Assume
that g(u(N)) > 3.

a) Let every proper submodule of N is in U. Then we
have a cycle (A1 — A2 — A; — A4 — ...) of length greater
than three and A; # U, for all i.

i) Let A; < A,. Since Az < Az or Az < A; cannot be, we
have a contradiction

ii) Let A, < A; where A +A3; =U.
iil) If A, < A3, then A, + A4 = U gives a contradiction.

li2) If A3 < Ay, then A3 < A; < A; implies a contradic-
tion. Thus g(uW(N)) = 3.

b) Let A<Nand A< U. Let (A1 —Ar—A3—- A4 — )
of length greater than three.

1) A1 < Azand A; is not maximal. Then A< Az or A3<
A; cannot be. Let A, +A; = N. If Az is not maximal,
then there is a contradiction. So A3 = U and we have a
cycle (A1 —A,—U-A4 —...). Then A, « U and A4 <«
U. U= A; + As <™*N which is a contradiction.

ii) A2 <A and A; is not maximal. A3 <Az and Az + A
= N cannot be. Let Ay < As. Then A; < Asor Ay < A;
cannot be. Thus A; + As=N where A3 ZU. [f Ay =U,
A1+ A;=Uand A + A3 = As. Then A3 < A4 which is
a contradiction.

iii) A; + As=N.

iiil) Let A, = U. Then we have a three cycle A; — U —
As
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1ii2) Let A; = U, we get (U - A, — A3 — A4 —...). Since
A, + Ay, = U, we have a contradiction.

5) Assume that g(u(N)) > 4. Let A and B be maximal
submodules of N and 0 # X < N. Then either X <A or
X < B. Assume that A " B=0. Then A ® B=N and
A and B are simple. Since we have a cycle, there exists
at least one submodule C # A and B. Thus C ® A =N
and C is maximal, which is a contradiction. Therefore
ANB#0.

a) Let every nonzero proper submodule of N (except
for A and B) is in A N B. Since we have a cycle (A -
A, — As— A4 —...) such that A; # A and B, g(W(N)) =
3.

b) Let there exists at least one submodule C such that
(C+Aand C<B)or(C <« Band C <A). Assume that
C « B and C < A. Then B has no submodules except
for A N B and its submodules. Otherwise, if D <B and
D « A, then D + C # A, B which says 3 - cycle.

bl) Let A N B be simple. Since N/B=(A+B)/B=
A/ (A N B)simple, An B <™ A. Then An B «C,
so (A N B) @ C = A where C is simple. Thus, B® C
=N and B has no proper submodule except for A N B.
If D < A where A N B « D, then D is simple and C &
D = A. So, we have no cycle.

b2) Let A N B be not simple. Then we have a submod-
ule Y < A n B where Y is simple and A n B has no
submodule except for Y.

b21) Let Y « C. Then Y @ C = A where C simple.
Thus, Y @ (A N B n C) = A n B which is a contradic-
tion.

b22) Let Y < C. Since we have a cycle, we have D # A,
B,C,AnBandY.ThenD « Band D <A.

i) Let Y <D. Then(D—-B-C-Y)isacycle.

ii) Let Y« D. Thus D @ Y = A where D and Y are
simple. So, Y ® (A n B N D)=A n B, which is a
contradiction. [J

Corollary 2.10. Let u(N) have a cycle. If N has only
two maximals A and B such that simple=Y <A "B
and there exist proper submodules C, D of A only con-
taining Y and C, D <« B where B has only two proper
submodules A N B and Y, then we have a 4-cycle. Oth-
erwise, we have a 3-cycle.

Sakarya University Journal of Science 23(3), 396-402, 2019

3. DOMINATION NUMBER, CUT EDGES, PEN-
DENT VERTEX AND PERFECTNESS OF

H(N)

Lemma 3.1. Let N be a module with Rad(N) = 0. If N
=A®BorN=A @B ® C cannot be where A, B and
C are simple, then pu(N) has no cut edge.

Proof. Let A — B be cut edge.

i) Let A + B (# N) be not maximal. Since Rad(N) = 0,
there exist at least one maximal submodule T; and T
such that A <« T, and B « T». So, there is a path A — T
— T, — B, which is a contradiction.

ii)Let A+B=N.

fil) Let A and B not maximal. Then A " B =0. So, A
@ B = N where A and B are not simple. So, A — A -
B — B (where A; < A and B; <B) is a path, which is a
contradiction.

[i2) Let A and B maximal. If there is another maximal
submodule, then A — C — B is a path. Otherwise, A N
B=0and A @ B =N where A and B are simple. If
there s C # A and B, then A @ C =B @ C = N, where
C is maximal, which is a contradiction.

Ii3) Let A be not maximal and B be maximal. Assume
that every maximal except for B contains A. Then A N
B <Rad(N)=0. Therefore, A © B=N and A is simple.
Assume that A @ B; <™ A @ B =N where B; <B and
B, is simple. Since B, is not small in B, B; ® B,=B
where B is simple. Then N=A @ B; @ B», which is a
contradiction.[’

Lemma 3.2. Let N be a module whose number of gen-
erators is greater than or equal to four, then pu(N) has
not a cut edge.

Proof. Let A — B be cut edge.
i) Let A + B (# N) be not maximal.

il) Let A < B where A is simple. [f Bis cyclicand y
N — B, then A — yS — B is a path. If B is not cyclic and
x € B— A, then A — xS — B is a path, which gives a
contradiction.

i2) Let A « Band B « A. If A n B #0, then we have
apath A—AnB-Bexceptfor A—B.So,AnB=0
such that A and B are simple. Let x € N— A @ B (where
xS #N). Thus, A + xS is not maximal and B + xS is not
maximal and A — xS — B is a path. Therefore, we have
a contradiction.
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ii)Let A+B=N.

iil) Let A and B be not maximal. Then AN B =0, A
@ B = N where A and B are not simple. So, A — A —
B — B (where A; < A and B; <B) is a path, which is a
contradiction.

ii2) Let A and B be maximal. Letx e N-Aandy e N
— B. Thus xS, yS # A and B. Then A - xS —yS - B is
a path, which is a contradiction.

iii3) Let A be not maximal and B be maximal. If A is
not cyclic and xe A andy € N — B, then we have a path
A-xS—-yS—-B.IfAiscyclicand x € B— A, then A
— A + xS — B is a path, which gives a contradiction. []

A vertex of a graph is said to be pendent if its neigh-
bourhood contains exactly one vertex. Le N =7, @ Z;.
Then Z, is a pendent vertex. Let N = Z4 @ Zs. Then Z3
is a pendent vertex.

Lemma 3.3. If N has no maximal submodules, then N
has no pendent vertex. Moreover, N has only one max-
imal submodule U, then U cannot be pendent.

Proof. Since N has no maximal, N has at least three
non-trivial submodules, say C, D, E. Then C+ D and C
+ E can not be maximal. So, C cannot be pendent. Sim-
ilarly, all non-trivial submodules can not be pendent.
Let every submodule be in U, then U cannot be pen-
dent. Let there exist a submodule V such that V « U.
Since V is not maximal, there exist a nontrivial sub-
module T such that V < T. So, we have a path U - V
and U — T, hence U cannot be pendent. [

Proposition 3.4 Let N have only one maximal submod-
ule U and V « U. Then u(N) has no pendent vertex.

Proof. Let A be a pendent vertex.

i) If A = U, then by Lemma 3.3, we have a contradic-
tion.

i) Let A # U.

a) If A « U, then we have a nontrivial submodule T
such that A < T, so we have paths A — U and A - T,
which gives a contradiction.

b) Let A < U. Then we have V < T and we have paths
A —Vand A - T, which gives a contradiction. []

Example 3.5. Let N = Z;¢ which has only one maximal
submodule Zg and Zs contains all nontrivial submod-
ules. Z4 is a pendent vertex in w(N). Moreover, Z, ® Z;
@ Zs is semisimple and every simple is pendent. [f N =

Sakarya University Journal of Science 23(3), 396-402, 2019

Ni@N,® ... @ Ny, (n>4)is semisimple, then N has
no pendent vertex.

Lemma3.6. Let Rad(N) = 0. If N has generators whose
number greater than two, then N has no pendent except
for simple submodules. If N has generators whose
number greater than three, then w(N) has no pendent.

Proof. Let u(N) have pendent, say P. By Lemma 3.3,
N has maximals.

a) Let P be not simple and not maximal. Since Rad(N)
= 0, there exist a maximal N; such that P < N;. More-
over, there exist P; < P. So, we get a contradiction.

b) Let P be maximal. Since Rad(N) = 0, there exist a
maximal N; # P. If there exist no maximal N; and P,
then this contradicts that Rad(N) = 0 and N has gener-
ators whose number greater than two. So, we have an-
other maximal N,. So, we have a path N; — P — Ny,
which gives a contradiction.

c¢) Let P be simple where N has generators whose num-
ber greater than three. Since Rad(N) = 0, there exist a
maximal N; such that P <« N;. Let x € N — P. Then, we
have a path xS—-P - N;. [

Now, we investigate the dominating set and y(uW(N)) in
H(N).

Lemma 3.7. Let X be a dominating set for N and U <
N.LetB={T nU: T € X} is a dominating set for U.

Proof. Let 0 #£Y < U. Then there exist T; € X such that
Y + T; is not maximal. Let Y + (Ti " U) <Y + T,
implies that Y + (T; m U) is not maximal. So, B is a
dominating set for U. [

Lemma 3.8 Let Rad(N) = 0. Then y(i(N)) < the num-
ber of maximals if N has maximals. If N has no maxi-
mals, then y(u(N)) = 1.

Proof. If N has no maximals, then for all 0 # U <N,
{U} is a dominating set, and so y(W(N)) = 1. Let N have
maximals. Since Rad(N) = 0, for all 0 # X < N, there
exist at least one maximal submodule such that it does
not contain X. So, the set of all maximals is a dominat-
ing set, hence y(1(N)) < the number of maximals. []

Lemma 3.9. Let {M;: i € I} be the set of all maximals.
If there exist U « M; for all i € I then y(Ww(N)) = 1.

Proof. Since {U} is dominating set, y(u(N)) = 1. [

Proposition 3.10. {U} is a dominating set if and only
if one of the following is satisfied:
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1) N has no maximal submodules.

i1) If N has at least one maximal submodule, then every
maximal does not contain U.

Example 3.11. Let N = Z, @ Z3 then y(u(N)) = 2. Let
N =74 ® Zz then y(W(N)) = 3 where N has two maximal
and Rad(N) = Z, and minimal dominating set is {Z4, Z3,
Zs}.

Lemma 3.12. Let Rad(N) =0 and B = {M;: i € [} be
set of all maximals. Then B is a dominating set. More-
over, if {M;:j € J} =C and Nj < M; = 0 and there exist
no U, U « M;, for all j € J, then C is a dominating set.

Lemma 3.13. Let Rad(N) # 0 and N has only two max-
imals N; and N». {U, Ni} is a dominating set where 1 =
1 or 2 if and only if U <N;j, U « Nj and U + Rad(N) <
Nj wherej =1 or 2.

Proof. Let y(W(N)) = 2. Then U # N, since Ny N N, #
0. And U <« N;j since {U, N;} is a dominating set. If U
<« Njand U « N;, then y(u(N)) = 1. So, U<N;. If U +
Rad(N) = N;j, then {U, N;} cannot be a dominating set.
For the converse, let 0 # X < N. Assume thati= 1.

a) If X « N; N Ny, then X <« Nj or X <« Na.
al) If X « Ny, then N; + X =N.

a2) If X « Ny, then X <Ni. U+ X #Njand U + X #
No.

b) f X <N;i "Ny, then U+ X < U+ N; N N2 <Na. So
{U, N;} is a dominating set. []

Proposition 3.14 Let N have only two maximals and
Rad(N) # 0. {U;, Ux} is a minimal dominating set
where U; and Us are not N; and N if and only if U; <
Niand U; <« N, Uy <Nz and U, « Nyand N=U, + U,
and U; +Rad(N) < N; or U, + Rad(N) < No.

Proof. Let {U;, U>} be a minimal dominating set such
that U; and U, are not N; and N». Assume that U; < N
and U; « N,. Then y(u(N)) =1 by Lemma 3.9. So U; <
Ni or U; < Nu. Assume that U; < Nj. Then U, <« Ny,
otherwise {U;, U,} cannot be a dominating set. Thus,
U, < N; and U; < Ns. Assume that U; + U, # N. Then
U; + Uy < N; and U; + U; < N, then we have a con-
tradiction. Moreover, U; + Rad(N) < N; or U, +Rad(N)
< N». For the converse, the proof is the same as the
proof of Lemma 3.13.

Theorem 3.15. Let N # N; @ N, where N; and N, are
simple. Then a non-maximal graph w(N) cannot be a
complete r-partite graph, where 2 <r eN.

Sakarya University Journal of Science 23(3), 396-402, 2019

Proof. Assume that u(N) is a complete r-partite graph.
If N has no maximal elements, then there exists a non-
zero submodule M < N. Since M is not maximal, there
exists a submodule M; such that M < M. Similarly, if
we can continue then we can find some submodules of
Nsuchthat M <M; <M; < ... <M, <... Since W(N)
is a complete r-partite graph a partition of w(N) must be
{{Xi}:1=1, 2, ..., r where 0 # X; < N}. But N has
infinitely many submodules, it cannot be. Let N have
only one maximal submodule N;. If N; contains all
nonzero proper submodules of N, then u(N) cannot be
complete r-partite graph. Then there exists at least one
0 #Y <N such that Y « N,. Since i(N) is a complete
r-partite graph, we have a partition {N;, X: 0# X <N},
{{Mi1}, ..., {M1}} where 0 #M; <N and M; « N; for
ie {l,...,r-1}. Since M} is not maximal and 0 # M, <
N1, there exists a non-maximal submodule T, M; <T;.
If we continue in this way, we can find non-maximal
submodules of N such that M; < T; <T, <Tz< ... So
there exists at least one Tx ¢ {Mj, ..., Mr.1}. Then Tk =
Ni or Tk = X. But these cannot be. Assume that N has
at least two maximal submodules N; and N». Since
L(N) is a complete r-partite graph, 1(N) has a partition
which contains T = {Nj, X: 0 # X <N} and T2 = {No,
Y: O;éYSNz}. IfNi "Nz #0then Ny " N; € T; and
N1 N N € T». But this cannot be. Then Ny "' N, = 0,
and hence N = N; @ N, where N; and N, are simple.
But this is a contradiction. []

Example 3.16. 1(N) may not be a perfect graph. y(u(
Z60)) = 4 and w((Zeo)) = 3 in the following diagram
where 30, 20, 15, 12, 10, 6, 5, 4, 3, 2 means that the
number of elements of submodules of Zso.
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