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On A Graph of Submodules 

Ali Öztürk*1 ,Tahire Özen Öztürk1 and Erol Yılmaz1 

Abstract 

Let S be an associative ring with identity and N be a right S-module. We define the non-maximal graph (N) of N 
with all non-trivial submodules of N as vertices and two distinct vertices A, B are adjacent if and only if A + B is not 
a maximal submodule of N. In this paper, we investigate the connectivity, completeness, girth, domination number, 
cut edges, perfectness and r-partite of (N). Moreover, we give connections between the graph-theoretic properties 
of (N) and algebraic properties of N.  

Keywords: Non-maximal submodule, connected and complete graph, clique and chromatic number. 

 

1. INTRODUCTION 

Throughout this paper, S will be an associative ring 
with identity. Let N be a right S-module. If X is a 
proper submodule of N and there exists no Y such that 
X < Y < N, then X is called a maximal submodule of 
N. If X is not a maximal submodule of N, then X = N 
or there exists Y < N such that X < Y < N. (See [2] for 
unknown concepts in module theory.) 

An undirected graph G is defined as the pair (V(G), 
E(G)), where V(G) is the set of vertices of G and E(G) 
is the set of edges of G which have no orientation. For 
two distinct vertices A and B, A   B means that A and 
B are adjacent. By the null-graphs we mean that with 
no edges. If |V(G)|≥ 2, a path from A to B is a series of 
adjacent vertices A  V1    V2  Vn  B. The dis-
tance between two vertices A and B in a graph is the 
number of edges in a shortest path connecting them and 
denoted by d(A,B). If there is no path between A and 
B, d(A,B) = . diam (G) = sup d(A,B)  :  A,B V(G) 
is a diameter of a graph G. A graph is connected if for 
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any vertices A and B there is a path between A and B. 
If there is no path, then G is disconnected. The girth of 
G is the length of the shortest cycle of G and denoted 
by g(G). A complete graph G is a graph with an edge 
between every two vertices. A clique of a graph is its 
maximal complete subgraph and the number of vertices 
in the largest clique is called the clique number, de-
noted by w(G). D  G is a dominating set if for all A  
V(G), there exists at least one B  D such that A and B 
are adjacent. The domination number, (G), of G is the 
minimum cardinality of a dominating set of G. The 
chromatic number, (G), is the minimum number of 
colours which can be assigned to the vertices of G such 
that every two adjacent vertices have different colours. 
If (G) = w(G), then G is called a perfect graph. (See 
[3] for unknown concepts in graph theory.) 

We define the non-maximal graph (N) of N with all 
non-trivial submodules of N as vertices and two distinct 
vertices A, B are adjacent if and only if A+B is not a 
maximal submodule of N. Firstly, we investigate the 
connectivity, completeness and girth of (N). 
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Secondly, we study the domination number, cut edges, 
pendent vertex of (N). Moreover, we give a counter-
example such that (N) may not be perfect and (N) 
cannot be a complete r-partite graph if N ≠ N1  N2 
where N1 and N2 are simple. This graph satisfies us to 
use module algebraic properties in graph theory. Zero 
divisor graphs, intersection graphs and their generali-
zations were investigated in [1, 4, 5, 7]. 

2. NON-MAXİMAL GRAPH (N) 

Definition 2.1. Let N be a module. (N) is called a non-
maximal graph where the set of vertices of (N) is all 
non-trivial submodules of N denoted by V((N)) and A 
and B are adjacent if A + B is not a maximal submodule 
of N. E((N)) is the set of edges of (N). 

Example 2.2 

i)  Let N have no maximal submodules (for example 
ℤp

). Then (N) is complete. 

ii) (ℤ4) and (ℤ8) are null-graphs. For n ≥ 4, (ℤp
n) is 

not complete and not connected, w((ℤp
n)) = n-2. 

iii) (ℤp   ℤq) (p  q primes) is a complete and con-
nected graph. 

iv) (ℤp
n ℤq) is connected, not complete and clique 

number is 2n-3 for n ≥ 3. (ℤp
2   ℤq) is not connected, 

not complete and clique number is 2. 

v) (ℤ4  ℤ2) is not complete, not connected and w 
((ℤ4   ℤ2)) = the number of maximal submodules of 
ℤ4   ℤ2 = 3. 

Proposition 2.3. Let N be a right S-module. 

i) If w((N)) <  , then lS (N) <  . 

ii) İf N is a non-maximal vertex and deg(N) < , then 
lS (N) <  . 

Proof. It follows from the proof of Lemma 3.1. and 
Lemma 3.4. in [6].  

Remark 2.4. Let soc(N) be a proper essential submod-
ule of N or soc(N) be a maximal submodule of N. Then 
(N) may not be connected. For example, in ℤp

2  ℤq 

which is cyclic, there exists no path between ℤp and ℤq. 
Moreover, ℤ4   ℤ2 is not connected and it is two gen-
erated. 

Now, we investigate the connectivity of some special 
modules in the following three theorems by consider-
ing Remark 2.4. 

Theorem 2.5.  

i)  If Rad (N) = 0, then (N) is connected and diam 
((N)) ≤ 3. 

ii) If N is semisimple, then (N) is connected. 

iii) Let N be not cyclic, but Artinian module. If soc(N) 
and cyclic submodules are not maximal in N, then (N) 
is connected. 

Proof. 

İ) Let (N) be not connected. Then there exists no path 
between vertices X and Y. 

a) Let X+Y <max N. Since Rad (N) = 0, there exists a 
maximal submodule Y1 such that X+Y1 = N. If Y is not 
a submodule of Y1, then we have a path X  Y1  Y. 
Otherwise, there exists a maximal submodule Y2   such 
that Y + Y2 = N. Then we have a path X    Y1    Y2    
Y. 

b) Let X < Y <max N. If X is in every maximal submod-
ule of N, then Rad(N)   0 which is a contradiction. So 
there exists a maximal submodule X≮ Y1 ≠ Y. By X  
Y1  Y, there is a contradiction. 

ii) It follows from part (i). 

iii) Let (N) be not connected. Then there exists no 
path between vertices X and Y. 

a) Let X + Y <max N. Then X  Y = 0 and X  Y <max 
N. 

a1) Let X not simple. Then there exists U < X and U  
Y < X  Y <max N. By Y  U  X, there is a contradic-
tion. 

a2) Let Y not simple. Similarly, there is a contradiction. 

a3) Let X and Y be simple. Then X  Y <max N where 
X and Y are simple. Moreover, soc (N) <ess N and 
soc(N) <max N by the part (ii), which is a contradiction. 

b) Let X < Y <max N and a  N  Y. Then we have 
simple submodules E, F such that E ≤ X and F ≤ aS 
such that E + F ≤ soc(N). So, we have a path, which is 
a contradiction. 

Theorem 2.6. Let N be a module whose number of 
generators ≥ 3. Then (N) is connected and diam 
((N)) ≤ 3. 

Proof. Assume that (N) is not connected. Then there 
exists no path between vertices X and Y. 
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a) Let X + Y <max N. Then X  Y = 0 and X  Y <max 
N where X and Y are simple. Therefore, soc(N)= X  
Y <max N and soc(N)= X  Y <ess

 N. Let a  N  soc(N). 
Then soc(N) + aS = N and aS ≠ N. Since X ≮ aS and Y 
≮ aS, we have a path X  Y  aS  X  aS  Y, which 
is a contradiction. 

b) Let X < Y <max N. 

b1) Let X ≪ N. If x  N  Y, then xS ≠ N and Y+ xS 
= N. Moreover, xS cannot be maximal. If X+xS is max-
imal, then there exists y  N  (X+xS) and then X + xS 
+ yS = N. Since X ≪ N, xS + yS = N, which can not 
be. So, we have a path, which is a contradiction. 

b2) Let X be not small in N. Then there exists T < N 
such that X + T = N. Then Y +T = N. This gives a con-
tradiction.  

Theorem 2.7. Let N be not cyclic, and it has only one 
maximal. Then (N) is connected. 

Proof. Assume (N) is not connected. Then there ex-
ists no path between vertices X and Y. 

a) Let X + Y <max N. Then X  Y = 0 and hence X  
Y <max N where X and Y are simple.  Therefore, soc 
(N)= X  Y <max N and soc(N)= X  Y <ess

 N. Let a  
N  soc (N). Then we have a path (X  aS  Y), which 
is a contradiction. 

b) Let X < Y <max N and a  N  Y. Then we have a 
path (X  aS  Y), which is a contradiction.  

Now, we investigate the completeness of (N). If N has 
no maximal, then (N) is complete for example ℤp

 . 

Theorem 2.8. Let (N) be a complete graph and N has 
a maximal submodule. Then either N = N1  N2 where 
N1 and N2 are simple or N has only one submodule. 

Proof. Let A <max N and A1 ≨ A. There exists no A1  
A. So, A is simple. Then A is both maximal and simple 
submodule of N. Let A≠ Y ≨ N. Then A  Y = N im-
plies that Y is simple and maximal otherwise N has 
only one submodule A.   

Now, we prove that g((N)) ≤ 4. 

Theorem 2.9. Let (N) have a cycle. 

1) If N has at least three maximal submodules, then 
g((N)) = 3. 

2) Let N1, N2 be not maximal and N = N1 + N2, then 
g((N)) = 3. 

3) If N has two submodules such that B + C ≠ N is not 
maximal, then g((N)) = 3. 

4) If N has only one maximal submodule, then g((N)) 
= 3. 

5) If N has only two maximal submodules, then g((N)) 
≤ 4. 

Proof. 

1) Let N1, N2 and N3 be maximals. Then (N1  N2  N3), 
which says g((N)) = 3. 

2) Let N = N1 +N2 where N1 and N2 are not maximal. 
If N1  N2 ≠ 0 then N1  N1   N2  N2. Assume g((N)) 
> 3. Then, N1  N2 = 0. Since N1 and N2 are not simple, 
there exists Y1 < N1 and Y2 < N2. So Y1  Y2 < N1  
Y2 < N1  N2 = N and hence Y1  Y2 is not maximal. 
Therefore g((N)) = 3. 

3) It is straightforward. 

4) Let U be the only maximal submodule of N. Assume 
that g((N)) > 3. 

a) Let every proper submodule of N is in U. Then we 
have a cycle (A1  A2  A3  A4   ) of length greater 
than three and Ai ≠ U, for all i. 

i) Let A1 < A2. Since A2 < A3 or A3 < A2 cannot be, we 
have a contradiction 

ii) Let A2 < A1 where A1 +A3 = U. 

ii1) If A2 < A3, then A2 + A4 = U gives a contradiction. 

Ii2) If A3 < A2, then A3 < A2 < A1 implies a contradic-
tion. Thus g((N)) = 3. 

b) Let A < N and A≮ U. Let (A1  A2  A3  A4   ) 
of length greater than three. 

i) A1 < A2 and A2 is not maximal. Then A2 < A3 or A3 < 
A2 cannot be. Let A2 +A3 = N. If A3 is not maximal, 
then there is a contradiction. So A3 = U and we have a 
cycle (A1  A2  U A4   ). Then A2 ≮ U and A4 ≮ 
U. U = A2 + A4 <max N which is a contradiction. 

ii) A2 < A1 and A1 is not maximal. A3 < A2 and A3 + A2 
= N cannot be. Let A2 < A3. Then A3 < A4 or A4 < A3 
cannot be. Thus A3 + A4 = N where A3 ≠ U. If A4 = U, 
A1 + A3 = U and A1 + A3 = A4. Then A3 < A4 which is 
a contradiction. 

iii) A1 + A2 = N. 

iii1) Let A2 = U. Then we have a three cycle A1  U  
A3  
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iii2) Let A1 = U, we get (U  A2  A3  A4   ). Since 
A2 + A4 = U, we have a contradiction. 

5) Assume that g((N)) > 4. Let A and B be maximal 
submodules of N and 0 ≠ X < N. Then either X ≤A or 
X ≤ B. Assume that A  B = 0. Then A  B = N and 
A and B are simple. Since we have a cycle, there exists 
at least one submodule C ≠ A and B. Thus C  A = N 
and C is maximal, which is a contradiction. Therefore 
A  B ≠ 0. 

a) Let every nonzero proper submodule of N (except 
for A and B) is in A  B. Since we have a cycle (A1  
A2  A3  A4   ) such that Ai ≠ A and B, g((N)) = 
3. 

b) Let there exists at least one submodule C such that 
(C ≮ A and C < B) or (C ≮ B and C < A). Assume that 
C ≮ B and C < A. Then B has no submodules except 
for A  B and its submodules.  Otherwise, if D < B and 
D ≮ A, then D + C ≠ A, B which says 3 - cycle. 

b1) Let A  B be simple. Since N ∕ B = (A + B) / B ≅ 
A / (A  B) simple, A  B <max A. Then A  B ≮ C, 
so (A  B)  C = A where C is simple. Thus, B  C 
=N and B has no proper submodule except for A  B. 
If D < A where A  B ≮ D, then D is simple and C  
D = A. So, we have no cycle.    

b2) Let A  B be not simple. Then we have a submod-
ule Y < A  B where Y is simple and A  B has no 
submodule except for Y. 

b21) Let Y ≮ C. Then Y  C = A where C simple. 
Thus, Y  (A  B  C) = A  B which is a contradic-
tion. 

b22) Let Y < C. Since we have a cycle, we have D ≠ A, 
B, C, A  B and Y. Then D ≮ B and D < A. 

i) Let Y < D. Then (D  B  C  Y) is a cycle. 

ii) Let Y≮ D. Thus D  Y = A where D and Y are 
simple. So, Y  (A  B  D) = A  B, which is a 
contradiction.  

Corollary 2.10. Let (N) have a cycle. If N has only 
two maximals A and B such that simple = Y < A  B 
and there exist proper submodules C, D of A only con-
taining Y and C, D ≮ B where B has only two proper 
submodules A  B and Y, then we have a 4-cycle. Oth-
erwise, we have a 3-cycle.   

3. DOMINATION NUMBER, CUT EDGES, PEN-
DENT VERTEX AND PERFECTNESS OF 

(N) 

Lemma 3.1. Let N be a module with Rad(N) = 0. If N 
= A  B or N = A  B  C cannot be where A, B and 
C are simple, then (N) has no cut edge. 

Proof. Let A  B be cut edge. 

i) Let A + B (≠ N) be not maximal. Since Rad(N) = 0, 
there exist at least one maximal submodule T1 and T2 
such that A ≮ T1 and B ≮ T2. So, there is a path A  T1 
 T2  B, which is a contradiction. 

ii) Let A + B = N. 

İi1) Let A and B not maximal. Then A  B = 0. So, A 
 B = N where A and B are not simple. So, A  A1  
B1  B (where A1 < A and B1 <B) is a path, which is a 
contradiction. 

Ii2) Let A and B maximal. If there is another maximal 
submodule, then A  C  B is a path. Otherwise, A  
B = 0 and A  B = N where A and B are simple. If 
there is C ≠ A and B, then A  C = B  C = N, where 
C is maximal, which is a contradiction. 

Ii3) Let A be not maximal and B be maximal. Assume 
that every maximal except for B contains A. Then A  
B ≤ Rad(N) = 0. Therefore, A  B = N and A is simple. 
Assume that A  B1 <max A  B = N where B1 < B and 
B1 is simple. Since B1 is not small in B, B1  B2 = B 
where B2 is simple. Then N = A  B1  B2, which is a 
contradiction. 

Lemma 3.2. Let N be a module whose number of gen-
erators is greater than or equal to four, then (N) has 
not a cut edge. 

Proof. Let A  B be cut edge. 

i) Let A + B (≠ N) be not maximal. 

i1) Let A < B where A is simple. If B is cyclic and y  
N  B, then A  yS  B is a path. If B is not cyclic and 
x  B  A, then A  xS  B is a path, which gives a 
contradiction. 

i2) Let A ≮ B and B ≮ A. If A  B ≠ 0, then we have 
a path A  A  B  B except for A  B. So, A  B = 0 
such that A and B are simple. Let x  N  A  B (where 
xS ≠ N). Thus, A + xS is not maximal and B + xS is not 
maximal and A  xS  B is a path. Therefore, we have 
a contradiction. 
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ii) Let A + B = N. 

ii1) Let A and B be not maximal. Then A  B = 0, A 
 B = N where A and B are not simple. So, A  A1  
B1  B (where A1 < A and B1 <B) is a path, which is a 
contradiction. 

ii2) Let A and B be maximal. Let x  N  A and y  N 
 B. Thus xS, yS ≠ A and B. Then A  xS  yS  B is 
a path, which is a contradiction. 

iii3) Let A be not maximal and B be maximal. If A is 
not cyclic and x A and y  N  B, then we have a path 
A  xS  yS  B. If A is cyclic and x  B  A, then A 
 A + xS  B is a path, which gives a contradiction.  

A vertex of a graph is said to be pendent if its neigh-
bourhood contains exactly one vertex. Le N = ℤ2   ℤ3. 
Then ℤ2 is a pendent vertex. Let N = ℤ4   ℤ3. Then ℤ3 
is a pendent vertex. 

Lemma 3.3. If N has no maximal submodules, then N 
has no pendent vertex. Moreover, N has only one max-
imal submodule U, then U cannot be pendent. 

Proof. Since N has no maximal, N has at least three 
non-trivial submodules, say C, D, E. Then C + D and C 
+ E can not be maximal. So, C cannot be pendent. Sim-
ilarly, all non-trivial submodules can not be pendent. 
Let every submodule be in U, then U cannot be pen-
dent. Let there exist a submodule V such that V ≮ U. 
Since V is not maximal, there exist a nontrivial sub-
module T such that V < T. So, we have a path U  V 
and U  T, hence U cannot be pendent.   

Proposition 3.4 Let N have only one maximal submod-
ule U and V ≮ U. Then (N) has no pendent vertex. 

Proof. Let A be a pendent vertex. 

i) If A = U, then by Lemma 3.3, we have a contradic-
tion. 

ii) Let A ≠ U. 

a) If A ≮ U, then we have a nontrivial submodule T 
such that A < T, so we have paths A  U and A  T, 
which gives a contradiction. 

b) Let A < U. Then we have V < T and we have paths 
A  V and A  T, which gives a contradiction.  

Example 3.5. Let N = ℤ16 which has only one maximal 
submodule ℤ8 and ℤ8 contains all nontrivial submod-
ules. ℤ4 is a pendent vertex in (N). Moreover, ℤ2  ℤ3 
 ℤ5 is semisimple and every simple is pendent. If N = 

N1  N2      Nn (n ≥ 4) is semisimple, then N has 
no pendent vertex. 

Lemma3.6. Let Rad(N) = 0. If N has generators whose 
number greater than two, then N has no pendent except 
for simple submodules. If N has generators whose 
number greater than three, then (N) has no pendent. 

Proof. Let (N) have pendent, say P. By Lemma 3.3, 
N has maximals. 

a) Let P be not simple and not maximal. Since Rad(N) 
= 0, there exist a maximal N1 such that P ≮ N1. More-
over, there exist P1 < P. So, we get a contradiction. 

b) Let P be maximal. Since Rad(N) = 0, there exist a 
maximal N1 ≠ P. If there exist no maximal N1 and P, 
then this contradicts that Rad(N) = 0 and N has gener-
ators whose number greater than two. So, we have an-
other maximal N2. So, we have a path N1  P  N2, 
which gives a contradiction. 

c) Let P be simple where N has generators whose num-
ber greater than three. Since Rad(N) = 0, there exist a 
maximal N1 such that P ≮ N1. Let x  N  P. Then, we 
have a path xS  P  N1.  

Now, we investigate the dominating set and ((N)) in 
(N). 

Lemma 3.7. Let X be a dominating set for N and U < 
N. Let B = {T  U: T  X} is a dominating set for U. 

Proof. Let 0 ≠ Y < U. Then there exist T1  X such that 
Y + T1 is not maximal. Let Y + (T1  U) < Y + T1 
implies that Y + (T1  U) is not maximal. So, B is a 
dominating set for U.  

Lemma 3.8 Let Rad(N) = 0. Then ((N)) < the num-
ber of maximals if N has maximals. If N has no maxi-
mals, then ((N)) = 1. 

Proof. If N has no maximals, then for all 0 ≠ U < N, 
{U} is a dominating set, and so ((N)) = 1. Let N have 
maximals. Since Rad(N) = 0, for all 0 ≠ X < N, there 
exist at least one maximal submodule such that it does 
not contain X. So, the set of all maximals is a dominat-
ing set, hence ((N)) < the number of maximals.  

Lemma 3.9. Let {Mi: i  I} be the set of all maximals. 
If there exist U ≮ Mi for all i  I then ((N)) = 1. 

Proof. Since {U} is dominating set, ((N)) = 1.  

Proposition 3.10. {U} is a dominating set if and only 
if one of the following is satisfied: 
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i) N has no maximal submodules. 

ii) If N has at least one maximal submodule, then every 
maximal does not contain U. 

Example 3.11. Let N = ℤ2  ℤ3 then ((N)) = 2. Let 
N = ℤ4  ℤ3 then ((N)) = 3 where N has two maximal 
and Rad(N) = ℤ2 and minimal dominating set is {ℤ4, ℤ3, 
ℤ2}. 

Lemma 3.12. Let Rad(N) = 0 and B = {Mi: i  I} be 
set of all maximals. Then B is a dominating set. More-
over, if {Mj: j  J} = C and ⋂j J Mj = 0 and there exist 
no U, U ≮ Mj, for all j  J, then C is a dominating set. 

Lemma 3.13. Let Rad(N) ≠ 0 and N has only two max-
imals N1 and N2. {U, Ni} is a dominating set where i = 
1 or 2 if and only if U < Nj, U ≮ Ni and U + Rad(N) < 
Nj where j = 1 or 2. 

Proof. Let ((N)) = 2. Then U ≠ Nj, since N1  N2 ≠ 
0. And U ≮ Ni since {U, Ni} is a dominating set. If U 
≮ Nj and U ≮ Ni, then ((N)) = 1. So, U < Nj. If U + 
Rad(N) = Nj, then {U, Ni} cannot be a dominating set. 
For the converse, let 0 ≠ X < N. Assume that i = 1. 

a) If X ≮ N1  N2, then X ≮ N1 or X ≮ N2. 

a1) If X ≮ N1, then N1 + X = N. 

a2) If X ≮ N2, then X < N1. U + X ≠ N1 and U + X ≠ 
N2. 

b) If X ≤ N1  N2, then U + X ≤ U + N1  N2 < N2. So 
{U, Ni} is a dominating set.  

Proposition 3.14 Let N have only two maximals and 
Rad(N) ≠ 0. {U1, U2} is a minimal dominating set 
where U1 and U2 are not N1 and N2 if and only if U1 < 
N1 and U1 ≮ N2, U2 < N2 and U2 ≮ N1 and N = U1 + U2 
and U1 +Rad(N) < N1 or U2 + Rad(N) < N2. 

Proof. Let {U1, U2} be a minimal dominating set such 
that U1 and U2 are not N1 and N2. Assume that U1 ≮ N1 
and U1 ≮ N2. Then ((N)) = 1 by Lemma 3.9. So U1 < 
N1 or U1 < N2. Assume that U1 < N1. Then U2 ≮ N1, 
otherwise {U1, U2} cannot be a dominating set. Thus, 
U2 < N2 and U1 ≮ N2. Assume that U1 + U2 ≠ N. Then 
U1 + U2 ≮ N1 and U1 + U2 ≮ N2, then we have a con-
tradiction. Moreover, U1 + Rad(N) < N1 or U2 +Rad(N) 
< N2. For the converse, the proof is the same as the 
proof of Lemma 3.13. 

Theorem 3.15. Let N ≠ N1  N2 where N1 and N2 are 
simple. Then a non-maximal graph (N) cannot be a 
complete r-partite graph, where 2 ≤ r ℕ. 

Proof. Assume that (N) is a complete r-partite graph. 
If N has no maximal elements, then there exists a non-
zero submodule M < N. Since M is not maximal, there 
exists a submodule M1 such that M < M1. Similarly, if 
we can continue then we can find some submodules of 
N such that M < M1 < M2 <  < Mr-1 <  Since (N) 
is a complete r-partite graph a partition of (N) must be 
{{Xi}: i = 1, 2, , r where 0 ≠ Xi < N}. But N has 
infinitely many submodules, it cannot be. Let N have 
only one maximal submodule N1. If N1 contains all 
nonzero proper submodules of N, then (N) cannot be 
complete r-partite graph. Then there exists at least one 
0 ≠ Y < N such that Y ≮ N1. Since (N) is a complete 
r-partite graph, we have a partition {N1, X: 0 ≠ X ≤ N1}, 
{{M1}, , {Mr-1}} where 0 ≠ Mi < N and Mi ≮ N1 for 
i  {1, , r-1}. Since M1 is not maximal and 0 ≠ M1 ≮ 
N1, there exists a non-maximal submodule T1, M1 < T1. 
If we continue in this way, we can find non-maximal 
submodules of N such that M1 < T1 < T2 < T3 <  So 
there exists at least one Tk  {M1, , Mr-1}. Then Tk = 
N1 or Tk = X. But these cannot be. Assume that N has 
at least two maximal submodules N1 and N2. Since 
(N) is a complete r-partite graph, (N) has a partition 
which contains T1 = {N1, X: 0 ≠ X ≤ N1} and T2 = {N2, 
Y: 0 ≠ Y ≤ N2}. If N1  N2 ≠ 0 then N1  N2  T1 and 
N1  N2  T2. But this cannot be. Then N1  N2 = 0, 
and hence N = N1  N2 where N1 and N2 are simple. 
But this is a contradiction.     

Example 3.16. (N) may not be a perfect graph.  (( 
ℤ60)) = 4 and w((ℤ60)) = 3 in the following diagram 
where 30, 20, 15, 12, 10, 6, 5, 4, 3, 2 means that the 
number of elements of submodules of ℤ60.        
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