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Abstract: Unusual response similarity among test takers may occur in 
testing data and be an indicator of potential test fraud (e.g., examinees copy 
responses from other examinees, send text messages or pre-arranged signals 
among themselves for the correct response, item pre-knowledge). One index 
to measure the degree of similarity between two response vectors is M4 
proposed by Maynes (2014). M4 index is based on a generalized trinomial 
distribution and it is computationally very demanding. There is currently no 
accessible tool for practitioners who may want to use M4 in their research 
and practice. The current paper introduces the M4 index and its 
computational details for the dichotomous and nominal item response 
models, provides an R function to compute the probability distribution for 
the generalized trinomial distribution, and then demonstrates the 
computation of the M4 index under the dichotomous and nominal item 
response models using R. 

1. INTRODUCTION 

In an era of high-stakes testing, maintaining the integrity of test scores has become an important 
issue and another aspect of test score validity. Unusual response similarity among test takers is 
a type of irregularity which may occur in testing data and be an indicator of potential test fraud 
such as sharing item responses among students during an exam, coaching of students by a 
teacher or a test proctor during an exam, or item pre-knowledge. In order to identify unusual 
response similarity among examinees, response similarity indices focus on the likelihood of 
agreement between two response vectors under the assumption of independent responding. The 
response indices differ in how they utilize the evidence of agreement and also in the reference 
statistical distribution used for computing the likelihood of observed agreement between two 
response vectors. For instance, while a well-known index developed by van der Linden and 
Sotaridona (2006) uses a generalized binomial distribution to model the number of all matching 
responses, the M4 index (Maynes, 2014) is using a generalized trinomial distribution to model 
the joint distribution of the number of matching correct responses and matching incorrect 
responses. In this paper, I first introduce the computational details of the M4 index as provided 
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by Maynes (2014, 2017), then discuss how it can be computed in R and illustrate its use under 
the dichotomous and nominal item response models.  

2. THE M4 INDEX 

Suppose that 𝑃 and 𝑄 are two disjoint events and 𝑅 = 𝑃′𝑄′, where 𝑃 represents the 
probability of matching correct response, 𝑄 represents the probability of matching incorrect 
response, and 𝑅 represents the probability of nonmatching response between two test takers 
for the ith item. By definition, we know that 𝑅 = 1 − (𝑃 + 𝑄). The probability of observing 
m correct matches and n incorrect matches between two test takers for I items is equal to 

𝑇ூ(𝑚, 𝑛) =   (

ூି

ୀ

ூି

ୀ

− 1)ାିି ቀ
𝑏
𝑚

ቁ ቀ
𝑎
𝑛

ቁ 𝑆ூ;, 

where 𝑆ூ;, = ∑𝑃௨భ
𝑃௨మ

. . . 𝑃௨್
𝑄௩భ

𝑄௩మ
. . . 𝑄௩ೌ

 and summation is extended over all possible pairs 
of disjoint subsets {𝑢ଵ, 𝑢ଶ, . . . , 𝑢} and {𝑣ଵ, 𝑣ଶ, . . . , 𝑣} of the set {1,2,…,I} (Charalambides, 
2005). Maynes (2017) indicated that this quantity may be computed using a recursive formula 
as shown below: 

𝑇ାଵ(𝑚, 𝑛) = 𝑃ାଵ𝑇(𝑚 − 1, 𝑛) + 𝑄ାଵ𝑇(𝑚, 𝑛 − 1) + 𝑅ାଵ𝑇(𝑚, 𝑛) 

with boundary conditions 𝑇(0,0) = 1 and 𝑇(𝑚, 𝑛) = 0. The recursive formula starts with k=0 
and ends with k=I-1. When 𝑇ூ(𝑚, 𝑛) is computed for all possible combinations of m and n, the 
desired tail probability can be computed using a sub-ordering principle. First, the probabilities 
for all bivariate points (𝑢, 𝑣) are added where u is greater than m and v is greater than n. Let 
this quantity be 𝐷,. Then, all values of 𝑇ூ(𝑎, 𝑏) where 𝐷, ≥ 𝐷, are found and summed 
up to obtain the desired tail probability. 

2.1 Calculating the P and Q vectors using Item Response Models 

In order to compute the M4 index, one has to obtain the vectors of probabilities for the 
correct match and incorrect match between two test takers. While these values could be 
empirically derived from a large dataset, they can be obtained based on item response models 
as this is a typical practice for other similar indices in the literature such as 𝜔 (Wollack, 1997) 
and generalized binomial test (van der Linden and Sotaridona, 2006). 

2.2. Dichotomous Item Response Data 

Suppose a researcher or practitioner has dichotomous item response data (e.g., 0/1, 
correct/incorrect, true/false) and wants to compute the M4 index. A variety of dichotomous IRT 
models are available for use depending on which one fits better to the data. The most general 
version of a dichotomous IRT model can be written as 

𝜋(𝑌 = 1|𝜃 , 𝑎, 𝑏 , 𝑐, 𝑑) = 𝑐 + (𝑑 − 𝑐)
𝑒(ఏೕି)

1 + 𝑒(ఏೕି)
, 

where 𝜋(𝑌 = 1|𝜃 , 𝑎, 𝑏, 𝑐, 𝑑) is the probability of correct response for the jth person on the 
ith item given the item and person parameters; 𝑎, 𝑏, 𝑐, and 𝑑 are the discrimination, 
difficulty, guessing, and slipping parameters, respectively, for the ith item; and, 𝜃  is the person 
location parameter for the jth person. These parameters have to be estimated from the item 
response data prior to computing the M4 index. If the 𝑑 parameter is fixed to one for all items, 
the model reduces to a 3-PL IRT model. In addition, if the 𝑐 parameter is also fixed to zero for 
all items, the model reduces to a 2-PL IRT model. In addition, if the 𝑎 parameter is constrained 
to be equal for all items, the model reduces to a 1-PL IRT model. 
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Once the item and person parameters are estimated, the probability of matching correct response 
on the 𝑖th item for two test takers, person 𝑗 and person 𝑠, can be computed as 

𝑃 = 𝜋(𝑌 = 1|𝜃) × 𝜋௦(𝑌 = 1|𝜃௦). 

Similarly, the probability of matching incorrect response on the 𝑖th item for these test takers 
can be computed as 

𝑄 = ൫1 − 𝜋(𝑌 = 1|𝜃)൯ × (1 − 𝜋௦(𝑌 = 1|𝜃௦)). 

Finally, the probability of not matching on the 𝑖th item can simply be computed as 

𝑅 = 1 − (𝑃 + 𝑄). 

2.3. Nominal Response Data 

Suppose that a researcher or practitioner has a multiple-choice test data with multiple response 
alternatives available for each item. One of these response alternatives is the correct response 
(key) and the remaining response alternatives are the incorrect responses (distractors). Note that 
there are a few number of alternative models proposed in the literature for such nominal 
response data (Bock, 1972; Penfield and de la Torre, 2008; Thissen & Steinberg, 1997). One 
can choose any of these models for modeling probabilities. We consider here the original 
Nominal Response Model (NRM; Bock, 1972) as it has been used in the literature for other 
indices and there are already available existing tools in R to reliably estimate the parameters of 
NRM. In NRM, the probability of selecting the 𝑘th response alternative among 𝑚 alternatives 
of the 𝑖th item for the 𝑗th person is written as 

𝜋 =


അೖశഊೖഇೕ

∑ 
അೖశഊೖഇೕ

ೖసభ

 , 

where 𝜁 is the intercept and 𝜆 is the slope parameter for the 𝑘th response alternative of the 
𝑖th item, and 𝜃  is the person location parameter for the jth person. 

Once the item and person parameters are estimated for NRM, the probability of matching 
correct response on the 𝑖th item for two test takers, person 𝑗 and person 𝑠, can be computed as 

𝑃 =  𝜋



ୀଵ

× 𝜋௦ × 𝐼(𝑘 = 𝑟), 

where 𝑟 is the correct response alternative for the 𝑖th item and 𝐼(. ) is an indicator variable that 
equals to 1 if the statement in parentheses is true, 0 otherwise. In a similar way, the probability 
of matching incorrect response on the 𝑖th item for these two test takers can be computed as 

𝑄 =  𝜋



ୀଵ

× 𝜋௦ × 𝐼(𝑘 ≠ 𝑟). 

The probability of not matching on the 𝑖th item can be computed as shown before. 

3. R CODE FOR COMPUTING THE M4 INDEX 

3.1. Computing the generalized trinomial distribution for a given P and Q vectors 

Table 1 shows an R function to compute the joint distribution of matching correct and matching 
incorrect responses using the recursive algorithm. The function requires two vectors as input 𝐏 
and 𝐐. 𝐏 is a vector of probabilities for matching on a correct response and 𝐐 is a vector of 
probabilities for matching on an incorrect response for 𝐼 items. Both vectors have a length of 𝐼. 
The function also requires two numbers 𝑚 and 𝑛, 𝑚 representing the observed number of 
correct matches and 𝑛 is the observed number of incorrect matches between two test takers.  
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Table 1. An R function to compute the generalized trinomial distribution and its tail probability given 
the vector of probabilities for two disjoint events and specified numbers. 

gtd <- function(P,Q,m,n) { 
 
  R <- 1-(P+Q) 
  I=length(P) 
   
  rec <- vector("list",I+1) 
  rec[[1]]=matrix(0,nrow=I+1,ncol=I+1) 
  rec[[1]][1,1] <- 1 
  for(k in 2:(I+1)){ 
    rec[[k]] = R[k-1]*rec[[k-1]]+ 
               rbind(0,P[k-1]*rec[[k-1]])[-(I+2),]+ 
               cbind(0,Q[k-1]*rec[[k-1]])[,-(I+2)] 
  } 
   
  for(k in 1:(I+1)){ rec[[k]]=t(rec[[k]])} 
   
  upper <- matrix(nrow=I+1,ncol=I+1) 
  for(x in 1:(I+1)){ 
    for(y in 1:(I+1)) { 
      upper[x,y] = sum(rec[[I+1]][x:(I+1),y:(I+1)]) 
    } 
  } 
   
  prob.table <- expand.grid(0:I,0:I) 
  colnames(prob.table) <- c("IncorrectMatch","CorrectMatch") 
  prob.table <- prob.table[which(rowSums(prob.table)<=I),] 
  prob.table <- prob.table[order(prob.table[,1]),] 
  prob.table <- cbind(prob.table,0,0,0,0) 
  prob.table[,3] <- I-(rowSums(prob.table[,1:2])) 
  for(i in 1:(nrow(prob.table))){ 
    x=prob.table[i,1] 
    y=prob.table[i,2] 
    prob.table[i,4] <- upper[x+1,y+1] 
    prob.table[i,5] <- rec[[I+1]][x+1,y+1] 
  } 
   
  for(i in 1:(nrow(prob.table))){ 
    r = prob.table[i,4] 
    marked = which(prob.table[,4] <= r) 
    prob.table[i,6] <- sum(prob.table[marked,5]) 
  } 
   
  colnames(prob.table)[3:6] <- c("NonMatch","Upper", 
                                 "Probability","TailProbability") 
  p = prob.table[which(prob.table[,1]==n & prob.table[,2]==m),6] 
  list(prob.table[,-4],p) 
} 

This function returns a list with two elements. The first one is a table including the probabilities 
for the joint distribution of number of correct and incorrect matches (Probability column) and 
tail probabilities (Tail Probability column). The tail probability is the probability of observing 
the number of correct and incorrect matches or more extreme number of matches. The tail 
probability can be compared to an alpha level (e.g., .01) to make a decision about whether or 
not the observed similarity is significantly unusual under the assumption of independent 
responding. 
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Table 2. An example of use for the R function to compute the generalized trinomial distribution and its 
tail probability given the vector of probabilities for two disjoint events and specified numbers. 

P <- c(0.45,0.60,0.30,0.55,0.58,0.42,0.60,0.25)  
Q <- c(0.15,0.20,0.07,0.10,0.12,0.18,0.30,0.05) 
M4 <- gtd(P, Q, m=3,n=2) 
M4 
 [[1]] 
    IncorrectMatch CorrectMatch NonMatch   Probability TailProbability 
 1               0            0        8 0.00014817600   1.00000000000 
 10              0            1        7 0.00229866840   0.99985182400 
 19              0            2        6 0.01383419478   0.99755315560 
 28              0            3        5 0.04290090345   0.98371896082 
 37              0            4        4 0.07560196143   0.88706918856 
 46              0            5        3 0.07769363787   0.52528666715 
 55              0            6        2 0.04534833951   0.21852241329 
 64              0            7        1 0.01366565580   0.05554589926 
 73              0            8        0 0.00162785700   0.00412010397 
 2               1            0        7 0.00084360360   0.94081805737 
 11              1            1        6 0.00964994464   0.93997445377 
 20              1            2        5 0.04325532057   0.93032450913 
 29              1            3        4 0.09890315828   0.81146722713 
 38              1            4        3 0.12439288143   0.71256406885 
 47              1            5        2 0.08552521188   0.36981797220 
 56              1            6        1 0.02949871068   0.11179242607 
 65              1            7        0 0.00393499620   0.01063825410 
 3               2            0        6 0.00161592858   0.58817118742 
 12              2            1        5 0.01406754191   0.58655525884 
 21              2            2        4 0.04720104978   0.57248771693 
 30              2            3        3 0.07777505708   0.44759302928 
 39              2            4        2 0.06577034703   0.28429276032 
 48              2            5        1 0.02674781613   0.08229371539 
 57              2            6        0 0.00408353481   0.01472178891 
 4               3            0        5 0.00147975807   0.17317407378 
 13              3            1        4 0.00975200588   0.17169431571 
 22              3            2        3 0.02374799388   0.16194230983 
 31              3            3        2 0.02640188988   0.13819431595 
 40              3            4        1 0.01320810993   0.04114389883 
 49              3            5        0 0.00237669012   0.00670325790 
 5               4            0        4 0.00073634463   0.04188024346 
 14              4            1        3 0.00354190993   0.02793578890 
 23              4            2        2 0.00583529943   0.02439387897 
 32              4            3        1 0.00383679063   0.01855857954 
 41              4            4        0 0.00084883518   0.00116303490 
 6               5            0        3 0.00020646381   0.00432656778 
 15              5            1        2 0.00067335552   0.00249224697 
 24              5            2        1 0.00065585655   0.00181889145 
 33              5            3        0 0.00019058868   0.00031419972 
 7               6            0        2 0.00003170475   0.00012361104 
 16              6            1        1 0.00006111576   0.00009190629 
 25              6            2        0 0.00002628801   0.00003079053 
 8               7            0        1 0.00000239652   0.00000450252 
 17              7            1        0 0.00000203796   0.00000210600 
 9               8            0        0 0.00000006804   0.00000006804 
  
 [[2]] 
 [1] 0.4476 
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Suppose that two test takers responded to eight items and we know the probability of matching 
correct and matching incorrect responses for each item (𝐏 and 𝐐 vectors). Also, suppose that 
these two test takers have the same correct answer for three items and the same incorrect 
response for two items. How likely this outcome would be? Table 2 presents the results obtained 
from the R function provided in Table 1 for this specific scenario. 

The Table 2 indicates that observing three correct and two incorrect matches for a pair of test 
takers with the given 𝐏 and 𝐐 is 0.0778. For the same pair, observing three correct and two 
incorrect matches or more extreme similarity is 0.4476. If we use a type-I error rate of 0.01, 
then we can decide that the response similarity between these two test takers is not significantly 
unusual because the tail probability is not smaller than .01. 

3.2. Computing M4 for Dichotomous Data 

For a given dichotomous dataset, the steps to compute the M4 statistics between two test takers 
are below: 

1. Decision about the dichotomous IRT model to use. Researchers can choose a particular 
model based on their own judgement, or can fit all possible models and then empirically 
decide the best fitting model. The researchers are strongly encouraged to evaluate the 
plausibility of model assumptions such as unidimensionality and local independent 
before proceeding. 

2. Estimation of item and person parameters based on the chosen dichotomous IRT model 
in Step 1. 

3. Computation of the P and Q vectors for two test takers given their estimated person 
parameters and the estimated item parameters. 

4. Computation of the tail probability for the observed number of correct and incorrect 
matches between these two test takers using the gtd() function introduced above. 

For demonstration, I will use a dichotomous dataset that is publicly available on the following 
link https://itemanalysis.com/example-data-files/. This dataset includes binary responses to 56 
items for 6,000 test takers. Table 3 and Table 4 shows the code to import the dataset and then 
fitting the 1-, 2-, and 3-PL IRT models using the mirt package (Chalmers, 2012) to decide the 
best fitting model. Based on the model fit indices, the best fitting model is the 3-PL IRT model.  

Table 3. R code to import the dataset and display the first few rows 

setwd("Path to file")  # Here you put the path to the folder for the dataset 
 
exam1 <- read.csv("exam1_scored.txt") # Import the dataset 
 
dim(exam1)     # Ask R to show the dimensions of the dataset 
 
[1] 6000   56   # This indicates there are 6,000 rows and 56 columns 
 
 
head(exam1,3)  # Ask R to display the first three rows of the dataset 
 
   item1 item2 item3 item4 item5 item6 item7 item8 item9 item10 item11 
 1     1     0     0     0     1     1     1     1     0      1      1 
 2     1     0     1     0     1     1     0     1     1      1      1 
 3     1     0     0     1     0     0     0     1     1      1      1 
   item12 item13 item14 item15 item16 item17 item18 item19 item20 item21 
 1      1      1      1      1      1      1      1      1      0      0 
 2      1      1      1      1      1      0      0      1      1      0 
 3      1      1      0      1      1      0      0      1      1      0 
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Table 3. Continued 

   item22 item23 item24 item25 item26 item27 item28 item29 item30 item31 
 1      1      0      1      1      1      0      0      1      0      0 
 2      1      1      1      0      1      0      1      0      0      1 
 3      0      1      1      0      1      0      0      0      1      0 
   item32 item33 item34 item35 item36 item37 item38 item39 item40 item41 
 1      1      1      1      1      1      0      1      1      1      1 
 2      0      1      1      0      0      1      0      0      1      0 
 3      1      1      0      0      1      0      1      0      1      1 
   item42 item43 item44 item45 item46 item47 item48 item49 item50 item51 
 1      1      1      0      1      0      0      0      0      0      1 
 2      0      1      0      0      0      0      0      0      0      1 
 3      0      1      0      0      1      1      0      1      1      1 
   item52 item53 item54 item55 item56 
 1      0      1      0      0      1 
 2      0      1      1      1      0 
 3      1      1      0      1      1 

 

Table 4. R code to fit dichotomous IRT models, to choose the best fitting model, and to estimate item 
and person parameters for the best fitting model 

 
install.packages("mirt") # Install the mirt package into your computer 
require(mirt)            # Load the library to the R session 
 
# Fit 1PL model 
 
  mod <- 'F = 1-56 
          CONSTRAIN = (1-56,a1)'  
     
    onePL <- mirt(data  = exam1, model = mod, itemtype="2PL",SE=TRUE) 
     
# Fit 2PL  model 
 
  twoPL <- mirt(data  = exam1, model = 1,itemtype="2PL",SE=TRUE) 
     
# Fit 3PL model 
   
  threePL <- mirt(data = exam1, model = 1,itemtype="3PL",SE=TRUE) 
 
# Compare the model fit 
 
  anova(onePL,twoPL)       # 1PL vs 2PL 
  anova(twoPL,threePL)     # 2PL vs 3PL 
 # 3 PL fits best.  
 
# Item parameters for the 3PL model 
 
    ipar <- coef(threePL,IRTpars=TRUE,simplify=TRUE)$items[,1:3] 
  head(ipar,3) # display the item parameters for the first 3 rows 
 
            a        b        g 
 item1 1.0503 -0.37464 0.306052 
 item2 0.6379 -0.02992 0.050127 
 item3 1.5072 -1.27318 0.064474 
# Estimate the ML theta estimates 
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Table 4. Continued 

    mle <- fscores(threePL,method="ML") # This generates a 6000 x 1 matrix 
 
    head(mle,3)       # display the ML theta estimates for the first 3 rows 
            F1 
 [1,]  0.32301 
 [2,] -0.07246 
 [3,]  0.25915 
 

Then, I save the estimated item parameters for the 3PL model into an object (ipar) and estimate 
the maximum likelihood person parameter estimates. Given these estimated item and person 
parameters based on the 3-PL model, suppose that we want to compute the M4 response 
similarity statistic for two test takers, subjects 1035 and 1567. We need to compute P and Q 
vectors. In order to compute the P and Q vectors, we have to compute the probability of correct 
response for each item for these two test takers using the estimated item parameters and their 
estimated person parameters. Table 5 shows the R code to compute the P and Q vectors for 
individuals 1035 and 1567 based on the estimated person parameters and item parameters. 

These two test takers are matching on the correct response for 40 items and matching on the 
incorrect response for three items. Given their joint probability vectors for the correct and 
incorrect responses across all items (P and Q vectors), Table 6 shows how to use the gtd() 
function to compute the probability for the degree of the observed similarity or more extreme 
similarity between these two test takers. The tail probability is 0.557. This indicates that the 
observed similarity between these two test takers are not very unlikely. Therefore, we can 
conclude that there is no unusual degree of response similarity between the two test takers. It 
may be sometimes useful to visually present the results. Table 7 shows the R code to create a 
contour plot which was also discussed in Maynes (2017). In this contour plot, the boundary 
lines represent the likelihood of .01, .001, .0001, and .0001 for the number of correct and 
incorrect matches between two response vectors. In addition, the observed number of correct 
and incorrect matches is marked in the plot. One can easily demonstrate how likely the observed 
similarity is between two response vectors using this plot. 
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Table 5. R code to compute the P and Q vectors for individuals 1035 and 1567 based on the estimated 
person parameters and item parameters 

 # Estimated theta for Person 1035 and person 1567 
 
    th1 <- mle[1035,1] 
 
    th1 
     F1  
  1.415 
 
    th2 <- mle[1567,1] 
 
    th2 
     F1  
  1.577 
 
 # A small function to compute the probability of correct response 
 # given the item and person parameters for the 3-PL model 
 
 
     
    prob <- function(ip,th){ 
      # ip - n x 3 item parameter matrix. Columns are a, b, g respectively 
      # th - a numeric value 
       
      ip[,3]+((1-ip[,3])*(1/(1+exp(-ip[,1]*(th-ip[,2]))))) 
    } 
     
 
 # Probability of correct response across items for the two test takers 
     
    P1 <- prob(ip=ipar,th=th1)   # Test taker 1035 
 
    P1 
   item1  item2  item3  item4  item5  item6  item7  item8  item9 item10  
  0.9081 0.7296 0.9840 0.7483 0.8505 0.9322 0.7347 0.9950 0.7968 0.9924  
  item11 item12 item13 item14 item15 item16 item17 item18 item19 item20  
  0.9939 0.7983 0.9855 0.7202 0.9288 0.7388 0.6960 0.7229 0.9820 0.8225  
  item21 item22 item23 item24 item25 item26 item27 item28 item29 item30  
  0.8964 0.8104 0.7232 0.9633 0.8764 0.9615 0.3099 0.6112 0.7061 0.7084  
  item31 item32 item33 item34 item35 item36 item37 item38 item39 item40  
  0.5605 0.5130 0.9455 0.8687 0.9789 0.9653 0.8835 0.6294 0.5555 0.8618  
  item41 item42 item43 item44 item45 item46 item47 item48 item49 item50  
  0.9160 0.7597 0.8911 0.7167 0.9202 0.9097 0.8501 0.8702 0.7808 0.9943  
  item51 item52 item53 item54 item55 item56  
  0.9947 0.8833 0.8771 0.5813 0.7557 0.9771 
    P2 <- prob(ip=ipar,th=th2)   # Test taker 1567 
    P2  
   item1  item2  item3  item4  item5  item6  item7  item8  item9 item10  
  0.9208 0.7491 0.9874 0.7646 0.8650 0.9421 0.7658 0.9963 0.8196 0.9944  
  item11 item12 item13 item14 item15 item16 item17 item18 item19 item20  
  0.9955 0.8186 0.9889 0.7465 0.9420 0.7773 0.7228 0.7476 0.9874 0.8556  
  item21 item22 item23 item24 item25 item26 item27 item28 item29 item30  
  0.9173 0.8493 0.7807 0.9750 0.9040 0.9686 0.3673 0.6409 0.7358 0.7469  
  item31 item32 item33 item34 item35 item36 item37 item38 item39 item40  
  0.5960 0.5637 0.9583 0.8986 0.9857 0.9754 0.9059 0.6572 0.5921 0.8797  
  item41 item42 item43 item44 item45 item46 item47 item48 item49 item50  
  0.9302 0.7822 0.9076 0.7676 0.9413 0.9284 0.8868 0.9025 0.8103 0.9968  
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Table 5. Continued 

 
  item51 item52 item53 item54 item55 item56  
  0.9969 0.9092 0.9061 0.6091 0.7960 0.9841 
# Joint probability of correct response across items (P vector) 
 
    P <- P1*P2 
    P 
   item1  item2  item3  item4  item5  item6  item7  item8  item9 item10  
  0.8362 0.5466 0.9716 0.5722 0.7357 0.8782 0.5626 0.9914 0.6530 0.9868  
  item11 item12 item13 item14 item15 item16 item17 item18 item19 item20  
  0.9894 0.6535 0.9746 0.5376 0.8750 0.5743 0.5031 0.5405 0.9696 0.7037  
  item21 item22 item23 item24 item25 item26 item27 item28 item29 item30  
  0.8223 0.6882 0.5647 0.9392 0.7923 0.9313 0.1138 0.3918 0.5195 0.5292  
  item31 item32 item33 item34 item35 item36 item37 item38 item39 item40  
  0.3341 0.2892 0.9061 0.7806 0.9649 0.9416 0.8003 0.4137 0.3290 0.7581  
  item41 item42 item43 item44 item45 item46 item47 item48 item49 item50  
  0.8521 0.5943 0.8088 0.5501 0.8662 0.8446 0.7539 0.7854 0.6326 0.9911  
  item51 item52 item53 item54 item55 item56  
  0.9916 0.8032 0.7947 0.3541 0.6015 0.9616 
 
# Joint probability of incorrect response across items (Q vector) 
 
    Q <- (1-P1)*(1-P2) 
    Q 
       item1      item2      item3      item4      item5      item6  
  0.00727836 0.06782913 0.00020138 0.05923844 0.02017187 0.00392514  
       item7      item8      item9     item10     item11     item12  
  0.06213472 0.00001822 0.03665862 0.00004270 0.00002744 0.03658889  
      item13     item14     item15     item16     item17     item18  
  0.00016096 0.07092701 0.00412716 0.05816974 0.08425009 0.06993389  
      item19     item20     item21     item22     item23     item24  
  0.00022726 0.02563475 0.00855995 0.02857902 0.06068258 0.00091665  
      item25     item26     item27     item28     item29     item30  
  0.01186580 0.00120889 0.43662558 0.13959138 0.07765921 0.07378293  
      item31     item32     item33     item34     item35     item36  
  0.17755613 0.21249479 0.00227399 0.01332128 0.00030215 0.00085127  
      item37     item38     item39     item40     item41     item42  
  0.01096429 0.12702758 0.18128293 0.01663444 0.00586350 0.05232573  
      item43     item44     item45     item46     item47     item48  
  0.01005836 0.06584107 0.00468136 0.00646589 0.01696561 0.01265535  
      item49     item50     item51     item52     item53     item54  
  0.04159484 0.00001832 0.00001658 0.01059035 0.01153943 0.16365438  
      item55     item56  
  0.04983442 0.00036321 
 # Observed number of correct matches between the two test takers 
     
    m = sum (exam1[1035,]==1 & exam1[1567,]==1) 
    m 
  [1] 40 
 
 # Observed number of incorrect matches between the two test takers 
     
    n = sum (exam1[1035,]==0 & exam1[1567,]==0) 
    n 
  [1] 3 
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Table 6. R code to compute the M4 response similarity index between examinees 1035 and 1567 based 
on the P and Q vectors computed from dichotomous item response data 

 
  M4 <- gtd(P=P,Q=Q,m=m,n=n) 
   
  M4[[1]] # Probabilities for the trinomial distribution 
 
       IncorrectMatch CorrectMatch NonMatch Probability TailProbability 
 
  1                 0            0       56   3.278e-46       1.000e+00 
  58                0            1       55   2.769e-43       1.000e+00 
  115               0            2       54   1.070e-40       1.000e+00 
  ……………………………………………………………………………………………………………………………………………………………………………………… 
  3136              0           55        1   5.728e-09       4.383e-08 
  3193              0           56        0   2.057e-10       7.333e-10 
  2                 1            0       55   2.259e-45       9.985e-01 
  59                1            1       54   1.904e-42       9.985e-01 
  116               1            2       53   7.336e-40       9.985e-01 
  ……………………………………………………………………………………………………………………………………………………………………………………… 
  3080              1           54        1   4.626e-08       3.585e-07 
  3137              1           55        0   1.814e-09       8.515e-09 
  3                 2            0       54   7.426e-45       9.685e-01 
  60                2            1       53   6.242e-42       9.685e-01 
  117               2            2       52   2.399e-39       9.685e-01 
  ……………………………………………………………………………………………………………………………………………………………………………………… 
  3024              2           53        1   1.505e-07       9.657e-07 
  3081              2           54        0   6.304e-09       3.612e-08 
  ……………………………………………………………………………………………………………………………………………………………………………………… 
  54               53            0        3  2.169e-106      6.136e-101 
  111              53            1        2  4.364e-104      6.136e-101 
  168              53            2        1  2.826e-102      6.131e-101 
  225              53            3        0  5.848e-101      5.849e-101 
  55               54            0        2  2.227e-109      1.082e-105 
  112              54            1        1  3.108e-107      1.082e-105 
  169              54            2        0  1.051e-105      1.051e-105 
  56               55            0        1  1.391e-112      1.021e-110 
  113              55            1        0  1.007e-110      1.007e-110 
  57               56            0        0  3.968e-116      3.968e-116 
 
  M4[[2]] # Tail Probability 
 
  [1] 0.5571 
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Table 7. R code to create a contour plot for a visual representation of the result provided by the M4 
index 

install.packages("lattice") 
 
library(lattice) 
 
obs <- c(40,3) 
 
contourplot(TailProbability ~ CorrectMatch + IncorrectMatch, 
            data=M4[[1]], 
            labels=FALSE, 
            xlab="Number of Correct Matches", 
            ylab="Number of Incorrect Matches", 
            panel=function(at,lty,...){ 
              panel.contourplot(at = .00001, lty = 1,...)  
              panel.contourplot(at = .0001, lty = 2,...)  
              panel.contourplot(at = .001, lty = 3,...)  
              panel.contourplot(at = .01, lty = 4,...) 
              panel.points(x=obs[1],y=obs[2], pch=15, cex=1) 
             }, 
            key=list(corner=c(1,.9),lines=list(lty=c(1,2,3)), 
            text=list(c("p=0.00001","p=0.0001","p=0.001","p=0.01"))), 
            scales=list(y=list(at=seq(0,56,4)),x=list(at=seq(0,56,4))) 
           

 

Figure 1. Contour plot for the joint probability distribution of correct and incorrect matches 
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3.3. Computing M4 for Nominal Response Data 

The steps to compute the M4 index for nominal response data are identical to the dichotomous 
dataset. In particular, we are interested in multiple-choice test data where one of the response 
options is considered as the correct response (key) and other response options are considered 
as the incorrect responses (distractors). As mentioned before, there are a few number of 
alternative models proposed in the literature for multiple-choice test data (Bock, 1972; Penfield 
and de la Torre, 2008; Thissen & Steinberg, 1997). One can choose any of these models for 
modeling probabilities. We consider here the original Nominal Response Model (NRM; Bock, 
1972). For this section, I will use the nominal version of the dichotomous dataset used before. 
We will also need a vector of correct response option for these 56 items. In order to fit NRM in 
the mirt package, we first transform these nominal A, B, C, and D response categories in the 
dataset to numbers 1, 2, 3, and 4, respectively. Then, we also need to recode data such that the 
correct response option is always assigned to the highest number possible (e.g., four in this 
case). Table 8 shows a compilation of R code to prepare the dataset for the data analysis. 

Table 8. R code to prepare nominal response data for data analysis 

# Import dataset 
 
 exam1_nom <- read.csv("exam1_nominal.txt") 
  
 dim(exam1_nom) 
 [1] 6000   56 
  
 head(exam1_nom,3) # display the first 3 rows of the dataset 
 
   item1 item2 item3 item4 item5 item6 item7 item8 item9 item10 item11 
 1     A     A     D     D     C     B     C     D     D      D      C 
 2     A     B     C     C     C     B     A     D     A      D      C 
 3     A     C     D     B     D     D     D     D     A      D      C 
   item12 item13 item14 item15 item16 item17 item18 item19 item20 item21 
 1      A      D      C      A      B      D      B      A      B      B 
 2      A      D      C      A      B      A      D      A      C      B 
 3      A      D      D      A      B      A      A      A      C      B 
   item22 item23 item24 item25 item26 item27 item28 item29 item30 item31 
 1      A      D      B      C      B      A      C      A      C      A 
 2      A      C      B      D      B      C      A      D      B      C 
 3      C      C      B      B      B      B      D      D      A      A 
   item32 item33 item34 item35 item36 item37 item38 item39 item40 item41 
 1      B      B      A      B      D      C      A      D      C      D 
 2      A      B      A      D      B      D      B      C      C      A 
 3      B      B      C      C      D      B      A      C      C      D 
   item42 item43 item44 item45 item46 item47 item48 item49 item50 item51 
 1      A      B      C      C      C      D      B      D      D      D 
 2      D      B      C      A      B      A      D      A      D      D 
 3      D      B      D      A      D      B      D      C      B      D 
   item52 item53 item54 item55 item56 
 1      D      C      A      D      D 
 2      C      C      B      A      C 
 3      A      C      C      A      D 
 
# Key response vector (correct responses for 56 items) 
  
 key <- c("A","D","C","B","C","B","C","D","A","D","C","A","D","C", 
         "A","B","D","B","A","C","A","A","C","B","C","B","D","A", 
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Table 8. Continued 

         "A","A","C","B","B","A","B","D","D","A","D","C","D","A", 
         "B","B","C","D","B","C","C","B","D","A","C","B","A","D") 
 
 
# Recode A,B,C,D to 1,2,3,4 
  
 for(i in 1:ncol(exam1_nom)){ 
    
   exam1_nom[,i]=ifelse(exam1_nom[,i]=="A",1, 
                  ifelse(exam1_nom[,i]=="B",2, 
                   ifelse(exam1_nom[,i]=="C",3, 
                    ifelse(exam1_nom[,i]=="D",4,NA)))) 
 } 
  
# Recode the vector of key responses 
 
 new.key <- ifelse(key=="A",1, 
                  ifelse(key=="B",2, 
                   ifelse(key=="C",3, 
                    ifelse(key=="D",4,NA)))) 
  
# Recode the data so that the correct option is always scored as 4 
 
for(i in 1:ncol(exam1_nom)) { 
   
  hold1 <- which(exam1_nom[,i]==new.key[i]) 
  hold2 <- which(exam1_nom[,i]==4) 
   
  exam1_nom[hold1,i]= 4 
  exam1_nom[hold2,i]= new.key[i] 
} 
 
head(exam1_nom,3) # display the first 3 rows of recoded data 
 
   item1 item2 item3 item4 item5 item6 item7 item8 item9 item10 item11 
 1     4     1     3     2     4     4     4     4     1      4      4 
 2     4     2     4     3     4     4     1     4     4      4      4 
 3     4     3     3     4     3     2     3     4     4      4      4 
   item12 item13 item14 item15 item16 item17 item18 item19 item20 item21 
 1      4      4      4      4      4      4      4      4      2      2 
 2      4      4      4      4      4      1      2      4      4      2 
 3      4      4      3      4      4      1      1      4      4      2 
   item22 item23 item24 item25 item26 item27 item28 item29 item30 item31 
 1      4      3      4      4      4      1      3      4      3      1 
 2      4      4      4      3      4      3      4      1      2      4 
 3      3      4      4      2      4      2      1      1      4      1 
   item32 item33 item34 item35 item36 item37 item38 item39 item40 item41 
 1      4      4      4      4      4      3      4      4      4      4 
 2      1      4      4      2      2      4      2      3      4      1 
 3      4      4      3      3      4      2      4      3      4      4 
   item42 item43 item44 item45 item46 item47 item48 item49 item50 item51 
 1      4      4      3      4      3      2      2      3      2      4 
 2      1      4      3      1      2      1      3      1      2      4 
 3      1      4      2      1      4      4      3      4      4      4 
   item52 item53 item54 item55 item56 
 1      1      4      1      1      4 
 2      3      4      4      4      3 
 3      4      4      3      4      4 
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Once the dataset is prepared, we fit the nominal response model using the mirt package and 
extract the item parameters. In the nominal response model, each response category has one 
slope and one intercept parameter. Table 9 shows the R code to fit the model and estimate the 
item and person parameters. As it is seen, the item parameter matrix has eight columns with the 
first four columns (labeled as a1, a2, a3, and a4) are response category slope parameters and 
the last four columns (labeled as c1, c2, c3, and c4) are response category intercept parameters. 
Once these item parameters are obtained, we also estimate a person parameter for each 
individual based on maximum likelihood estimation. 

Table 9. R code to fit the nominal response model and estimate item and person parameters 

 
# Fit the Nominal Response Model 
 
nrm <- mirt(exam1_nom, 1, 'nominal') 
 
# Item parameter estimates 
 
ipar.nrm <- coef(nrm, simplify=T, IRTpars = TRUE)$item 
 
head(ipar.nrm,3) # display the first 3 rows of item parameter matrix 
 
             a1       a2       a3     a4         c1      c2       c3     c4 
 item1  0.29203 -0.36571 -0.69963 0.7733  0.0001801 -0.7811 -0.95435 1.7352 
 item2  0.14899 -0.17617 -0.43625 0.4634 -0.3189671 -0.3362 -0.29905 0.9542 
 item3 -0.71860 -0.45263 -0.17098 1.3422 -1.3477243 -0.8299 -0.37141 2.5490 
 
# Person parameter estimates 
 
theta.ML <- fscores(nrm,method="ML") 
 
head(theta.ML,3) # display the first 3 rows of the person parameter matrix 
            F1 
 [1,]  0.21598 
 [2,] -0.32331 
 [3,] -0.05163 
 

In order to compute the P and Q vectors based on nominal response data, we first need to create 
a function to compute the probability of selecting each response category on each item for a 
person given the nominal response model item parameter and the person parameter estimates. 
The R code in Table 10 takes the nominal response model estimated item parameter matrix 
obtained from the mirt package and the person parameter estimates for an individual as inputs 
and returns a matrix of probabilities for each response option on each item for the individual. 
For instance, we can see that the model predicted probabilities of choosing response categories 
1, 2, 3, and 4 (correct response) for subject 1035 on the first item are .071, .011, .005, and .913, 
respectively. Similarly, the model probabilities of choosing response categories 1, 2, 3, and 4 
(correct response) for subject 1567 on the first item are .050, .004, .002, and .944. Once the 
probability matrix for each subject is obtained, then the P vector, joint probability of matching 
on the correct response for each item, and Q vector, joint probability of matching on an incorrect 
response for each item, are computed. For instance, the probability of matching on the response 
category 4 (correct response) for subject 1035 and subject 1567 would be equal to 0.913*0.944 
= 0.861 and the probability of matching on the response category 1, 2, or 3 would be 
(0.071*0.050 + 0.011*0.004 + 0.005*0.002) = 0.004. You can see at the end of Table 10 that 
we do this computation for each item and create the P and Q vectors. 
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After we obtain the P and Q vectors, we can now compute the M4 index for the same two test 
takers 1035 and 1567 using the nominal response data. Table 11 shows the R code to run gtd() 
function again taking the P and Q vectors, observed number of matches on correct responses 
(m), and observed number matches on incorrect responses (n) as inputs, and returns the 
generalized trinomial distribution for the number of correct and incorrect matches for every 
possible outcome. Also, the function returns the tail probability for observing more extreme 
similarity between two test takers. The tail probability is 0.9378 and can be compared to a 
conventional alpha level (e.g., 0.01) to make a decision about the degree of unusual similarity. 

4. FINAL REMARKS 
A very nice theoretical introduction and discussion of the M4 index have been provided by 
Maynes (2017); however, there has not been an accessible tool to compute the M4 index for 
other practitioners and researchers in the field of educational testing. The M4 index is a 
computationally demanding method. Its computation requires recursive algorithms that may 
not very easy to understand and implement. In this paper, I introduced an R function to compute 
the probabilities of the generalized trinomial distribution for two disjoint events, and 
demonstrated how this function can be used along with other R item response theory packages 
(e.g., mirt) to compute the M4 index under the dichotomous and nominal item response models. 
The availability of an open source computational tool will help the practitioners and the 
consumers of this index understand the nature of the M4 index better and will also help 
researchers conduct deeper investigations in the future about the properties of the M4 index 
under different conditions with real and simulated datasets. 

Table 10. R code to compute the P and Q vectors based on nominal response dataset for individuals 
1035 and 1567 based on the estimated person parameters and item parameters 

# An internal function to compute the probability of choosing each response  
# category of each item given the item parameter matrix and a person  
# parameter estimate 
 
irtprob <- function(th, item.param) { 
    

# Inputs: 
 

       # item.param - n x 4 item parameter matrix.  
         # First four columns are slopes, and the last four columns 
are  

  # intercepts  
 
# th - ability - a numeric value 

    
   n.opt = ncol(item.param)/2 
   prob <- matrix(nrow = nrow(item.param), ncol = ncol(item.param)/2) 
     for (j in 1:ncol(prob)) { 
             prob[,j] = exp((item.param[, j] * th) + item.param[,j + 
n.opt]) 
     }  
   prob <- prob/rowSums(prob) 
   prob 
  } 

 
# Estimated theta for Person 1035 and person 1567 based on nominal response  
# model 
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Table 10. Continued 

 
    th1 <- theta.ML[1035,1] 
 
    th1 
    F1  
 1.692 
 
    th2 <- theta.ML[1567,1] 
    th2 
    F1  
 2.514 
 
 # Probability matrices. These have 56 rows, each row is representing an 
item 
 # They have four columns, each column is representing a response category 
     
    P1 <- irtprob(item.param=ipar.nrm,th=th1)   # Test taker 1035 
    P1 
             [,1]      [,2]      [,3]   [,4] 
  [1,] 0.07131223 0.0107270 0.0051265 0.9128 
  [2,] 0.12456912 0.0706226 0.0472016 0.7576 
  ……………………………………………………………………………………………………………. 
 [55,] 0.15651175 0.0552107 0.0473266 0.7410 
 [56,] 0.00444109 0.0067377 0.0093141 0.9795 
    P2 <- irtprob(item.param=ipar.nrm,th=th2)   # Test taker 1567 
    P2  
              [,1]      [,2]       [,3]   [,4] 
  [1,] 0.049684924 0.0043540 0.00158164 0.9444 
  [2,] 0.104793552 0.0454847 0.02455257 0.8252 
  ……………………………………………………………………………………………………………… 
 [55,] 0.102024390 0.0296282 0.02506444 0.8433 
 [56,] 0.001038142 0.0017010 0.00266656 0.9946 
 
 # Joint probability of correct and incorrect responses across items  
 #(P and Q vector) 
     
     # Note that in this recoded dataset used to fit the model, 
     # we re-coded the correct response as 4 for all items 
     # So, 1, 2, and 3 are incorrect responses. 
     
      P <- P1[,4]*P2[,4] 
     
      Q <- rowSums(P1[,1:3]*P2[,1:3]) 
    
 # Observed number of correct matches between the two test takers 
     
    m  <- sum((exam1_nom[1035,]==exam1_nom[1567,] &  
               exam1_nom[1035,]==4)*1,na.rm=TRUE) 
     
 # Observed number of incorrect matches between the two test takers 
     
    n  <- sum((exam1_nom[1035,]==exam1_nom[1567,] &  
               exam1_nom[1035,]!=4)*1,na.rm=TRUE) 
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Table 11. R code to compute the M4 response similarity index between examinees 1035 and 1567 based 
on the P and Q vectors computed from nominal response data 

 
  M4 <- gtd(P=P,Q=Q,m=m,n=n) 
   
  M4[[1]] # Probabilities for the trinomial distribution 
 
       IncorrectMatch CorrectMatch NonMatch Probability TailProbability 
  1                 0            0       56   1.251e-50       1.000e+00 
  58                0            1       55   2.847e-47       1.000e+00 
  115               0            2       54   2.717e-44       1.000e+00 
  ……………………………………………………………………………………………………………………………………………………………………………………… 
  3136              0           55        1   5.428e-08       2.222e-07 
  3193              0           56        0   1.836e-09       8.750e-09 
  2                 1            0       55   3.301e-50       9.034e-01 
  59                1            1       54   7.505e-47       9.034e-01 
  116               1            2       53   7.153e-44       9.034e-01 
  ……………………………………………………………………………………………………………………………………………………………………………………… 
  3080              1           54        1   1.661e-07       9.390e-07 
  3137              1           55        0   6.320e-09       2.739e-08 
  3                 2            0       54   4.188e-50       5.360e-01 
  60                2            1       53   9.512e-47       5.360e-01 
  117               2            2       52   9.054e-44       5.360e-01 
  ……………………………………………………………………………………………………………………………………………………………………………………… 
  3024              2           53        1   2.111e-07       1.202e-06 
  3081              2           54        0   8.794e-09       5.272e-08 
  4                 3            0       53   3.405e-50       2.439e-01 
  61                3            1       52   7.727e-47       2.439e-01 
  118               3            2       51   7.345e-44       2.439e-01 
  ……………………………………………………………………………………………………………………………………………………………………………………… 
  2968              3           52        1   1.538e-07       7.729e-07 
  3025              3           53        0   6.912e-09       3.431e-08 
  ……………………………………………………………………………………………………………………………………………………………………………………… 
  56               55            0        1  3.362e-144      1.259e-141 
  113              55            1        0  1.256e-141      1.256e-141 
  57               56            0        0  9.791e-149      9.791e-149 
   
  M4[[2]] # Tail Probability 
  [1] 0.9378 
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