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Abstract

In this study, the residuals in time series analysis, which were classi-
fied in four different classes as ”conditional residuals”, ”unconditional
residuals”, ”innovation” and ”normalized residuals”, are calculated by
a simulation study for the ARMA model under certain parameter values
for different numbers of observation and their conditions in diagnostic
checking are examined using the test statistic which belongs to Ljung
Box.
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1. Introduction

Box and Jenkins [2] worked on building and forecasting time series models and
found out the method which is called Box-Jenkins Modelling Process in time series
analysis. This approach has been improved by many studies for approximately
forty years. Lutkepohl [8], Box et al. [3], Brockwell and Davis [4] and Wei [12]
have popular text books about this subject. One of the most important points in
the process of analyzing in time series is diagnostic checking. It can be determined
which Box-Jenkins model is suitable for time series data in two ways. The first
option is the examining of ACF and PACF plots of the time series. The second
option tests the (H0) null hypothesis where the autocorrelations of residuals are
equal to zero in lag m. [1]. Thus, residual values play a significant role in diagnostic
checking in time series models. Knowing the general structure of the residuals
used in diagnostic checking is essential in order to apply this idea in practical
applications effectively [9].

There are very little amount of study has been done about the residuals in lit-
erature. The residuals in time series analysis are classified in four different classes
as, ”conditional residuals”, ”unconditional residuals”, ”innovations” and ”normal-
ized residuals” in Mauricio [9]. Mauricio showed that when the considered model
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contains moving average roots near the unit circle and the number of observation
is small, the unconditional residuals and normalized residuals give different deci-
sions in diagnostic checking. In this study, the residuals in time series analysis,
which were classified in 4 different classes as ”conditional residuals”, ”uncondi-
tional residuals”, ”innovation” and ”normalized residuals”, are calculated by a
simulation study for the ARMA(1, 1) model under certain parameter values for
different numbers of observation and their conditions in diagnostic checking are
examined using the test statistic which belongs to Ljung-Box.

The rest of this article is organized as follows. In Section 2, a description of
the ARMA(p, q) models used for modeling the time series and the Ljung Box
test statistic used for diagnostic checking for the time series models are presented.
Section 3 gives the details of the residual types adopted by Mauricio. A simulation
study results are given for different lags, number of observations and parameter
values for ARMA(1, 1) model and the different decisions in diagnostic checking are
given for the resudial types in the realization study in Section 4. Finally, Section
5 concludes this research.

2. AUTOREGRESSIVE AND MOVING AVERAGE (ARMA)
MODEL AND MODEL DIAGNOSTIG CHECKING

Autoregressive and moving average (ARMA) model is used in modeling sta-
tionary time series. The mentioned model is a combination of AR and MA models.
This model is expressed with a certain number of values preceding time and resid-
ual series of data. If the model is made up of a combination of AR and MA model
with p and q degrees respectively, ARMA model is symbolized as ARMA(p, q)

and theoretically written as φ(B)W̃t = θ(b)At, where,

φ(B) = 1− φ1(B)− φ2(B)2 − ...− φp(B)p

θ(B) = 1− θ1(B)− θ2(B)2 − ...− θp(B)p

Invertibility and stationarity conditions for the model are, the roots of φ(B) = 0
and θ(B) = 0 be in the unit circle. ARMA(1, 1) model is written theoretically as,

W̃ = φ1W̃ +At − θ1At−1 or (1− φ1B)W̃t = (1− θ1B)At

Here, the invertibility and stationarity conditions are possible in −1 < φ1 < 1
and −1 < θ1 < 1 (Box et al., [3], Wei citeref:Wei). As mentioned above one of
the approaches for diagnostic checking is using of test statistic which is based on
residuals’ sample autocorrelation functions. The null and alternative hypothesis
for the test statistics as below:{

H0 : Model is appropriate (ρ1 = ρ2 = ... = ρk = 0)
H1 : Model is inappropriate

(ρi: Autocorrelation coefficients, i = 1, 2, . . . , k).
In 1970, Box-Pierce derived the following QBP statistic having chi square distri-

bution with approximatem degree of freedom for diagnostic checking citeref:BoxP.

(2.1) QBP = n

m∑
k=1

r2
k, k = 1, ...,m



Where n, number of observations, rk, residuals’ sample autocorrelation coef-
ficients and m is number of lags. Ljung and Box [6] suggested to use the QLB
statistic as below,

(2.2) QLB = n(n+ 2)

m∑
k=1

r2
k/(n− k)

The autocorrelation coefficient of the residuals, which is also used for deriving the
Ljung-Box test statistic expressed in the equation 2.2 above is used.

(2.3) rk =

n∑
t=k+1

utut−k/

n∑
t=1

u2
t , k = 1, . . . ,m, t = 1, . . . , n

Here, r = (r1, r2, . . . , rm) has multivariate normal distribution with zero average,
V (rk) = (n− k)/n(n+ 2) and Kov(rk, r1) = 0 (k 6= 1), so autocorrelation coeffi-
cient of the residuals has chi-square distribution with m degree of freedom for large
n values [2]. Since the distribution of residual autocorrelations is N(0, n−1Im),
then distributions of both Ljung-Box’s QLB and Box-Pierce’s QBP are chi-square
distributions with m degree of freedom and their expected values are m and their
variances are 2m. The expected value of QLB is m for finite numbers of n values,
whereas,

(2.4) E(QBP ) =
nm

n+ 2
(1− m+ 1

2n
)

As long as n be less than m, E(QBP ) will be less than m. Moreover, for n values
which are greater than m, variances of QBP and QLB are written as follows,

V (QBP ) = 2m(1 + (m− 10)/n), V (QLB) = 2m(1 + (m− 10)/n)

Here, the variance of QLB exceeds 2m value, however Monte Carlo simulation
method has shown that its distribution is much closer than the distribution of
QBP to chi-square with m degree of freedom [2], [6]. The test statistics, which are
used for diagnostic checking, are called Portmanteau test statistics. There are a
lot of Portmanteau test statistics in the literature and detailed information about
structures and distributions of other Portmanteau test statistics could be found in
many studies [2], [6], [7] [5], [1].

3. DEFINING AND CALCULATING OF RESIDUAL TYPES
FOR ARMA(p, q)

Let see stationary time series process {Wt} following the model and let w =

[w1, w2, ..., wn]
′

generated by {Wt}.The theoretical representation of ARMA (Au-
toregressive - Moving Average) model is given below:

(3.1) φ(B)W̃t = θ(B)At

Here, φ(B) = 1 −
∑p
i=1 φiB

i and θ(B) = 1 −
∑q
i=1 θiB

i are polynomials

with degrees of p and q, also B is a lag operator,W̃t = Wt − E[Wt] and {At}
is a white noise process with σ2 > 0. Regarding the model (3.1) , W̃ =



[W̃1, ..., W̃n]
′
, A = [A1, ..., An]

′
and U∗ = [W̃1−p, ..., W̃0, A1−q, ..., A0]

′
, observed

time series w = [w1, w2, ..., wn]
′

can be seen as a particular realization of a ran-

dom vector W = [W1,W2, ...,Wn]
′

following the model,

(3.2) DφW̃ = DθA+ V U∗

Where Dφ and Dθ are n × n parameter matrices with ones as diagonal elements
and −φj and −θj as elements that constitute the jth subdiagonal, respectively,
and V is a n × (p + q) matrix with Vij = φp+i−j(i = 1, ..., p; j = 1, ..., p) and
Vij = −θq+i−j+p(i = 1, ..., q; j = p+ i, ..., p+ q), where the remaining elements are
zero [9].

Let us assume that the theoretical autocovariance matrix is
∑
w = σ−2E[W̃W̃

′
]

, and
∑̂
w is an estimation of

∑
w. The autocovariance matrix can be given as

follows from the equation (3.2) [9];

(3.3)
∑
w

= D−1
φ (DφD

′

θ + V ΩV
′
)(D−1

φ )
′

= K−1(I + ZΩZ)(K−1)
′

In equation (3.3) , K = D−1
θ Dφ, Z = −D−1

θ V and Ω = σ−2E[U∗U
′

∗] are param-
eter matrices of dimensions n×n, n× (p+ q) and (p+ q)× (p+ q) , respectively,
with Ω being readily expressible in terms of φ1, ..., φp, θ1, ..., θq, for example, in
Ljung and Box [7]. Besides, here

∑
0 = I + ZΩZ ′ = [I − Z(Ω−1 + Z ′Z)−1Z ′]−1.

Using the relation (3.3), w̃
′∑̂−1

w w̃ can be written as,

(3.4) w̃
′∑̂−1

w
w̃ = w̃

′
K̂
′
(I + ẐΩ̂Ẑ)K̂w̃

K̂, Ẑ and Ω̂ symbolize the estimations of parameter matrices defined in equation
( 3.3). According to these theoretical information, residuals have been grouped by
Mauricio [9] in 4 different classes as below:

3.1. Conditional Residuals. Conditional residuals are associated with relation
(3.4) and defined as the elements of the n× 1 vector â0 = K̂w̃.

3.2. Unconditional Residuals. Unconditional residuals are associated with (3.4)

and defined as the elements of the n× 1 vector â = (I + ẐΩ̂Ẑ ′−1K̂w̃ =
∑̂−1

0 â0.

3.3. Innovations. Innovation residuals are associated with (3.4) and defined as

the elements of the n× 1 vector ê = L̂−1w̃ = (K̂L̂)−1â0. Here, L̂ is the estimation
of the n× n unit lower- triangle matrix L in below factorization,∑

w = LFL′, or,

∑
w =


1 0 · · · 0
L21 1 · · · 0

...
...

. . .
...

Ln1 Ln2 · · · 1




F1 0 · · · 0
0 F2 · · · 0
...

...
. . .

...
0 0 · · · Fn




1 L12 · · · L1n

0 1 · · · L2n

...
...

. . .
...

0 0 · · · 1


where Ft > 0, and t = 1, 2, ..., n.



From relation (3.4), the below equations will be result [9]:

w̃′
∑̂−1

w
w̃ = â′0

∑̂−1

0
â0 = ê′F̂−1ê

where F̂ , is the estimation of matrix F .

3.4. Normalized Residuals. If we define lower-triangle matrix P as,
∑

0 =
I + ZΩZ ′ = PP ′, the definition of vector v̂(normalized residuals) is,

v̂ = P̂−1â0 = P̂ ′â = F̂−
1
2 ê

where P̂ is the estimation of matrix P [9], [10], [11].

4. SIMULATION, REALIZATION AND REAL WORLD DATA
APPLICATION STUDIES

4.1. Simulation Study.
In this part, conditions of the residual types in diagnostic checking are compared
by using Ljung-Box test statistic for ARMA(1, 1) model. Here, the main aim is not
to test whether the model is appropriate or not, but it is to compare whether the
types of residuals lead us to the same results for diagnostic checking or not. Data
are generated under assumption of ARMA(1, 1) models which have autoregressive
and moving average parameter values with φ = 0.5 and θ = 0.6, φ = 0.9 and θ =
0.6, φ = 0.1 and θ = 0.9, φ = 0.2 and θ = 0.9. By considering these four
different parameter conditions, the simulation study has been done and types of
residuals are calculated for all generated time series. In this simulation study, to
see the rejection ratio of the null hypothesis ”H0: Model is appropriate”, trials are
repeated 100 times and total number of rejections are divided by 100. Furthermore,
to see interaction between number of observation and rejection ratio, n=10, n=25,
n=50, n=100, n=250 and n=500 observation numbers are taken and result are in
Figure 1-4. Lags(m) are taken as 2,3,5,10.
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Conditional Unconditional Innovations Normalized

Figure 1. H0 rejection ratio for φ = 0.5 and θ = 0.6,
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Conditional Unconditional Innovations Normalized

Figure 2. H0 rejection ratio for φ = 0.9 and θ = 0.6
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Conditional Unconditional Innovations Normalized

Figure 3. H0 rejection ratio for φ = 0.1 and θ = 0.9

As seen in Figure 1, when autoregressive and moving average parameter values
are φ = 0.5 and θ = 0.6, there is no difference between rejection ratio in four
residual types with different number of observations and lags. Also in Figure 2,
with φ = 0.9 and θ = 0.6, the same sitiation is valid. In Figure 3, φ = 0.1 and
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Conditional Unconditional Innovations Normalized

Figure 4. H0 rejection ratio for φ = 0.2 and θ = 0.9

θ = 0.9, the rejection ratio of conditional residuals is higher than the other types
of residuals. And when the number of observation increases, the rejection ratios
of four different types of residuals, are close to each other for all of the lags. In
Figure 4, φ = 0.2 and θ = 0.9, the same situations as Figure 3 appear, rejection
ratios of the conditional residuals have high values, rather to other residual types.
Also the differences of the rejection ratios vanish when the number of observation
increases.

Similar to Mauricio [9], as it can be seen from the bar charts (Figure 1-4),
when the number of observations is small and ARMA(1, 1) model is close to non
invertibility, conditional residuals have higher rejection ratios than the other three
residual types. As mentioned above, these differences vanish when the number of
observation increases. And when the number of observation values are large, the
ratios of rejection, which are calculated from the different types of residual, are
close to each other for all of the lags and parameter values. This situation is also
lead us to use large number of observations in the modeling process.

For the negative values of and , the same situations are valid in diagnostic
checking, because the differences of calculated residual types are related with non-
invertible MA parameter value, so non-invertibility condition is provided not only
MA parameter close to 1, but also close to -1. The invertibility condition is
satistified when −1 < θ1 < 1.

Simulation results are consistent with the findings of Mauricio [9].

4.2. Realization Study.
The realization data is produced under the assumptation of suitable model, we
consider the suitable model is ARMA(1, 1) model which have autoregressive and
moving average parameter values with φ = 0.1 and θ = 0.9 in data production
process. The number of observations is taken as 25. The realization data and
calculated values of residual types are in Table 1.



Residual Types
Unit Number Data Conditional Unconditional Innovations Normalized

1 2.6795 2.6795 0.9476 2.6795 2.0882
2 -1.3419 0.8017 -0.757 -0.1452 -0.1264
3 0.3349 1.1906 -0.2122 0.3699 0.3384
4 -0.3621 0.6768 -0.5866 -0.1171 -0.11
5 1.0322 1.6768 0.5405 0.9754 0.9322
6 1.0101 2.4159 1.3933 1.7087 1.6518
7 -2.0718 0.0014 -0.9189 -0.7357 -0.717
8 1.9296 2.1381 1.3098 1.5079 1.4781
9 -0.4807 1.2506 0.5051 0.6303 0.6205
10 0.4625 1.6361 0.9652 1.0604 1.0474
11 -0.6746 0.7517 0.1479 0.2103 0.2083
12 1.0333 1.7772 1.2338 1.2863 1.2764
13 -0.3375 1.1587 0.6696 0.699 0.6947
14 1.6726 2.7492 2.309 2.3277 2.3162
15 -2.673 -0.366 -0.7622 -0.766 -0.7629
16 0.6017 0.5396 0.1831 0.1851 0.1845
17 -2.2197 -1.7942 -2.1151 -2.1144 -2.1089
18 1.2676 -0.1253 -0.4141 -0.4036 -0.4027
19 0.7519 0.5124 0.2525 0.2634 0.2629
20 -0.1922 0.1938 -0.0401 -0.0311 -0.031
21 0.8995 1.0931 0.8825 0.8908 0.8898
22 0.9274 1.8212 1.6317 1.6373 1.6359
23 -1.8327 -0.2864 -0.4569 -0.4544 -0.4541
24 2.3883 2.3139 2.1604 2.1632 2.162
25 -1.4132 0.4305 0.2923 0.2926 0.2925

Table1. Realization Data and Calculated Residual Values for Residual Types

Residual Types
Lag Conditional Unconditional Innovations Normalized

m=10 43.42 9.55 8.88 9.87
m=5 25.89 3.63 4.2 4.47
m=3 18.33 3.38 3.71 4.17
m=2 14.31 3.33 3.66 4.11

Table2. Calculated Box-Jenkins Test Statistic Values for Different Residual Types and Lags



Residual Types
Lag Conditional Unconditional Innovations Normalized

m=10 Rejected Not Rejected Not Rejected Not Rejected
m=5 Rejected Not Rejected Not Rejected Not Rejected
m=3 Rejected Not Rejected Not Rejected Not Rejected
m=2 Rejected Not Rejected Not Rejected Not Rejected
Table 3. Decision Cases of H0 Hypothesis For Different Residual Types and Lags

In Table 2, there are the calculated chi square values for different types of
residual and different lags. The calculated chi square values from the conditional
residuals give significant chi square test statistic value. This situation leads us to
reject the ”H0: Model is appropriate” hypothesis when the conditional residuals
are considered in diagnostic checking contrary to the other residuals as seen in
Table 3.

4.3. Real World Data Application. In real world data application study, we
used Gross Domestic Product data of Turkey (between 1998,Q1 and 2010,Q2), and
considered that the estimated autocorrelation and moving average parameters are
φ = 0.9 and θ = 0.5, respectively.

This identification yields the approximate model of order (1,1)

(1− 0.9B)w̃t = (1− 0.5B)at

The results of diagnostic checking (approximately values of test statistic and
decision cases) could be found in Table 4-5.

Residual Types
Lag Conditional Unconditional Innovations Normalized

m=10 230 290 240 244
m=5 130 160 138 145
m=3 80 90 86 87
m=2 55 60 57 58

Table 4. Calculated Box-Jenkins Test Statistic Values for Different Residual Types and Lags

Residual Types
Lag Conditional Unconditional Innovations Normalized

m=10 Rejected Rejected Rejected Rejected
m=5 Rejected Rejected Rejected Rejected
m=3 Rejected Rejected Rejected Rejected
m=2 Rejected Rejected Rejected Rejected

Table 5. Decision Cases of H0 Hypothesis For Different Residual Types and Lags



According the results in Table 4-5, it could be seen that the residuals lead us
to have same decision in diagnostic checking as in the real word application study.

5. CONCLUSION

According to simulation study, especially when the number of observations are
small and ARMA model’s parameters are close to non invertibility, the differences
between the calculated chi square test statistic values are becoming significant,
and the ratios of rejection differ. The values of test statistics which are calculated
from conditional residuals are bigger than the other three types of residuals. For
ARMA(1,1) models which have parameter values close to non invertibility situa-
tions, using of conditional residuals give big ratio of the rejection than the other
residuals types in diagnostic checking, but as the number of observation n in-
creases, rates of rejections between the different types of residuals are in tendency
to decrease. When the trials are done with the other parameter values which
are not close to non invertible or stationary situation, four types of residuals give
similar rates of rejection in the simulation studies. The moving average parame-
ter in realization study is close to non-invertibility situation, thus ”H0: Model is
appropriate” hypothesis is rejected, when the conditional residuals are considered
in diagnostic checking contrary to the other residuals as seen in Table 3. On the
contrary, there is no difference between four residual types according to diognostic
checking results as in the real world data. As it can be seen from the bar charts
(Figure 1-4), when the number of observations is small and ARMA(1, 1) model
is close to non invertibility, conditional residuals have higher rejection ratios than
the other three residual types.
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