Kotanjant Demette Modified Riemannian Extension'a Göre Projektif Vektör Alanları

Lokman BİLEN ${ }^{1 *}$

ÖZET: $T^{*} M, n$-boyutlu M Riemannian manifoldunun kotanjant demeti olsun. Bu çalışmadaki amacımız kotanjant demette modifiye edilmiş Riemann genişlemesine göre fibre koruyan projektif vektör alanlarının karakterizasyonunu yapmaktır.

Anahtar kelimeler: Fibre-koruyan vektör alanları, infinitesimal projektif dönüşümler, Riemannian metriği, modified Riemannian extension, adapte olmuş çatı

Projective Vector Fields on the Cotangent Bundle with Modified Riemannian Extension

Abstract

Let $T^{*} M$ be the cotangent bundle of an n-dimensional Riemannian manifold M. The purpose of the present paper is give a characterization of fibre-preserving projective vector fields with respect to modified Riemannian extension.

Keywords: Fibre-preserving vector fields, infinitesimal projective transformations, Riemannian metric, modified Riemannian extension, adapted frame.

[^0]
INTRODUCTION

Let $T^{*}(M)$ be the cotangent bundle over M and Φ be a transformation of $T^{*}(M)$. If the transformation Φ preserves the fibres, it is called a fibre-preserving transformation. Consider a vector field \tilde{X} on $T^{*}(M)$ and the local oneparameter group $\left\{\Phi_{t}\right\}$ of local transformations of $T^{*}(M)$ generated by \tilde{X}. The vector field \tilde{X} is called an infinitesimal fibre-preserving transformation if each Φ_{t} is a local fibrepreserving transformation of $T^{*}(M)$. A transformation Φ of M is called a projective transformation if it preserves the geodesics, where each geodesic should be confounded with a subset of M by neglecting its affine parameter. Furthermore, Φ is called an affine transformation if it preserves the connection.

We then remark that an affine transformation may be characterized as a projective transformation which preserves the affine parameter together with the geodesics. An infinitesimal fibre-preserving transformation \tilde{X} on $T^{*}(M)$ is called an infinitesimal fibrepreserving projective transformation if each Φ_{t} is a local fibre-preserving projective transformation of $T^{*}(M)$. Let \tilde{g} be a Riemannian or a pseudo-Riemannian metric on $T^{*}(M)$. It is well known that \tilde{X} is an infinitesimal projective transformation of $T^{*}(M)$ if and only if there exist a 1 -form θ such that $\left(L_{\tilde{X}} \nabla\right)(\tilde{Y}, \tilde{Z})=\theta(\tilde{Y}) \tilde{Z}+\theta(\tilde{Z}) \tilde{Y} \quad$ for any $\tilde{X}, \tilde{Y} \in \mathfrak{I}_{0}^{1}\left(T^{*} M\right)$. Where $L_{\tilde{X}}$ denotes the Lie derivation with respect to \tilde{X}.

Infinitesimal projective transformations on tangent and cotangent bundles have been researched by some authors \{for example see (Gezer, 2011; Hasegawa and Yamauchi, 2003; Yamauchi, 1998; Yamauchi, 1999.) \}. In this paper, we aim to research infinitesimal projective transformations on the cotangent bundle with modified Riemann extension over Riemannian manifolds.

MATERIALS AND METHODS

Let M be an n-dimensional smooth manifold and denote by $\pi: T^{*} M \rightarrow M$ its cotangent bundle whose fibres are cotangent spaces to M. Then $T^{*} M$ is a $2 n$-dimensional smooth manifold and some local charts induced naturally from local charts on M can be used. Namely, a system of local coordinates $\left(U, x^{i}\right), i=1, \ldots, n$ in M induces on $T^{*} M$ a system of local coordinates $\left(\pi^{-1}(U), x^{i}, x^{\bar{\imath}}=p_{i}\right), \bar{\imath}=n+i=n+1, \ldots, 2 n$, where $x^{\bar{\imath}}=p_{i}$ are the components of covectors p in each cotangent space $T_{x}{ }^{*} M, x \in U$ with respect to the natural coframe $\left\{d x^{i}\right\}$. Let $\tilde{X}=X^{i} \frac{\partial}{\partial x^{i}}$ and $w=w_{i} d x^{i}$ be the local expressions in U of a vector field \tilde{X} and a covector (1-form) field w on M, respectively. Then the vertical lift ${ }^{v} w$ of w, the horizontal lift ${ }^{H} \tilde{X}$ and the complete lift ${ }^{C} \tilde{X}$ of \tilde{X} are given, with respect to the induced coordinates, by (Yano and Ishihara, 1973).
${ }^{v} w=w_{i} \partial_{\bar{l}}$,
${ }^{H} \tilde{X}=X^{i} \partial_{i}+p_{h} \Gamma_{i j}^{h} X^{j} \partial_{\bar{l}}$,
and $\quad{ }^{c} \tilde{X}=X^{j} \partial_{i}-p_{h} \partial_{i} X^{h} \partial_{\bar{\imath}} \quad$ where $\quad \partial_{i}=$ $\frac{\partial}{\partial x^{i}}, \partial_{\bar{l}}=\frac{\partial}{\partial x^{\bar{i}}}$ and $\Gamma_{i j}^{h}$ are the coefficients of a symmetric (torsion-free) affine connection ∇ on M. The Lie bracket operation of vertical and horizontal vector fields on $T^{*} M$ is given by the formulas: (Yano and Ishihara, 1973).

$$
\left\{\begin{array}{l}
{\left[^{H} \tilde{X}^{H} \tilde{Y}\right]={ }^{H}[\tilde{X}, \tilde{Y}]+{ }^{V}(\operatorname{poR}(\tilde{X}, \tilde{Y}))} \tag{2.3}\\
{\left[^{H} \tilde{X},{ }^{V} w\right]={ }^{V}\left(\nabla_{\tilde{X}} w\right)} \\
{\left[^{V} \theta,{ }^{V} w\right]=0}
\end{array}\right.
$$

for any $\tilde{X}, \tilde{Y} \in \mathfrak{J}_{0}^{1}(M)$ and $\theta, w \in \mathfrak{J}_{1}^{0}(M)$, where R is the curvature tensor of the symmetric connection ∇ defined by $R(\tilde{X}, \tilde{Y})=\left[\nabla_{\tilde{X}}, \nabla_{\tilde{Y}}\right]-$ $\nabla_{[\tilde{X}, \tilde{Y}]}$.

The adapted frames $\left\{E_{\alpha}\right\}=\left\{E_{j}, E_{\bar{J}}\right\}$ on each induced coordinate neighbourhood $\pi^{-1}(U)$ of $T^{*} M$ is given by (Yano and Ishihara, 1973).
$\left.\begin{array}{l}E_{j}={ }^{H} \tilde{X}_{(j)}=\partial_{j}+p_{a} \Gamma_{h j}^{a} \partial_{\bar{h}} \\ E_{\bar{J}}={ }^{V} \theta_{(j)}=\partial_{\bar{J}} .\end{array}\right\}$

The indices $\alpha, \beta, \gamma, \ldots=1, \ldots, 2 n$ indicate the indices with respect to the adapted frame.

It follows from (2.1), (2.2) and (2.4) that

$$
{ }^{v} w=\binom{0}{w_{j}}
$$

and

$$
{ }^{H} \tilde{X}=\binom{X^{j}}{0}
$$

with respect to the adapted frame $\left\{E_{\alpha}\right\}$. The straightforward calculations give:
Lemma 2.1: (Yano and Ishihara, 1973). The Lie bracket of the adapted frame of $T^{*} M$ satisfies the following identities:

$$
\begin{aligned}
& {\left[E_{i}, E_{j}\right]=p_{s} R_{i j l}^{s} E_{\bar{l}}} \\
& {\left[E_{i}, E_{\bar{J}}\right]=-\Gamma_{i l}^{j} E_{\bar{l}}} \\
& {\left[E_{\bar{l}}, E_{\bar{\jmath}}\right]=0}
\end{aligned}
$$

where $R=R_{i j l}^{S} \quad$ denotes the Riemannian curvature tensor of (M, g) defined by
i. $\quad L_{\tilde{X}} E_{i}=-\left(E_{i} v^{k}\right) E_{k}-\left(v^{a} p_{s} R_{i a k}^{s}+E_{i} v^{\bar{k}}-v^{\bar{a}} \Gamma_{i k}^{a}\right) E_{\bar{k}}$,
ii. $\quad L_{\tilde{X}} E_{\bar{\imath}}=-\left(v^{a} \Gamma_{a k}^{i}+E_{\bar{\imath}} v^{\bar{k}}\right) E_{\bar{k}}$,
iii. $\quad L_{\tilde{X}} d x^{h}=\left(E_{m} v^{h}\right) d x^{m}$,
iv. $\quad L_{\tilde{X}} \delta p_{h}=\left(v^{a} p_{s} R_{m a h}{ }^{s}-v^{\bar{a}} \Gamma_{m h}^{a}+\left(E_{m} v^{\bar{k}}\right) \delta_{h}{ }^{k}\right) d x^{m}+\left(v^{a} \Gamma_{a h}^{m}+\left(E_{\bar{m}} v^{\bar{k}}\right) \delta_{h}{ }^{k}\right) \delta p_{m}$.
\{For tangent bundles see (Gezer, 2011; Hasegawa and Yamauchi, 2003; Yamauchi, 1998; Yamauchi, 1999)\}.

RESULTS AND DISCUSSION

Theorem 3.1: Let (M, g) be a Riemannian manifold and $T^{*} M$ its cotangent bundle with the modified Riemannian extension. Then \tilde{X} is an infinitesimal projective transformation with the
associated 1- form θ on $T^{*} M$ if and only if there exist

$$
\begin{aligned}
A & =A_{i}^{j} \in \mathfrak{J}_{1}^{1}(M), \\
M & =M_{i j k} \in \mathfrak{J}_{3}^{0}(M), \\
B & =B_{h} \in \mathfrak{I}_{1}^{0}(M) \text { satisfying }
\end{aligned}
$$

1) $\theta=\left(\theta_{i}, \theta_{\bar{l}}\right)=\left(\frac{1}{n+1} \nabla_{i}\left(\nabla_{j} v^{j}\right), 0\right)$
2) $v^{\bar{k}}=p_{s} A_{k}^{s}+B_{k}$
3) $v^{a} R_{i a k}^{j}+\nabla_{i} A_{k}^{j}=\theta_{i} \delta_{j}^{k}$
4) $\nabla_{i}\left(\theta_{j} \delta_{s}^{k}\right)+v^{h}\left(\nabla_{h} R_{k j i}^{s}\right)+\left(\nabla_{j} v^{h}\right) R_{k h i}^{s}+\left(\nabla_{i} v^{h}\right) R_{k j h}{ }^{s}+A_{h}^{s} R_{k j i}^{h}-A_{k}^{h} R_{h j i}{ }^{s}=0$
5) $v^{h} \nabla_{h} M_{i j k}+\left(\nabla_{j} v^{h}\right) M_{i h k}+\left(\nabla_{i} v^{h}\right) M_{h j k}+2 \nabla_{i} \nabla_{j} B_{k}+2 B_{h} R_{k j i}^{h}-A_{k}^{h} M_{i j h}=0$
where $\tilde{X}=v^{h} E_{h}+v^{\bar{h}} E_{\bar{h}}, A_{k}^{j}=E_{\bar{J}} v^{\bar{k}}$ and $M_{i j h}=\nabla_{i} c_{j h}+\nabla_{j} c_{i h}-\nabla_{h} c_{i j}$.

Proof:

$$
\text { 1) } \begin{align*}
\left(L_{X} \widetilde{\nabla}\right)\left(E_{\bar{\imath}}, E_{\bar{\jmath}}\right) & =L_{X}\left(\widetilde{\nabla}_{E_{\bar{\imath}}} E_{\bar{\jmath}}\right)-\widetilde{\nabla}_{E_{\bar{\imath}}}\left(L_{X} E_{\bar{\jmath}}\right)-\widetilde{\nabla}_{\left(L_{X} E_{\bar{\jmath}}\right)} E_{\bar{\jmath}}=\theta\left(E_{\bar{l}}\right) E_{\tilde{\jmath}}+\theta\left(E_{\bar{\jmath}}\right) E_{\bar{\imath}} \\
& \Rightarrow \widetilde{\nabla}_{E_{\bar{l}}}\left(v^{a} \Gamma_{a k}^{j}+E_{\bar{\jmath}} v^{\bar{k}}\right) E_{\bar{k}}-\widetilde{\nabla}_{\left(v^{a} \Gamma_{a k}{ }^{i}+E_{\bar{\imath}} v^{\bar{k}}\right) E_{\bar{k}}} E_{\bar{\jmath}}=\theta_{\bar{\imath}} E_{\bar{\jmath}}+\theta_{\bar{\jmath}} E_{\bar{\imath}} \\
& \Rightarrow E_{\bar{\imath}}\left(E_{\bar{\jmath}} v^{\bar{k}}\right) E_{\bar{k}}=\left(\theta_{\bar{\imath}} \delta_{j}^{k}+\theta_{\bar{\jmath}} \delta_{i}^{k}\right) E_{\bar{k}} \\
& \Rightarrow E_{\bar{\imath}}\left(E_{\bar{\jmath}} v^{\bar{k}}\right)=\theta_{\bar{\imath}} \delta_{j}^{k}+\theta_{\bar{\jmath}} \delta_{i}^{k} \tag{3.1}
\end{align*}
$$

2) $\left(L_{X} \widetilde{\nabla}\right)\left(E_{i}, E_{\bar{J}}\right)=L_{X}\left(\widetilde{\nabla}_{E_{i}} E_{\bar{J}}\right)-\widetilde{\nabla}_{E_{i}}\left(L_{X} E_{\bar{J}}\right)-\widetilde{\nabla}_{\left(L_{X} E_{i}\right)} E_{\bar{J}}=\theta\left(E_{i}\right) E_{\tilde{J}}+\theta\left(E_{\bar{J}}\right) E_{i}$

$$
\begin{gathered}
\Rightarrow L_{X}\left(-\Gamma_{i h}^{j} E_{\bar{h}}\right)-\widetilde{\nabla}_{E_{\bar{L}}}\left[-\left(v^{a} \Gamma_{a k}^{j}+E_{\bar{J}} v^{\bar{k}}\right) E_{\bar{k}}\right]-\widetilde{\nabla}_{\left[-\left(E_{i} v^{k}\right) E_{k}-\left(v^{a} p_{p_{s} R_{i a k}}+E_{i} v^{\bar{k}}-v^{\bar{a}} \Gamma_{i k}{ }^{a}\right) E_{\bar{k}}\right]} E_{\bar{J}}=\theta_{i} E_{\bar{J}}+\theta_{\bar{J}} E_{i} \\
\quad \Rightarrow\left[-L_{X} \Gamma_{i k}^{j}+v^{a} \Gamma_{a k}^{h} \Gamma_{i h}^{j}+\left(E_{\bar{h}} v^{\bar{k}}\right) \Gamma_{i h}^{j}+\left(E_{i} v^{a}\right) \Gamma_{a k}^{j}+v^{a}\left(E_{i} \Gamma_{a k}^{j}\right)+E_{i}\left(E_{\bar{J}} v^{\bar{k}}\right)-v^{a} \Gamma_{a h}^{j} \Gamma_{i k}^{h}\right. \\
\left.-\left(E_{\bar{J}} v^{\bar{h}}\right) \Gamma_{i k}^{h}-\left(E_{i} v^{h}\right) \Gamma_{h k}^{j}\right] E_{\bar{k}}=\left(\theta_{i} \delta_{j}^{k}\right) E_{\bar{k}}+\left(\theta_{\bar{J}} \delta_{i}^{k}\right) E_{k}
\end{gathered}
$$

from which we get

$$
\begin{equation*}
\theta_{\bar{J}} \delta_{i}^{k}=0 \Rightarrow \theta_{\bar{J}}=0 \tag{3.2}
\end{equation*}
$$

and

$$
-L_{X} \Gamma_{i k}^{j}+v^{a} \Gamma_{a k}^{h} \Gamma_{i h}^{j}+\left(E_{\bar{h}} v^{\bar{k}}\right) \Gamma_{i h}^{j}+v^{a}\left(E_{i} \Gamma_{a k}^{j}\right)+E_{i}\left(E_{\bar{\jmath}} v^{\bar{k}}\right)-v^{a} \Gamma_{a h}^{j} \Gamma_{i k}^{h}-\left(E_{\bar{J}} v^{\bar{h}}\right) \Gamma_{i k}^{h}=\theta_{i} \delta_{j}^{k}
$$

$$
\Rightarrow-v^{a} E_{a} \Gamma_{i k}^{j}-v^{\bar{a}} E_{\bar{a}} \Gamma_{i k}^{j}+v^{a} \Gamma_{a k}^{h} \Gamma_{i h}^{j}+\left(E_{\bar{h}} v^{\bar{k}}\right) \Gamma_{i h}^{j}+v^{a}\left(E_{i} \Gamma_{a k}^{j}\right)+E_{i}\left(E_{\bar{\jmath}} v^{\bar{k}}\right)-v^{a} \Gamma_{a h}^{j} \Gamma_{i k}^{h}-
$$

$$
\left(E_{\bar{J}} v^{\bar{h}}\right) \Gamma_{i k}^{h}=\theta_{i} \delta_{j}^{k}
$$

$$
\Rightarrow\left[v^{a} R_{\text {iak }}^{j}+\nabla_{i}\left(E_{\bar{\jmath}} v^{\bar{k}}\right)\right] E_{\bar{k}}=\left(\theta_{i} \delta_{j}^{k}\right) E_{\bar{k}}
$$

$$
\Rightarrow v^{a} R_{i a k}^{j}+\nabla_{i}\left(E_{\bar{J}} v^{\bar{k}}\right)=\theta_{i} \delta_{j}^{k}
$$

where $E_{\bar{J}} v^{\bar{k}}=A_{k}{ }^{j}$. In this case,

$$
\begin{equation*}
v^{a} R_{i a k}^{j}+\nabla_{i} A_{k}^{j}=\theta_{i} \delta_{j}^{k} \tag{3.3}
\end{equation*}
$$

substituting the equation (3.2) into the equation (3.1) it follows that,

$$
\begin{array}{r}
E_{\bar{\imath}}\left(E_{\bar{\jmath}} v^{\bar{k}}\right)=0 \\
v^{\bar{k}}=p_{s} A_{k}^{s}+B_{k} \tag{3.4}
\end{array}
$$

substituting the equation (3.4) into the equation (3.3), we have;

$$
\begin{align*}
& v^{a} R_{i a k}^{j}+\nabla_{i}\left(E_{\bar{\jmath}}\left(p_{s} A_{k}^{s}+B_{k}\right)\right)=\theta_{i} \delta_{j}^{k} \\
& v^{a} R_{i a k}^{j}+\nabla_{i} A_{k}^{j}=\theta_{i} \delta_{j}^{k} \tag{3.5}
\end{align*}
$$

contracting j and k in (3.5),

$$
v^{a} R_{i a k}^{k}+\nabla_{i} A_{j}^{j}=\theta_{i} \delta_{j}^{j}
$$

from which, we obtain;

$$
\begin{equation*}
\theta_{i}=\frac{1}{n}\left(\nabla_{i} A_{j}^{j}\right) \tag{3.6}
\end{equation*}
$$

3) $\left(L_{X} \widetilde{\nabla}\right)\left(E_{i}, E_{j}\right)=L_{X}\left(\widetilde{\nabla}_{E_{i}} E_{j}\right)-\widetilde{\nabla}_{E_{i}}\left(L_{X} E_{j}\right)-\widetilde{\nabla}_{\left(L_{X} E_{i}\right)} E_{j}=\theta\left(E_{i}\right) E_{j}+\theta\left(E_{j}\right) E_{i}$
$\Rightarrow L_{X}\left[\Gamma_{i j}^{h} E_{h}+\left\{p_{s} R_{h j i}^{s}+\frac{1}{2}\left(\nabla_{i} c_{j h}+\nabla_{j} c_{i h}-\nabla_{h} c_{i j}\right)\right\} E_{\bar{h}}\right]-\widetilde{\nabla}_{E_{i}}\left[-\left(E_{j} v^{k}\right) E_{k}-\left(v^{a} p_{s} R_{j a k}^{s}+E_{j} v^{\bar{k}}-\right.\right.$
$\left.\left.v^{\bar{a}} \Gamma_{j k}^{a}\right) E_{\bar{k}}\right]-\widetilde{\nabla}_{\left[-\left(E_{i} v^{k}\right) E_{k}-\left(v^{a} p_{s} R_{i a k}^{s}+E_{i} v^{\bar{k}}-v^{\bar{a}} \Gamma_{i k}^{a}\right) E_{\bar{k}}\right]} E_{j}=\theta_{i} E_{j}+\theta_{j} E_{i}$
from which; if writing,

$$
M_{i j h}=\nabla_{i} c_{j h}+\nabla_{j} c_{i h}-\nabla_{h} c_{i j}
$$

if necessary actions are taken,
$v^{h} E_{h} \Gamma_{i j}^{k}-\left(E_{h} v^{k}\right) \Gamma_{i j}^{h}+E_{i}\left(E_{j} v^{k}\right)+\left(E_{j} v^{h}\right) \Gamma_{i h}^{k}+\left(E_{i} v^{h}\right) \Gamma_{h j}^{k}=\theta_{i} \delta_{j}^{k}+\theta_{j} \delta_{i}^{k}$
and

$$
\begin{align*}
& -v^{a} p_{s} R_{h a k}{ }^{s} \Gamma_{i j}^{h}-E_{h} v^{\bar{k}} \Gamma_{i j}^{h}+v^{\bar{a}} \Gamma_{h k}^{a} \Gamma_{i j}^{h}+v^{h} E_{h}\left(p_{s} R_{k j i}^{s}\right)+\frac{1}{2} v^{h} E_{h} M_{i j k}+v^{\bar{h}} R_{k j i}^{h}-v^{a} p_{s} R_{h j i}{ }^{s} \Gamma_{a k}^{h}- \\
& \left(E_{\bar{h}} v^{\bar{k}}\right) p_{s} R_{h j i}^{s}-\frac{1}{2} v^{a} \Gamma_{a k}^{h} M_{i j h}-\frac{1}{2}\left(E_{\bar{h}} v^{\bar{k}}\right) M_{i j h}+\left(E_{j} v^{h}\right) p_{s} R_{k h i}{ }^{s}+\frac{1}{2}\left(E_{j} v^{h}\right) M_{i h k}+\left(E_{i} v^{a}\right) p_{s} R_{j a k}^{s}+ \\
& v^{a} p_{s} E_{i} R_{j a k}{ }^{s}+E_{i}\left(E_{j} v^{\bar{k}}\right)-\left(E_{i} v^{\bar{a}}\right) \Gamma_{j k}^{a}-v^{\bar{a}}\left(E_{i} \Gamma_{j k}^{a}\right)-v^{a} p_{s} R_{j a h}^{s} \Gamma_{i k}^{h}-\left(E_{j} v^{\bar{h}}\right) \Gamma_{i k}^{h}+v^{\bar{a}} \Gamma_{j h}^{a} \Gamma_{i k}^{h}+ \\
& \left(E_{i} v^{h}\right) p_{s} R_{k j h}^{s}+\frac{1}{2}\left(E_{i} v^{h}\right) M_{h j k}=0 \tag{3.8}
\end{align*}
$$

From this formula: $E_{k} v^{h}=\nabla_{k} v^{h}-\Gamma_{k s}^{h} v^{s}$, we can write in (3.7),
$v^{h} E_{h} \Gamma_{i j}^{k}-\Gamma_{i j}^{h}\left(\nabla_{h} v^{k}-\Gamma_{h s}^{k} v^{s}\right)+E_{i}\left(\nabla_{j} v^{k}-\Gamma_{j s}^{k} v^{s}\right)+\Gamma_{i h}^{k}\left(\nabla_{j} v^{h}-\Gamma_{j s}^{h} v^{s}\right)+\Gamma_{h j}^{k}\left(\nabla_{i} v^{h}-\Gamma_{i s}^{h} v^{s}\right)=$ $\theta_{i} \delta_{j}^{k}+\theta_{j} \delta_{i}^{k}$

$$
\begin{aligned}
& \Rightarrow v^{h} E_{h} \Gamma_{i j}^{k}-\Gamma_{i j}^{h}\left(\nabla_{h} v^{k}\right)+\Gamma_{i j}^{h}\left(\Gamma_{h s}^{k} v^{s}\right)+E_{i}\left(\nabla_{j} v^{k}\right)-v^{s} E_{i} \Gamma_{j s}^{k}-\Gamma_{j s}^{k}\left(E_{i} v^{s}\right)+\Gamma_{i h}^{k}\left(\nabla_{j} v^{h}\right)-\Gamma_{i h}^{k} \Gamma_{j s}^{h} v^{s} \\
& +\Gamma_{h j}^{k}\left(\nabla_{i} v^{h}\right)-\Gamma_{h j}^{k} \Gamma_{i s}^{h} v^{s}=\theta_{i} \delta_{j}^{k}+\theta_{j} \delta_{i}^{k} \\
& \Rightarrow \underbrace{\left[v^{h} E_{h} \Gamma_{i j}^{k}+\Gamma_{i j}^{h} \Gamma_{h s}^{k} v^{s}-v^{s} E_{i} \Gamma_{j s}^{k}-\Gamma_{i h}^{k} \Gamma_{j s}^{h} v^{s}\right]}_{v^{h} R_{h i j}}+\underbrace{\left[E_{i}\left(\nabla_{j} v^{k}\right)-\Gamma_{i j}^{h}\left(\nabla_{h} v^{k}\right)+\Gamma_{i h}^{k}\left(\nabla_{j} v^{h}\right)\right]}_{\nabla_{i}\left(v^{k}\right)}=\theta_{i} \delta_{j}^{k}+\theta_{j} \delta_{i}^{k} \\
& \Rightarrow v^{h} R_{h i j}^{k}+\nabla_{i}\left(\nabla_{j} v^{k}\right)=\theta_{i} \delta_{j}^{k}+\theta_{j} \delta_{i}^{k}
\end{aligned}
$$

where, we contracting both sides with δ_{k}^{j},

$$
\begin{align*}
& \Rightarrow \underbrace{v^{h} R_{h i j}^{j}}_{0}+\nabla_{i}\left(\nabla_{j} v^{j}\right)=\theta_{i} n+\underbrace{\theta_{j} \delta_{i}^{j}}_{\theta_{i}} \\
& \Rightarrow \nabla_{i}\left(\nabla_{j} v^{j}\right)=(n+1) \theta_{i} \\
& \Rightarrow \theta_{i}=\frac{1}{(n+1)} \nabla_{i}\left(\nabla_{j} v^{j}\right) \tag{3.9}
\end{align*}
$$

from (3.6) and (3.9), we have

$$
\begin{gather*}
\frac{1}{n}\left(\nabla_{i} A_{j}^{j}\right)=\frac{1}{n+1} \nabla_{i}\left(\nabla_{j} \nu^{j}\right) \\
\nabla_{i} A_{j}^{j}=\frac{n}{n+1} \nabla_{i}\left(\nabla_{j} \nu^{j}\right) \tag{3.10}
\end{gather*}
$$

from (3.8) we obtain,

$$
\begin{aligned}
& \underbrace{-v^{a} p_{s} R_{h a k}{ }^{s} \Gamma_{i j}^{h}}_{2} \underbrace{-E_{h} v^{\bar{k}} \Gamma_{i j}^{h}+v^{\bar{a}} \Gamma_{h k}^{a} \Gamma_{i j}^{h}}_{1}+v^{h} E_{h}\left(p_{s} R_{k j i}^{s}\right)+\frac{1}{2} v^{h} E_{h} M_{i j k}+v^{\bar{h}} R_{k j i}^{h}-v^{a} p_{s} R_{h j i} \Gamma_{a k}^{h}- \\
& \left(E_{\bar{h}} v^{\bar{k}}\right) p_{s} R_{h j i}^{s}-\frac{1}{2} v^{a} \Gamma_{a k}^{h} M_{i j h}-\frac{1}{2}\left(E_{\bar{h}} v^{\bar{k}}\right) M_{i j h}+\left(E_{j} v^{h}\right) p_{s} R_{k h i}^{s}+\frac{1}{2}\left(E_{j} v^{h}\right) M_{i h k}+ \\
& \left(E_{i} v^{a}\right) p_{s} R_{j a k}^{s} \underbrace{+v^{a} p_{s} E_{i} R_{j a k}}_{2}{ }_{2}^{s} \underbrace{+E_{i}\left(E_{j} v^{\bar{k}}\right)-\left(E_{i} v^{\bar{a}}\right) \Gamma_{j k}^{a}-v^{\bar{a}}\left(E_{i} \Gamma_{j k}^{a}\right)}_{1} \\
& \underbrace{-v^{a} p_{s} R_{j a h}^{s} \Gamma_{i k}^{h}}_{1} \underbrace{-\left(E_{j} v^{\bar{h}}\right) \Gamma_{i k}^{h}+v^{\bar{a}} \Gamma_{j h}^{a} \Gamma_{i k}^{h}}_{1}+\left(E_{i} v^{h}\right) p_{s} R_{k j h}^{s}+\frac{1}{2}\left(E_{i} v^{h}\right) M_{h j k}=0
\end{aligned}
$$

if these expressions are used; $1 \rightarrow \nabla_{i}\left(\nabla_{j} v^{\bar{k}}\right), 2 \rightarrow v^{a} p_{s}\left(\nabla_{i} R_{j a k}^{s}\right)$

$$
\begin{aligned}
& \nabla_{i}\left(\nabla_{j} v^{\bar{k}}\right)+v^{a} p_{s}\left(\nabla_{i} R_{j a k}^{s}\right)+v^{h} E_{h}\left(p_{s} R_{k j i}^{s}\right)+\frac{1}{2} v^{h} E_{h} M_{i j k}+v^{\bar{h}} R_{k j i}^{h}-v^{a} p_{s} R_{h j i} \Gamma_{a k}^{h}- \\
& \left(E_{\bar{h}} v^{\bar{k}}\right) p_{s} R_{h j i}^{s}-\frac{1}{2} v^{a} \Gamma_{a k}^{h} M_{i j h}-\frac{1}{2}\left(E_{\bar{h}} v^{\bar{k}}\right) M_{i j h}+\left(E_{j} v^{h}\right) p_{s} R_{k h i}^{s} \\
& +\frac{1}{2}\left(E_{j} v^{h}\right) M_{i h k}+\left(E_{i} v^{a}\right) p_{s} R_{j a k}^{s}+\left(E_{i} v^{h}\right) p_{s} R_{k j h}^{s}+\frac{1}{2}\left(E_{i} v^{h}\right) M_{h j k}=0
\end{aligned}
$$

From this formula: $E_{k} v^{h}=\nabla_{k} v^{h}-\Gamma_{k s}^{h} v^{s}$

$$
\begin{aligned}
& \nabla_{i}\left(\nabla_{j} v^{\bar{k}}\right)+v^{a} p_{s}\left(\nabla_{i} R_{j a k}^{s}\right) \underbrace{+v^{h} E_{h}\left(p_{s} R_{k j i}^{s}\right)}_{4} \underbrace{+\frac{1}{2} v^{h} E_{h} M_{i j k}}_{3}+v^{\bar{h}} R_{k j i}^{h} \underbrace{-v^{a} p_{s} R_{h j i}^{s} \Gamma_{a k}^{h}}_{4}- \\
& \left(E_{\bar{h}} v^{\bar{k}}\right) p_{s} R_{h j i}{ }^{s} \underbrace{-\frac{1}{2} v^{a} \Gamma_{a k}^{h} M_{i j h}}_{3}-\frac{1}{2}\left(E_{\bar{h}} v^{\bar{k}}\right) M_{i j h}+\left(\nabla_{j} v^{h}\right) p_{s} R_{k h i}{ }^{s} \underbrace{-\left(\Gamma_{j a}^{h} v^{a}\right) p_{s} R_{k h i}{ }^{s}}_{4} \\
& \underbrace{+\frac{1}{2}\left(\nabla_{j} v^{h}\right) M_{i h k}-\frac{1}{2}\left(\Gamma_{j s}^{h} v^{s}\right) M_{i h k}}_{3}+\left(\nabla_{i} v^{a}\right) p_{s} R_{j a k}^{s}-\left(\Gamma_{i t}^{a} v^{t}\right) p_{s} R_{j a k}^{s}+ \\
& \left(\nabla_{i} v^{h}\right) p_{s} R_{k j h}{ }^{s} \underbrace{-\left(\Gamma_{i a}^{h} v^{a}\right) p_{s} R_{k j h}}_{4}{ }^{s} \underbrace{+\frac{1}{2}\left(\nabla_{i} v^{h}\right) M_{h j k}}_{3}-\frac{1}{2}\left(\Gamma_{i s}^{h} v^{s}\right) M_{h j k}=0
\end{aligned}
$$

hen necessary index changes are made and these expressions are used;

$$
3 \rightarrow \frac{1}{2}\left(v^{h} \nabla_{h} M_{i j k}+\left(\nabla_{j} v^{h}\right) M_{i h k}+\left(\nabla_{i} v^{h}\right) M_{h j k}\right), \quad 4 \rightarrow v^{h} p_{s}\left(\nabla_{h} R_{k j i}^{s}\right)
$$

$\nabla_{i}\left(\nabla_{j} v^{\bar{k}}\right)+v^{a} p_{s}\left(\nabla_{i} R_{j a k}^{s}\right)+v^{h} p_{s}\left(\nabla_{h} R_{k j i}^{s}\right)+\frac{1}{2}\left[v^{h} \nabla_{h} M_{i j k}+\left(\nabla_{j} v^{h}\right) M_{i h k}+\left(\nabla_{i} v^{h}\right) M_{h j k}\right]+$
$\left(\nabla_{j} v^{h}\right) p_{s} R_{k h i}{ }^{s}+\left(\nabla_{i} v^{a}\right) p_{s} R_{j a k}{ }^{s}+\left(\nabla_{i} v^{h}\right) p_{s} R_{k j h}{ }^{s}-\left(\Gamma_{i h}^{a} v^{h}\right) p_{s} R_{j a k}{ }^{s}+v^{\bar{h}} R_{k j i}{ }^{h}-\left(E_{\bar{h}} v^{\bar{k}}\right) p_{s} R_{h j i}^{s}-$
$\frac{1}{2}\left(E_{\bar{h}} v^{\bar{k}}\right) M_{i j h}=0$
where equation (3.4) is used and if necessary actions are taken,
$p_{s} \nabla_{i} \nabla_{j} A_{k}^{s}+\nabla_{i} \nabla_{j} B_{k}+v^{a} p_{s}\left(\nabla_{i} R_{j a k}^{s}\right)+v^{h} p_{s}\left(\nabla_{h} R_{k j i}^{s}\right)+$
$\frac{1}{2}\left[v^{h} \nabla_{h} M_{i j k}+\left(\nabla_{j} v^{h}\right) M_{i h k}+\left(\nabla_{i} v^{h}\right) M_{h j k}\right]+\left(\nabla_{j} v^{h}\right) p_{s} R_{k h i}{ }^{s}+\left(\nabla_{i} v^{a}\right) p_{s} R_{j a k}{ }^{s}+\left(\nabla_{i} v^{h}\right) p_{s} R_{k j h}{ }^{s}-$
$\left(\Gamma_{i h}^{a} v^{h}\right) p_{s} R_{j a k}^{s}+p_{s} A_{h}^{s} R_{k j i}^{h}+B_{h} R_{k j i}^{h}-A_{k}^{h} p_{s} R_{h j i}^{s}-\frac{1}{2} A_{k}^{h} M_{i j h}=0$
$\Rightarrow p_{s}\left[\nabla_{i}\left(\nabla_{j} A_{k}^{s}+v^{a} R_{j a k}^{s}\right)+v^{h}\left(\nabla_{h} R_{k j i}^{s}\right)+\left(\nabla_{j} v^{h}\right) R_{k h i}^{s}+\left(\nabla_{i} v^{h}\right) R_{k j h}^{s}-\left(\Gamma_{i h}^{a} v^{h}\right) R_{j a k}^{s}+A_{h}^{s} R_{k j i}^{h}-\right.$
$\left.A_{k}^{h} R_{h j i}{ }^{s}\right]+\frac{1}{2}\left[v^{h} \nabla_{h} M_{i j k}+\left(\nabla_{j} v^{h}\right) M_{i h k}+\left(\nabla_{i} v^{h}\right) M_{h j k}+2 \nabla_{i} \nabla_{j} B_{k}+2 B_{h} R_{k j i}{ }^{h}-A_{k}^{h} M_{i j h}\right]=0$
if we used equation (3.3) we get;
$\nabla_{i}\left(\theta_{j} \delta_{s}^{k}\right)+v^{h}\left(\nabla_{h} R_{k j i}^{s}\right)+\left(\nabla_{j} v^{h}\right) R_{k h i}{ }^{s}+\left(\nabla_{i} v^{h}\right) R_{k j h}{ }^{s}+A_{h}^{s} R_{k j i}{ }^{h}-A_{k}^{h} R_{h j i}{ }^{s}=0$
and
$v^{h} \nabla_{h} M_{i j k}+\left(\nabla_{j} v^{h}\right) M_{i h k}+\left(\nabla_{i} v^{h}\right) M_{h j k}+2 \nabla_{i} \nabla_{j} B_{k}+2 B_{h} R_{k j i}^{h}-A_{k}^{h} M_{i j h}=0$

CONCLUSION

Let $T^{*} M$ be the cotangent bundle of an n-dimensional Riemannian manifold M. We give a characterization of fibre-preserving projective vector fields with respect to modified Riemannian extension $\tilde{g}_{\nabla, c}$.

REFERENCES

Gezer A, 2011. On infinitesimal holomorphically projective transformations on the tangent bundles with respect to the Sasaki metric, Proc. Est. Acad. Sci., 60(3): 149-157.

Gezer A, Bilen L, Çakmak A, 2015. Properties of modified Riemannian extensions, Zh. Mat. Fiz. Anal. Geom., 11(2): 159-173.

Hasegawa I, Yamauchi K, 2003. Infinitesimal projective transformations on tangent bundles with lift connection, Scientiae Mathematicae Japonicae., 57(3): 469-483, e7, 489-503.

Yamauchi K, 1998. On infinitesimal projective transformations of the tangent bundles with the complete lift metric over Riemannian manifolds, Ann Rep. Asahikawa. Med. Coll., 19: 49-55.

Yamauchi K, 1999. On infinitesimal projective transformations of the tangent bundles with the metric II+III, Ann Rep. Asahikawa. Med. Coll., (20): 67-72.

Yano K, Ishihara S, 1973. Tangent and Cotangent Bundles, Marcel Dekker, Inc, New York.

[^0]: ${ }^{1}$ Lokman BİLEN (Orcid ID: 0000-0001-8240-5359), Iğdır Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bölümü, Iğdır, Türkiye
 *Sorumlu yazar/Corresponding Author: Lokman BİLEN, lokman.bilen@igdir.edu.tr

