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Commonly, while selecting an appropriate bivariate Archimedean copula function that models
data, Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), and minimum
distance (MD) are used as a selection criterion. In this study, the performances of these

criteria for selecting copula function are investigated by some simulation studies.

iki Boyutlu Arsimedyen Kapulalar i¢in Bazi Se¢im Kriterlerinin

Karsilastirilmasi

Ozet

Genellikle, veriyi modelleyen uygun iki boyutlu Arsimedyen kapula fonksiyonunu segerken
Akaike Bilgi Kriteri (AIC), Bayesci Bilgi Kriteri (BIC) ile en kiiciik uzaklik segim kriteri olarak

Anahtar Kelimeler

Kapula-Bagimlilik-Arsimedyen calismasi ile incelenmisgtir.

Kapulalar-Segim Kriterleri

kullanilir. Bu galismada, bu segim kriterlerinin kapula se¢imindeki performanslari simulasyon

1. Introduction

As a noun, copula means " a link, tie, bond' and as a
term, copula is a function that connects the
marginal distributions to their joint distribution
function. Abe Sklar first introduced copula as a
term in his article in 1959. For a brief introduction
to the properties and
applications of copulas, Sklar (1973), Schweizer and
Sklar (1983), Joe (1997), Frees and Valdez (1998),
Nelsen (2006) can be recommended. Also, a wide

theory, statistical

range of copula families that provide various
dependence structures can be found in Nelsen
(2006).
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Traditionally, the dependence structure between
two random variables is completely described by
known bivariate distributions. However, when
different types of dependence structures are
needed in any study, more efficient models can be
used instead of standard ones. In this manner,

copula functions are used to obtain such models.

A copula function allows describing dependence
structure of random variables independently of
their marginals. This is an important advantage
that is provided by copula modeling. Copula
functions also allow for asymmetric dependence
unlike linear correlation coefficient. So, the
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dependence structure that represents by a copula
function does not change with increasing and
continuous transformations. It means that copula
functions are invariant under this kind of
transformations (Nelsen, 2006).

All information about the dependence structure
takes place in the copula. So, specifying the copula
function becomes an important issue. By this
purpose, estimating the copula parameter(s) is a
common way for choosing a parametric copula that
fits better than the other proper candidates.
However, there is no certain way to choose a
copula that fits data precisely. For a comprehensive
research about goodness of fit tests for copulas
Genest et al. (2009) can be considered.
Additionally, Belgorodski (2010) is a remarkable
detailed

applications for selecting copula functions. In this

work that provides a review with
paper, the performances of the specifying ability of
some selection criteria to give best possible fit to
data are examined by some simulation studies.

The paper is organized as follows: in Section 2
some bivariate Archimedean copula families are
introduced. The following section, estimating the
copula parameter and obtaining the empirical
estimate of a copula are outlined. The rest of the
section, the selection criteria that are used in this
work are introduced. In Section 4, some simulation
studies are performed. Finally, the results are
summarized and evaluated in conclusion section.

2. Some Bivariate Archimedean Copulas

According to Sklar (1959), the bivariate cumulative
distribution function H of any pair (X,Y) of
continuous random varaibles may be written in the
form

H(x,y) = C{F(x),G(¥)}Lx,y €R (1)

where F(x) and G(y) are continuous marginal
distributions and C is the copula function with
C:[0,11% - [0,1].
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Additionally, if the marginals are continuous, there
is a unique copula representation (Sklar, 1959).

C is an Archimedean copula, if it can be expressed
in the form of

Cey) = HolF} + oMY} (2)
for some convex, decreasing function ¢ .

®:[0,1] = [0, =] is called generator function and
which is continuous and has the properties below.
i. (1) =0
ii. $p(0) =oo
iii. ¢ is decreasing,i.e Vvt € (0,1),¢'(t) < 0
iv. ¢ is convex,i.e Vt € (0,1),d"(t) =0
The function ¢ has an inverse ¢7:[0,] —»
[0,1] which has the same properties except that

$7(0) = 1ve ¢p™'(>) = 0.

Suppose that the copula represented by (1)
belongs to a family of copulas indexed by a
parameter, 8, that is called the ‘dependence
parameter' (or copula parameter), which measures
dependence between the marginals. There is a
relationship  between

parameters of some

Archimedean copulas and Kendall's tau or
Spearman’s rho (Nelsen, 2006). The one with

Kendall’s tau is preferred, here.

In this study, because of some benefits that
provide such as the relationship Kendall’s tau and
their
functions,
Clayton (Clayton, 1978),
Joe (Joe,

parameters, four Archimedean copula
including Gumbel (Gumbel, 1960),
Frank (Frank, 1979) and
1997) are employed. These copula
functions, corresponding parameter space and the

relationship with Kendall’s tau are given in Tablel.

(1)
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. Bivariate copula Copula Parameter T
Family
C(uq,uy) Space
Gumbel exp[—[(—lnuy)? + (—lnu,)? 19| =1 %
Tablel.Some
Clayton ()™ + (uz)~° — 1)‘1/9 0>1 b bivariate
6+2 .
Archimedea
1 (1—-e)— (1 —e?u)(1—ebu2) 4 n copulas
Frank (_ 5) ln{ (1—e9) —ee < <o 1- ) [1-D;(®)] andthe
relationship
1— ()™ + (up)™® —uy,Ou, %) 4 with
Joe =1 1- E[Dj(e)] Kendall’s tau
Da(8) =& [P —dt, n>0, D) = fJ“““ﬁ%‘tG)dt, n>0
i i (O]
Gumt.>el copula is one of asy'm.metru.: copulfa\ K O =t— s (3)
functions and represents positive right tail

dependence. It means that the pairs that are
modeled by Gumbel copula more likely to increase
together than decrease together. Clayton copula is
also an asymmetric copula function and unlike
Gumbel copula it represents the negative tail
dependence. Frank copula is different from these
two copulas. Frank is a symmetric copula function
and its dependence parameter has a wide range.
Joe copula is similar to the Clayton copula.
Moreover, the right tail positive dependence is
stronger for Joe copula.

3. Selection Procedures

The problem of selecting the copula functions
among the candidates have been considered in
Atkinson (1969), Atkinson(1970) and Cox (1962),
Genest and Rivest (1993), Durrleman et al.(2000),
Huard et al. (2006).

A random sample is drawn from the corresponding
copula function C that is defined in (1). Here, the
main assumption is C copula function, is a member
of an Archimedean copula family.

A bivariate Archimedean copula that is defined in
(2) can be uniquely determined by the function is
defined on (0,1) and shown in (3) (Genest and
Rivest 1993)
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It means that a bivariate Archimedean copula
function can be determined by one-dimensional
K(t) (Genest and Rivest 1993). In fact, K (¢) is the
distribution function of the Archimedean copula
function. Table 2 gives the studied copula functions
and their distribution functions.

Table 2.Distribution functions of the Archimedean
Copulas

i t
Family Generator Ko®) =t - ¢,( )
Pt
o)
Gumbel (—Int)? _ tint
%]
Clayton t7% -1 o+t —¢
t —_—
0
Frank l et —1 lne_et -1
—Nn—pg— -6 _
e9_1 t— eg 1(eet_1)
Joe —-In(1-(1-1t)9 -n(1-(1-1)9%
—0(l—0)° 1
1—-(1-1¢)f
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This fact given in (3) is used to select suitable
bivariate Archimedean copula function among the
Archimedean candidates. By this purpose, the
empirical estimation of K(t) is compared to its
theoretical estimate (Genest and Rivest 1993).
Suppose that, K, (t)
estimation of K(t) and Kg4(t) represents the

represents the empirical

theoretical estimate.

The empirical estimate of K(t) ,thatis, K,,(t) from
random sample is obtained by using pseudo
observations. Because there are not T's , pseudo
observations

i [ < xi&y; < vl

T, = H,(X,,Y,) = — L i=12.n

are obtained like this.Empirical estimates of K(t),
that is K,(t), are got by using these pseudo
observations.

#(T;st)
n+1

Ky ) =

The parameters of candidate copulas are estimated
by using the relationship between Kendall's tau and
the studied copulas. The relationship is given in
Table 1.

Using Table (2), the parametric estimate of K(t)
;thatis, K (t) is constructed.

The likelihood concept is related to statistical
inference. So, this concept is used in statistical
literature for various purposes like fitting models to
the data.

information criteria (AIC), Bayesian information

Selection criteria, such as Akaike
criteria (BIC) are ones that serve this purpose. Also,
some derivations of AIC and other information
criteria  can be used for model selection
(Grgnneberg and Hjort 2014). In this study, the
selection criteria that are listed below are used to
select an Archimedean copula function that gives
better fit.

AIC = =2¥7 ;In[c(u;q,u;2); 0] + 2k is based
on a likelihood principle and the preferred model is
the lowest AIC value.

AKU FEMUBID 16 (2016) 021303

BIC = =2%¥1In[c(u;1,u;3); 0] +In(nk)  and
this is also based on the likelihood principle. Same
as the AIC, the preferred model is with lowest BIC

value.

Here, c(x,y) is a density of a copula function and is
. _9c(xy)

defined as c(x,y) = “oxay And n represents

sample size, k is the number of estimated
parameters that model contains.

Finally, minimum distance (MD) estimation method
is considered in this study to select an appropriate
copula. MD estimation has been developed by
Wolfowitz (Wolfowitz, 1957). It is a commonly used
statistical method for fitting the model to the data.
The distance between the estimated and empirical
distribution is the basis of goodness of fit tests.
Minimizing this distance is used as a criterion for
testing the closeness. For example, Cramer-Von
Mises Criterion, Kolmogorov-Smirnov Criterion and
Anderson-Darling Criterion are treated as special
cases of general form of distance measure.
Without loss of generality, general form of this
distance is preferred as a criterion.

Following Frees and Valdez (1997), minimizing the
distance such as MD = [[ K, (t) — Ky (t)]?dK, (t)
is used to specify the degree of closeness of the
Ky, (t) and K (t) in this study.

4. Simulation Study

This section focused on the performances of
selection criteria that were introduced in Section 3.
A computer program in R (R Development Core
Team 2012) is conducted for simulation studies.
For studied copula functions, 100 replications of
n = {50,100,300} were
performed for three Kendall’'s tau values T =
{0.3,0.5,0.7} for
dependence, respectively. For each turn, one

several sample sizes,

small, medium and large
copula function was chosen as a true copula
function, and then drawn random samples of

different sizes from this true copula function. Then,
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Table 3. Percentages of correctly identified copula

‘n1 = 50
True Copula

n, = 100 ns = 300

Function Kendall’s Tau MD AlC BIC MD AlC BIC MD AlC BIC
7, =0.3 40 43 44 54 62 62 78 88 94
Gumbel 7, =05 60 69 69 73 84 85 95 97 100
73 =0.7 70 82 84 85 95 96 97 100 100
7, = 0.3 83 83 81 92 92 93 99 100 100
Clayton 7, =05 93 94 95 97 98 99 100 100 100
73 =0.7 95 98 98 98 99 100 100 100 100
7, =03 38 67 68 58 81 81 89 99 100
Frank 7, =0.5 55 84 85 75 94 94 95 100 100
73 =0.7 63 94 95 80 99 99 99 100 100
7, = 0.3 40 69 68 54 75 75 80 90 92
Joe 7, =05 51 77 78 69 88 88 90 100 100
73 =0.7 56 88 88 78 95 95 99 100 100

empirical (K,,) and theoretical (K) estimates were
obtained. Finally, according to all selection criteria,
the copula function that gave better possible fit
was identified. Obviously, the true copula was
expected to be identified. This process was
replicated 100 times and reported the percentage
of the true copula correctly identified by using each
selection criteria. The results were summarized

5. Conclusions

In this paper, selecting an appropriate bivariate
Archimedean copula function to model data by the
well known selection criteria, AIC, BIC and MD
were considered.

Simulations were performed to investigate the
selection ability of the criteria to detect the true
copula functions among the candidates.

Results showed that sample size and correlation
were important features. When sample size and
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dependence size increased, then the accuracy of
identifying true copula also increased. However,
for small sample sizes, the performances of criteria
were not well.

According to the results, MD failed more times
than the others while identifying the true copula
functions. Particularly, at low dependence and
sample size, MD had worse performances.
However, AIC and BIC had same performances at
any level.

Considering the randomness of these criteria, they
cannot tell anything about the quality about the
model. All candidates may fit poorly but even
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powerful criteria. In this case, hypotheses tests
may be taken account.

So, in any study you have a large sample with large
dependence, the selection criteria may serve very
well to specify the appropriate copula function.
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