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Abstract 
  In this study, non-linear difference population model has been 
considered. Stability conditions obtained by linearizing this 
model have been generalized to a certain step by presenting a 

different approach. 

 

Lineer Olmayan Fark Popülasyon Modelinin bir Sınıfı için Genelleştirilmiş 
Kararlılık

Anahtar kelimeler                                   

Lineer olmayan dinamik modeller; 

Kararlılık;  

 

 

Popülasyon Modelleri; 

Schur-Cohn Kriteri;  
Özet 

Fark Denklemleri; 

Zaman Gecikmesi; 

 
 
 
 

Bu çalışmada, lineer olmayan fark popülasyon modeli gözönüne 
alındı. Bu model lineerleştirilerek elde edilen kararlılık şartları, 
farklı bir yaklaşım sunarak belirli bir adıma kadar genelleştirildi. 
 

© Afyon Kocatepe Üniversitesi 

1. Introduction 
Life of organisms on earth, natural phenomena and 
problems encountered can be expressed with 
mathematical terms. This form of operation, which 
serves for expressing actual phenomena, is 
mathematical modeling. Phenomena connected to 
discrete-time variables in this way are given with 
difference models. Accordingly, non-linear model 
approach instead of simple configurations enables 
us to get better results. Recently, the subject of 
what the organism population will be in the future 
has become more salient. Consequently, what the 
conditions, which ensure the model to be stable, is 
important [see Merdan and Ak Gümüş (2012), Çelik 
et al (2008), Merdan and Karaoğlu (2012), Ak 
Gümüş (2014), Ak Gümüş and Köse (2012)]. Thus, 
we might have a precise knowledge on the number 

of living beings in a future time. Our aim is to provide a 
generalization of stability conditions of non-linear 

delayed difference equation given below for = ,K  

=1,2,3,4,5,6,7,8K  

 

1 = ( ), > 0t t tN N f N     (1) 

 

where   is per capita growth rate, tN  represents 

the population density at time ,t    is the time for 

sexual maturity. Also, ( )tf N   is the function 

describing interactions (competitions) among the 
mature individuals. The Eq.(1) is a single-species 
population model formed with a realistic approach. 
Stability examination of the model was conducted for 

=1  [see Çelik et al (2008)]. Again, stability 
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conditions for = 2  and = 3  were 
investigated [see Merdan and Ak Gümüş (2012), 
Merdan and Karaoğlu (2012)]. 

In this study, section 2 contains a different 
approach based on finding stability conditions for 

= ,K  =1,2,3,4,5,6,7,8K  in the Eq.(1). In 

section 3, the examples which confirm the results 
are given. Section 4 was allocated to the conclusion 
part. 

 
2. Stability Conditions 

 

Definition 1. [Allen (2007)] For the first order 

difference equation 1 = ( )t tx f x  an equilibrium 

solution is a constant solution x  to the difference 
equation, that is, a solution x  satisfying 

= ( ).x f x  

For the first order system,  

1 = ( )t tX F X  

an equilibrium solution is a constant solution X  
satisfying 

= ( ).X F X  

Local stability criteria for first order 
non-linear systems or for higher order non-linear 
difference equations depend on the behavior of 
the linearized system. Consider a first order system 
consisting of n  equations, 

1 2( ) = ( ( ), ( ),..., ( )) ,T

nX t x t x t x t  

1 = ( )t tX F X                     (2) 

where 
1 2= ( , ,..., )T

nF f f f  and 
1 2,...,( , ),i i nf f x x x

=1,2,..., .i n Suppose system (2) has an equilibrium at 

.X  Then if =t tU X   X  , linearization of 

system (2) about X  leads to the system 

1 = ,t tU JU  

where J  is the Jacobian matrix evaluated at 

,X  

1 1 1

1 2

2 2 2

1 2

1 2

( ) ( ) ( )

( ) ( ) ( )

= .

( ) ( ) ( )

n

n

n n n

n

f X f X f X

x x x

f X f X f X

J x x x

f X f X f X

x x x

   
 

   
   
 

   
 
 
   
     

 

 

Local asymptotic stability of X  (or the 

system of containing X  ) depends on the 
eigenvalues of the Jacobian matrix, which in turn 
depend on the existence of the partial derivatives in a 

region containing .X  Therefore, for local asymptotic 

stability of ,X  we require that the partial derivatives 

of iF  be continuous in an open set containing X  

[see Allen (2007)]. Equivalently, the solution of Eq.(2) is 

asymptotically stable if and only if <1  is held for 

every zero   of the characteristic polynomial of 
Jacobian matrix. 

The equation obtained by linearizing the Eq.(1) 
for = K  is in the form of 

1 = 0,K Kx x p                      (3) 

its characteristic polynomial 
1( ) = K Kg p      

 where, = ( )'p f N N    such that f  has a 

continuous second-order derivative in some interval 

I  containing .N 
 Also, N 

 is the equilibrium 
point of the Eq.(1). First, let’s give the relevant 
theorem for this. 

 

Theorem 2 .(Schur-Cohn Criteria): The zeros of the 
characteristic polynomial (4) lie inside the unit disk if 
and only if the following hold: 

( ) ( 1) ( 2) 2

1 2 2 1( ) = k k k

k k kG p p p p p      

       (4) 

  

(i)  (1) > 0,G  

(ii)  ( 1) ( 1) > 0,k G   

(iii)  the ( 1) ( 1)k k    matrices 
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1 1

1

3 2 4 3

2 3 1 1 3 2

1 0 0 0 0 0 0

1 0 0 0 0

=

1 0 0

1

k

k k

k

k k k

k k k k

p

p p p

B

p p p p p

p p p p p p p







 

  

   
   
   
   
   
   
      

  

 are positive innerwise [Elaydi (2006)]. 

 
Remark 3. The necessary and sufficient condition 
for the Eq.(1) to be stable, the Eq.(3) to be stable is 
for = K .    

Accordingly, considering the first two 
conditions from Theorem 2, the necessary and 
sufficient condition for the Eq.(3) to be stable is  

< 0p                           (5) 

and 
1 1( 1) [( 1) ( 1) ] > 0.K K K p           (6) 

 

If these conditions are considered, the cases 

< 0p  and > 2p   are respectively obtained for 

odd and even values of K  in the Eq.(6). Then, 
let’s give stability conditions for odd and even 

values of K  via the condition iii) from Theorem 
2. 

 
2.1. Stability analysis of the equation (1) for odd 
number values of K 

 
Now, let’s perform stability analysis for odd 

number values of K  in the Eq.(1). As per 
Theorem 2, each stability condition at k  steps 
should also added by the cases of positive absolute 
values of stability conditions from =1k  to that 
step. When the positive innerwise for conditions iii) 
in Theorem 2 are calculated by using Maple 
software for odd values of = 2 1K k  , 

=1,2,3,4k , the stability conditions 

corresponding characteristic polynomials of 
2 2 1k k p     of linearized equation, as follows: 

for =1,k  

    
2 , < 1p p                    (7) 

for = 2,k  

  
4 3 3 2, 2 < 1p p p p              (8) 

for = 3,k  

 
6 5 5 3 2 4, 4 3 <1 3p p p p p p             (9) 

for = 4,k  
8 7 7 5 3 2 4 6, 6 10 4 <1 6 5p p p p p p p p            

(10) 

can be obtained. Additionaly, if the right side of the 
inequalities above are considered, coefficients of the 

terms ip , = 2,4,6i  are in the form of 

 
Table 1 

=k         2p    4p    6p   

2 = 3    1       

3 = 5    3    1     

4 = 7    6    5    1   

5 = 9    10    15    7   

6 =11    15    35    28   

7 =13    21    70    84   

8 =15    28    126    270   

 
and let’s give how to find coefficients with the 

algorithm below. Coefficient values of 2p  in odd 

values of = 2 1kT k  ;  kA  are found 

 

1 = 0A  

= ( 1) [ 2], = 2k
k kA k


   

1= ( 1) [ ( 1)], = 3,4,5,...
( 1)

kk
k

k

A
A k k





  


 

Coefficients of 4p  given as kB  become, 

 

1 2= 0, = 0B B  

= ( 4), = 3k kB k   

1= ( 4), = 4k kB B k   

1
1 1 2= [ ], = 5,6,...

( 1)

k
k k k k

k

A
B B B B k




    


 

and similarly, coefficients of 6p ; kC are found as 

 

1 2 3= = = 0C C C  

= ( 1) [ 6], = 4k
k kC k


   
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1= ( 1) [ 6], = 5
( 1)

kk
k

k

C
C k





 


 

 
1 1 2

1= ( 1) [ ( )], = 6,7,...
( 1) ( 1) ( 1)

k k kk
k k

k k k

C C C
C B k



  

  
   

  

 
and also, considering statements in the left side of 
the inequalities, depending of coefficients of the 

terms ,ip  = 3,5,7i  it is in the form of 

 
Table 2 

=k    3p   5p   7p   

2 = 3   1      

3 = 5   4   1    

4 = 7   10   6   1  

5 = 9   20   21  8   

6 =11   35   56   36   

7 =13   56   126   120   

8 =15    84   252   330   

 
The algorithm associated with coefficients of the 

terms 3;p  kY  is found as, 

 

1 = 0Y  

= 2, = 2k kY k   

1= ( 1) [ 3], = 3k
k kY Y k



   

1 1
2= [ ] ( 1) , = 4,6,8,...

( 1) ( 1)

k k
k k

k k

Y Y
Y Y k k

 

 
   

 

 

2
1 1= ( 1) [( ) ( 1) ], = 5,7,9,...

( 1)

kk
k k k

k

Y
Y Y k Y k






     



 and the algorithm depending on this as being 

coefficient of 5p ; kN  becomes, 

 

1 2= = 0N N  

= 4, = 3k kN k   

1= ( 1) [ 5], = 4k
k kN N k



   

1 1
1 2= [ ], = 5,7,9,...

( 1) ( 1)

k k
k k k

k k

N N
N Y N k

 

 
   

 
 

1 2
1 1= ( 1) [ ( )], = 6,8,10,...

( 1) ( 1)

k kk
k k k

k k

Y N
N N N k



 

 
    

 
 

Similarly, coefficient of 7p ; kL  is in the form of 

 

1 2 3= = = 0L L L  

= 6, = 4k kL k   

1= ( 1) [ 7], = 5k
k kL L k



   

1 1
1 2= ( ), = 6,8,10,...

( 1) ( 1)

k k
k k k

k k

L L
L N L k

 

 
   

 
 

1 2
1 1= ( 1) [ ( )], = 7,9,11,...

( 1) ( 1)

k kk
k k k

k k

N L
L L L k



 

 
    

 

 

So, we get the following general form for stability 
conditions of the polynomial 

2 2 1

1( ) = ,k kG p       = 1 , 2 , 3 , 4k  are 

obtained with < 0p  as 

7 5 3 1 2 4 6( 1) <1k

k k k k k kL p N p Y p kp A p B p C p       (11) 

such that ,ip  > 0.i  It is possible to get stability 

conditions for odd values of K  in the considered 
non-linear difference equation by using the algorithm 
above. 
 

 
2.2. Stability analysis of the equation (1) for even 
number values of K 
 
As per Theorem 2, each stability condition at k  steps 
should also added by the cases of positive absolute 
values of stability conditions from =1k  to that step. 
Similarly, if stability conditions for the values of 

= 2 ,K k  =1,2,3,...k in the Eq.(1) and corresponding 

characteristic polynomials of 2 1 2k k p     of 

linearized equation are calculated by using the 
condition iii) from Theorem 2, as follows: 

for =1,k  
3 2 2, <1p p p                (12) 

for = 2,k  
5 4 3 2 4, 2 <1 3p p p p p     

  
(13) 
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for = 3,k  
7 6 5 3 2 4 6, 4 3 <1 6 5p p p p p p p         (14) 

for = 4,k  
9 8 7 5 3 2 4 6 8, 6 10 4 <1 10 15 7p p p p p p p p p           (15) 

 

are obtained. It is seen that coefficients of ,ip  

= 2,4,6...,2i k  which are on the right side of the 

inequality, are in the form of 
 
Table 3  

=k     2p   4p   6p   

1 = 2    1       

2 = 4    3    1     

3 = 6    6    5    1   

4 = 8    10    15    7   

5 =10    15    35    28   

6 =12    21    70    84   

7 =14    28    126    270   

 
and let’s give how to find coefficients with the 

algorithm below. Coefficients of 2;p  iM  are 

calculated with 
 
 
 

 
1

= ( 1) [ 1], =1k
k kM k





   

1 1

1
= ( 1) [ 2], = 2

( 1)

kk
k

k

M
M k





 


 


 

1 1

1
= ( 1) [ ], = 3,4,5,...

( 1)

kk
k

k

M
M k k





 


 


 

Coefficients of 4;p  kP  are in the form of 

 

1 = 0P  

= 3, = 2k kP k   

1= 4, = 3k kP P k   

1
1 1 21

= [ ], = 4,5,6,...
( 1)

k
k k k k

k

M
P P P P i




  

  


 

For coefficients of 6;p  ,iS  it can be written that 

 

1 2= = 0S S  

1
= ( 1) [ 5], = 3k

k kS T k
 

   

1 1

1
= ( 1) [ 6], = 4

( 1)

kk
k

k

S
S k





 


 


 

1 1 1 2
1 1 1 1

= ( 1) [ ( )], = 5,6,7,...
( 1) ( 1) ( 1)

k k kk
k k

k k k

S S S
S P k



  

   
   

   
  

 

and it is seen that coefficients of the terms ,ip  

= 3,5,7i  which are on the left side of the inequality, 

become 
Table 4 

=k      
3p      

5p    
7p   

2 = 4     1       

3 = 6    4     1     

4 = 8    10    6   1  

5 =10    20    21   8   

6 =12    35    56   36   

7 =14    56     126   120   

 

Depending on these coefficients, while 

coefficient of 3p ; kR  is calculated with the 

algorithm of 
 

1 = 0R  

= [ 3], = 2k kR k   

1

1= ( 1) [ 3], = 3k
k kR R k

 

   

 

1 1
21 1

= [ ] ( 1) , = 4,6,8,...
( 1) ( 1)

k k
k k

k k

R R
R R k k

 

 
 

   
 

 

1 2
1 11

= ( 1) [( ) ( 1) ], = 5,7,9,...
( 1)

kk
k k k

k

R
R R k R k





 
 

    


 

coefficient of the term 5p ; kV  is in the form of 

 

1 2= = 0V V  

= [ 5], = 3k kV k   

1

1= ( 1) [ 5], = 4k
k kV V k

 

   
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1 1
1 21 1

= [ ] [ ], = 5,7,9,..
( 1) ( 1)

k k
k k k

k k

V V
V R V k

 

 
  
  

 

 

1 1 2
1 11 1

= ( 1) [( ) ( )], = 6,8,10,...
( 1) ( 1)

k kk
k k k

k k

R V
V V V k



 

  
  

   
 

 

Again, coefficient of the term 7p ; kZ  becomes 

 

1 2 3= = = 0Z Z Z  

= 7, = 4k kZ k   

1
= ( 1) [ 7], = 5k

k kZ Z k
 

   

1 1
1 21 1

= ( ) ( ), = 6,8,10,...
( 1) ( 1)

k k
k k k

k k

Z Z
Z V Z k

 

 
  
  

 

 

1 1 1
1 21 1

= ( 1) [( ) ( )], = 7,9,11,...
( 1) ( 1)

k kk
k k k

k k

Z Z
Z V Z k



 

  
  

   
 

 
So, we get the following general form for stability 
conditions of the polynomial 

2 1 2

2( ) = ,k kG p       =1,2,3,4k  are 

obtained with > 2p   as 

 
7 5 3 1 2 4 6 2( 1) <1 ...k k

k k k k k kZ p V p R p kp M p P p S p p         (16) 

 

It is possible to get stability conditions for even 

values of K  in the considered non-linear 
difference equation by using the algorithm above. 
 
3. Examples 

 

In order to support our theoretical result, we 
consider some numerical examples in this section. 

 

Example 4 Let us consider Eq.(1) for the case =1  
studied [see Çelik et al (2008)]. Then, we have  

1 1= ( ).t t tN N f N   

From Definition 1, we obtain  

( ) =1.f N 
 

If 1 2= = ( , )t t t tY N f N Y  
is taken ,  then we get 

1 1 1= ( ) = ( ) = ( , ).t t t t t t tN N f N N f Y f N Y  
 So, the 

Jacobian matrix evaluated about N 
 is  

( ) ( )
=

1 0

'f N N f N
J

    
 
 

 

so that its characteristic polynomial is 
2

1( ) = ( ).'G N f N        

Note that =1.K  From the condition (i)-(ii) in 
Theorem 2, we can write  

< 0,p  

and if the inequality (11) is used instead of the 
condition (iii) in Theorem 2, then we have 

<1.p  

such that 1 1 1 1 1 1= = = = = = 0.A B C Y N L  The 

result is confirmed.  

 

Example 5 Let us consider Eq.(1) for the case = 2  
studied [see Merdan and Ak Gümüş (2012)]. Then, we 
have  

1 2= ( ).t t tN N f N   

Smilarly; let us choose the following 

1 3= = ( , )t t t tZ Y f N Y  

1 2= = ( , )t t t tY N f N Y  

1 1= ( ) = ( , ).t t t t tN N f Z f N Y  

So, the Jacobian matrix can be written as 

( ) 0 ( )

= 1 0 0

0 1 0

'f N N f N

J

    
 
 
 
 

 

whose characteristic polynomial is  
3 2

2( ) = ( ).'G N f N        

Note that = 2.K  From the condition (i)-(ii) in 
Theorem 2, we can write  

> 2,p   

and if the inequality (16) is used instead of the 
condition (iii) in Theorem 2, then we have  

2<1 .p p  

such that 1 1 1 1 1= = = = = 0P S R V Z  and 1 = 1M   

1
1

1 1= ( 1) [ 1],M





    1 = 2.  The result is 

confirmed.  

 

4. Conclusion 
 

The importance of stability study is great in population 
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dynamics. Thanks to this, whether the population 
has reached an equilibrium is detected. And this 
provides us information about what the number of 
that population will be in the future. 

In this study, stability generalization of 
dynamic model, which is based on the Schur-Cohn 
criterion, is provided with a new method to a 
certain step. Also, it can be seen that the condition 
iii) in Schur-Cohn criteria can be obtained more 
easily. 
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