

Some Prešić Type Results in *b*-Dislocated Metric Spaces

A. Som Babu, Tatjana Došenović*, Md. Mustaq Ali, Stojan Radenović, and K. P. R. Rao

ABSTRACT. In this paper, we obtain a Prešić type common fixed point theorem for four maps in *b*-dislocated metric spaces. We also present one example to illustrate our main theorem. Further, we obtain two more corollaries.

Keywords: b - Dislocated metric spaces, Jointly 2k - weakly compatible pairs, Prešić type theorem.

2010 Mathematics Subject Classification: 54H25, 47H10.

1. INTRODUCTION AND PRELIMINARIES

There are several generalizations of the Banach contraction principle in literature on fixed point theory. Recently, very interesting results regarding fixed point are presented in the papers ([3, 4, 5, 7]. One of the generalization is a famous Prešić type fixed point theorem. There are a lot of generalizations of mentioned theorem (more on this topic see [1]-[2], [7]-[15]). Hitzler and Seda [6] introduced the concept of dislocated metric spaces (metric like spaces in [5], [15]) and established a fixed point theorem in complete dislocated metric spaces to generalize the celebrated Banach contraction principle. Recently Hussain et al. [7] introduced the definition of *b* - dislocated metric spaces to generalize the dislocated metric spaces introduced by [6] and proved two common fixed point theorems for four self mappings.

In this paper we have proved Prešić type common fixed point theorem for four mappings in b - dislocated metric spaces. One numerical example is also presented to illustrate our main theorem. We also obtained two corollaries for three and two maps in b - dislocated metric spaces.

Now we give some known definitions, lemmas and theorems which are needful for further discussion. Throughout this paper, *N* denotes the set of all positive integers.

Prešić [10] generalized the Banach contraction principle as follows.

Theorem 1.1. [10] Let (X, d) be a complete metric space, k be a positive integer and $T : X^k \to X$ be a mapping satisfying

(1.1)
$$d(T(x_1, x_2, \dots, x_k), T(x_2, x_3, \dots, x_{k+1})) \le \sum_{i=1}^k q_i d(x_i, x_{i+1}),$$

for all $x_1, x_2, \ldots, x_{k+1} \in X$, where $q_i \ge 0$ and $\sum_{i=1}^k q_i < 1$. Then there exists a unique point $x \in X$ such that $T(x, x, \ldots, x) = x$. Moreover, if x_1, x_2, \ldots, x_k are arbitrary points in X and for

Received: 19 December 2018; Accepted: 18 February 2019; Published Online: 21 February 2019 *Corresponding author: T. Dosenovic; tatjanad@tf.uns.ac.rs DOI: 10.33205/cma.499171

 $n \in \mathbb{N}$, $x_{n+k} = T(x_n, x_{n+1}, \dots, x_{n+k-1})$, then the sequence $\{x_n\}$ is convergent and $\lim_{n \to \infty} x_n = T(\lim_{n \to \infty} x_n, \lim_{n \to \infty} x_n, \dots, \lim_{n \to \infty} x_n)$.

Inspired by the Theorem 1.1, Ćirić and Prešić [8] proved the following theorem.

Theorem 1.2. [8] Let (X, d) be a complete metric space, k a positive integer and $T : X^k \to X$ be a mapping satisfying

(1.2)
$$d(T(x_1, x_2, \cdots, x_k), T(x_2, x_3, \cdots, x_{k+1})) \le \lambda \max\{d(x_i, x_{i+1}) : 1 \le i \le k\}$$

for all $x_1, x_2, \dots, x_k, x_{k+1}$ in X, and $\lambda \in (0, 1)$. Then there exists a point $x \in X$ such that $x = T(x, x, \dots, x)$.

Moreover, if x_1, x_2, \ldots, x_k are arbitrary points in X and for $n \in \mathbb{N}$, $x_{n+k} = T(x_n, x_{n+1}, \ldots, x_{n+k-1})$, then the sequence $\{x_n\}$ is convergent and $\lim_{n \to \infty} x_n = T(\lim_{n \to \infty} x_n, \lim_{n \to \infty} x_n, \ldots, \lim_{n \to \infty} x_n)$. If in addition, we suppose that on diagonal $\Delta \subset X^k$, $d(T(u, u, \ldots, u), T(v, v, \ldots, v)) < d(u, v)$ holds for $u, v \in X$ with $u \neq v$, then x is the unique fixed point satisfying $x = T(x, x, \ldots, x)$.

Later Rao et al. [11, 12] obtained some Presić fixed point theorems for two and three maps in metric spaces.

Definition 1.1. Let X be a nonempty set, k a positive integer and $T: X^{2k} \to X$ and $f: X \to X$. The pair (f,T) is said to be 2k-weakly compatible if f(T(x,x,...,x)) = T(fx, fx,...,fx) whenever there exists $x \in X$ such that fx = T(x,x,...,x)

Actully Rao et al. [11] obtained the following.

Theorem 1.3. Let (X, d) be a metric space and k be any positive integer. Let $S, T : X^{2k} \longrightarrow X$ and $f : X \longrightarrow X$ be mappings satisfying

(1) $d(S(x_1, x_2, ..., x_{2k}), T(x_2, x_3, ..., x_{2k+1})) \le \lambda \max\{d(fx_i, fx_{i+1}) : 1 \le i \le 2k\}$ for all $x_1, x_2, ..., x_{2k}, x_{2k+1} \in X$, where $\lambda \in (0, 1)$.

(2) d(S(u, u, ..., u), T(v, v, ..., v)) < d(fu, fv) for all $u, v \in X$ with $u \neq v$

(3) Suppose that f(X) is complete and either (f, S) or (f, T) is 2k-weakly compatible pair.

Then there exists a unique point $p \in X$ such that p = fp = S(p, p, ..., p, p) = T(p, p, ..., p, p).

Hussain et al. [7] introduced *b*-dislocated metric spaces as follows.

Definition 1.2. Let X be a non empty set. A mapping $b_d : X \times X \to [0, \infty)$ is called a b - dislocated metric (or simply b_d -metric) if the following conditions hold for any $x, y, z \in X$ and $s \ge 1$:

 $\begin{array}{l} (b_{d1}) : If \, b_d(x,y) = 0 \ then \ x = y, \\ (b_{d2}) : b_d(x,y) = b_d(y,x), \\ (b_{d3}) : b_d(x,y) \leq s[b_d(x,z) + b_d(z,y)]. \end{array}$

The pair (X, b_d) is called a b-dislocated metric space or b_d -metric space.

Definition 1.3. [7]

(i) A sequence $\{x_n\}$ in b-dislocated metric space (X, b_d) converges with respect to b_d if there exists $x \in X$ such that $b_d(x_n, x)$ converges to 0 as $n \to \infty$. In this case, x is called the limit of $\{x_n\}$ and we write $x_n \to x$.

- (*ii*) A sequence $\{x_n\}$ in a b-dislocated metric space (X, b_d) is called a b_d Cauchy sequence if given $\varepsilon > 0$, there exists $n_0 \in N$ such that $b_d(x_m, x_n) < \varepsilon$ for all $n, m \ge n_0$ or $\lim_{n,m\to\infty} b_d(x_m, x_n) = 0$.
- (*iii*) A b-dislocated metric (X, b_d) is called b_d -complete if every b_d -Cauchy sequence in X is b_d -convergent.

Lemma 1.1. [7] Let (X, b_d) be a b-dislocated metric space with $s \ge 1$. Suppose that $\{x_n\}$ and $\{y_n\}$ are b_d -convergent to x, y respectively. Then we have

$$\frac{1}{s^2} b_d(x,y) \le \lim_{n \to \infty} \inf b_d(x_n, y_n) \le \lim_{n \to \infty} \sup b_d(x_n, y_n) \le s^2 b_d(x, y),$$

and

$$\frac{1}{s} b_d(x,z) \le \lim_{n \to \infty} \inf b_d(x_n,z) \le \lim_{n \to \infty} \sup b_d(x_n,z) \le s b_d(x,z)$$

for all $z \in X$.

2. MAIN RESULT

We introduce the definition of jointly 2k-weakly compatible pairs as follows.

Definition 2.4. Let X be a nonempty set, k a positive integer and $S, T : X^{2k} \to X$ and $f, g : X \to X$. The pairs (f, S) and (g, T) are said to be jointly 2k-weakly compatible if

$$f(S(x, x, ..., x)) = S(fx, fx, ..., fx)$$

and

$$g(T(x, x, \dots, x)) = T(gx, gx, \dots, gx)$$

whenever there exists $x \in X$ such that fx = S(x, x, ..., x) and gx = T(x, x, ..., x).

Now we give our main result. The contractive condition in the next theorem is similar with conditions in [2, 7, 10, 13].

Theorem 2.4. Let (X, b_d) be a b_d -complete b-dislocated metric space with $s \ge 1$ and k be any positive integer. Let $S, T : X^{2k} \longrightarrow X$ and $f, g : X \longrightarrow X$ be mappings satisfying

(2.3)
$$S(X^{2k}) \subseteq g(X), T(X^{2k}) \subseteq f(X),$$

(2.4)

$$b_d(S(x_1, x_2, \dots, x_{2k}), T(y_1, y_2, \dots, y_{2k})) \le \lambda \max \left\{ \begin{array}{c} b_d(gx_1, fy_1), b_d(fx_2, gy_2), \\ b_d(gx_3, fy_3), b_d(fx_4, gy_4), \\ \dots \\ b_d(gx_{2k-1}, fy_{2k-1}), b_d(fx_{2k}, gy_{2k}) \end{array} \right\}$$

for all $x_1, x_2, ..., x_{2k}, y_1, y_2, ..., y_{2k} \in X$, where $\lambda \in (0, \frac{1}{s^{2k}})$.

(2.5) (f, S) and (g, T) are jointly 2k – weakly compatible pairs,

(2.6) Assume that there exists $u \in X$ such that fu = gu whenever there is sequence $\{y_{2k+n}\}_{n=1}^{\infty} \in X$ with $\lim \lim_{n \to \infty} y_{2k+n} = fu = gu = z \in X$.

Then z is the unique point in X such that z = fz = gz = S(z, z, ..., z, z) = T(z, z, ..., z, z). *Proof.* Suppose $x_1, x_2, ..., x_{2k}$ are arbitrary points in X, From (2.3), we can define

$$y_{2k+2n-1} = S(x_{2n-1}, x_{2n}, \dots, x_{2k+2n-2}) = gx_{2k+2n-1}$$

and

$$y_{2k+2n} = T(x_{2n}, x_{2n+1}, \dots, x_{2k+2n-1}) = fx_{2k+2n}, \ n = 1, 2, \dots$$

Let

$$\alpha_{2n} = b_d(fx_{2n}, gx_{2n+1}),$$

and

 $\alpha_{2n-1} = b_d(gx_{2n-1}, fx_{2n}) \ n = 1, 2, \dots$

Write $\theta = \lambda^{\frac{1}{2k}}$ and $\mu = \max\{\frac{\alpha_1}{\theta}, \frac{\alpha_2}{(\theta)^2}, \dots, \frac{\alpha_{2k}}{(\theta)^{2k}}\}$. Then $0 < \theta < 1$ and by the selection of μ , we have

(2.7)
$$\alpha_n \le \mu \cdot (\theta)^n, \ n = 1, 2, \dots, 2k$$

Consider

$$(2.8) \ \alpha_{2k+1} = b_d(gx_{2k+1}, fx_{2k+2}) = b_d(S(x_1, x_2, \dots, x_{2k-1}, x_{2k}), T(x_2, x_3, \dots, x_{2k}, x_{2k+1}))$$

$$\leq \lambda \max \left\{ \begin{array}{c} b_d(gx_1, fx_2), b_d(fx_2, gx_3), \\ b_d(gx_3, fx_4), b_d(fx_4, gx_5), \\ \dots \\ b_d(gx_{2k-1}, fx_{2k}), b_d(fx_{2k}, gx_{2k+1}) \end{array} \right\} \\ \leq \lambda \max\{\alpha_1, \alpha_2, \alpha_3, \alpha_4, \dots, \alpha_{2k-1}, \alpha_{2k}\} \\ \leq \lambda \max\{\mu \cdot \theta, \mu \cdot (\theta)^2, \dots, \mu \cdot (\theta)^{2k}\}, \end{array} \right\}$$

$$= \lambda \mu \cdot \theta = \mu \cdot \theta \cdot (\theta)^{2k} = \mu \cdot (\theta)^{2k+1}.$$

using (2.7), and

(2.9)

$$\alpha_{2k+2} = b_d(fx_{2k+2}, gx_{2k+3})$$

= $b_d(T(x_2, x_3, ..., x_{2k}, x_{2k+1}), S(x_3, x_4, ..., x_{2k+1}, x_{2k+2}))$

$$= b_d(S(x_3, x_4, ..., x_{2k+1}, x_{2k+2}), T(x_2, x_3, ..., x_{2k}, x_{2k+1}))$$

$$\leq \lambda \max \begin{cases} b_d(gx_3, fx_2), b_d(fx_4, gx_3), \\ b_d(gx_5, fx_4), b_d(fx_6, gx_5), \\ \dots \\ b_d(gx_{2k+1}, fx_{2k}), b_d(fx_{2k+2}, gx_{2k+1}) \end{cases}$$

$$\leq \lambda \max\{\alpha_2, \alpha_3, \alpha_4, \alpha_5, \dots, \alpha_{2k}, \alpha_{2k+1}\} \\ \leq \lambda \max\{\mu \cdot (\theta)^2, \mu \cdot (\theta)^3, \dots, \mu \cdot (\theta)^{2k}, \mu \cdot (\theta)^{2k+1}\}, \end{cases}$$

$$= \lambda \mu \cdot (\theta)^{2} = \mu \cdot (\theta)^{2} (\theta)^{2k} = \mu \cdot (\theta)^{2k+2},$$

using (2.7) and (2.8).

Continuing in this way, we get

(2.10)
$$\alpha_n \le \mu \cdot (\theta)^n,$$

for n = 1, 2, ...Consider now (2.11) $b_d(y_{2k+2n-1}, y_{2k+2n}) = b_d(S(x_{2n-1}, x_{2n}, ..., x_{2k+2n-2}), T(x_{2n}, x_{2n+1}, ..., x_{2k+2n-1}))$ $\leq \lambda \max \begin{cases} b_d(g_{2n-1}, f_{2n}), b_d(f_{2n}, g_{2n+1}), \\ \dots \\ b_d(g_{2k+2n-3}, f_{2k+2n-2}), \\ b_d(f_{2k+2n-2}, g_{2k+2n-1}) \end{cases}$ $\leq \lambda \max \{ \alpha_{2n-1}, \alpha_{2n+2n-2}, g_{2k+2n-2}, g_{2k+2n-2} \}$

$$\leq \lambda \max\{u_{2n-1}, u_{2n}, ..., u_{2k+2n-3}, u_{2k+2n-2}\}$$

$$\leq \lambda \max\{\mu \cdot (\theta)^{2n-1}, \mu \cdot (\theta)^{2n}, ..., \mu \cdot (\theta)^{2k+2n-3}, \mu \cdot (\theta)^{2k+2n-2}\},$$

$$= \lambda \mu \cdot (\theta)^{2n-1} = \mu \cdot (\theta)^{2k} (\theta)^{2n-1} = \mu \cdot (\theta)^{2k+2n-1}$$

Also

$$(2.12) \quad b_d(y_{2k+2n}, y_{2k+2n+1}) = b_d(T(x_{2n}, x_{2n+1}, \dots, x_{2k+2n-1}), S(x_{2n+1}, x_{2n+2}, \dots, x_{2k+2n}))$$

$$= b_d(S(x_{2n+1}, x_{2n+2}, \dots, x_{2k+2n}), T(x_{2n}, x_{2n+1}, \dots, x_{2k+2n-1})) \\ \leq \lambda \max \left\{ \begin{array}{c} b_d(gx_{2n+1}, fx_{2n}), b_d(fx_{2n+2}, gx_{2n+1}), \\ b_d(gx_{2n+3}, fx_{2n+2}), b_d(fx_{2n+4}, gx_{2n+3}), \\ \dots \\ b_d(gx_{2k+2n-1}, fx_{2k+2n-2}), b_d(fx_{2k+2n}, gx_{2k+2n-1}) \end{array} \right\} \\ \leq \lambda \max\{\alpha_{2n}, \alpha_{2n+1}, \alpha_{2n+2}, \alpha_{2n+3}, \dots, \alpha_{2k+2n-1}\} \\ \leq \lambda \max\{\mu \cdot (\theta)^{2n}, \mu \cdot (\theta)^{2n+1}, \dots, \mu \cdot (\theta)^{2k+2n-1}\}, \\ = \lambda \mu \cdot (\theta)^{2n} = \mu \cdot (\theta)^{2n} (\theta)^{2k} = \mu \cdot (\theta)^{2k+2n}. \end{aligned}$$

From (2.11) and (2.12), we have

(2.13)
$$b_d(y_{2k+n}, y_{2k+n+1}) \le \mu \cdot (\theta)^{2k+n}, \ n = 1, 2, 3, \dots$$

Now, using (2.13), for m > n and using the fact that s > 1 we have

$$b_d(y_{2k+n}, y_{2k+m}) \leq \begin{pmatrix} s \ b_d(y_{2k+n}, y_{2k+n+1}) + s^2 \ b_d(y_{2k+n+1}, y_{2k+n+2}) \\ + s^3 \ b_d(y_{2k+n+2}, y_{2k+n+3}) + \dots + \\ s^{m-n-1} \ b_d(y_{2k+m-1}, y_{2k+m}) \end{pmatrix}$$
$$\leq \begin{pmatrix} s \ \mu \cdot (\theta)^{2k+n} + s^2 \ \mu \cdot (\theta)^{2k+n+1} + s^3 \ \mu \cdot (\theta)^{2k+n+2} \\ + \dots + s^{m-n-1} \ \mu \cdot (\theta)^{2k+m-1}, \end{pmatrix}$$

$$\begin{split} &\leq \quad \mu \cdot \left[\begin{array}{cc} (s\theta)^{2k+n} + (s\theta)^{2k+n+1} + (s\theta)^{2k+n+2} \\ &+ \ldots + (s\theta)^{2k+m-1} \end{array} \right] \\ &\leq \quad \mu (s\theta)^{2k} \left[\frac{(s\theta)^n}{1-s\theta} \right] \text{ since } s\theta = s\lambda^{\frac{1}{2k}} < s \cdot \frac{1}{s} = 1 \\ &\rightarrow \quad 0 \text{ as } n \to \infty, m \to \infty. \end{split}$$

Therefore, $\{y_{2k+n}\}$ is a Cauchy sequence in (X, b_d) . Since X is b_d -complete, there exists $z \in X$ such that $y_{2k+n} \to z$ as $n \to \infty$.

From (2.6), there exists
$$u \in X$$
 such that

$$(2.14) z = fu = gu.$$

Now consider

$$b_d(S(u, u, ..., u), y_{2k+2n}) = b_d(S(u, u, ..., u), T(x_{2n}, x_{2n+1}, ..., x_{2n+2k-1})) \\ \leq \lambda \max \left\{ \begin{array}{c} b_d(gu, fx_{2n}), b_d(fu, gx_{2n+1}), \\ ..., \\ b_d(gu, fx_{2k+2n-2}), b_d(fu, gx_{2k+2n-1}) \end{array} \right\}.$$

Letting $n \to \infty$ and using (2.14), we get

(2.15)
$$\frac{1}{s} b_d(S(u, u, ..., u), fu) \le 0 \text{ so that } S(u, u, ..., u) = fu.$$

Similarly we have

(2.16)
$$T(u, u, ..., u) = gu$$

Since (f, S) and (g, T) are jointly 2k-weakly compatible pairs and from (2.15) and (2.16), we have

$$(2.17) fz = f(fu) = f(S(u, u, ..., u)) = S(fu, fu, ..., fu) = S(z, z, ..., z),$$

and

(2.18)
$$gz = T(z, z, ..., z, z).$$

Now using (2.16) and (2.17), we get

Thus

$$(2.19) b_d(fz,z) \le \lambda \max\{b_d(gz,z), b_d(fz,z)\}$$

Similarly, we have

$$(2.20) b_d(gz,z) \le \lambda \max\{b_d(gz,z), b_d(fz,z)\}.$$

From (2.19) and (2.20), we have

$$\max\{b_d(gz, z), b_d(fz, z)\} \le \lambda \max\{b_d(gz, z), b_d(fz, z)\}.$$

which in turn yields that

$$(2.21) fz = z = gz.$$

From (2.17), (2.18) and (2.21), we have

(2.22)
$$fz = z = gz = S(z, z, ..., z, z) = T(z, z, ..., z, z).$$

Suppose there exists $z' \in X$ such that z' = fz' = gz' = S(z', z', ..., z', z') = T(z', z', ..., z', z').Then from (2.4), we have $b_d(z, z') = b_d(S(z, z, ..., z, z), T(z', z', ..., z', z'))$

$$\leq \lambda \max \left\{ \begin{array}{l} b_d(gz, fz'), b_d(fz, gz'), \\ \dots \\ b_d(gz, fz'), b_d(fz, gz') \end{array} \right\}$$
$$\leq \lambda b_d(z, z').$$

This implies that z' = z.

Thus *z* is the unique point in *X* satisfying (2.22).

Now we give an example to illustrate our main Theorem 2.4.

Example 2.1. Let X = [0, 1] and $b_d(x, y) = |x + y|^2$ and k = 1. Define $S(x, y) = \frac{3x^2 + 2y}{\sqrt{4608}}$, $T(x, y) = \frac{2x + 3y^2}{\sqrt{4608}}$, $fx = \frac{x}{6}$ and $gx = \frac{x^2}{4}$ for all $x, y \in X$. Then clearly s = 2. Then for all $x_1, x_2, y_1, y_2 \in X$, we have

$$\begin{aligned} b_d(S(x_1, x_2), T(y_1, y_2)) &= |\frac{3x_1^2 + 2x_2}{\sqrt{4608}} + \frac{2y_1 + 3y_2^2}{\sqrt{4608}}|^2 \\ &= \left(\frac{x_1^2}{16\sqrt{2}} + \frac{x_2}{24\sqrt{2}} + \frac{y_1}{24\sqrt{2}} + \frac{y_2^2}{16\sqrt{2}}\right)^2 \\ &= \frac{1}{2} \left(\left(\frac{x_1^2}{16} + \frac{y_1}{24}\right) + \left(\frac{x_2}{24} + \frac{y_2^2}{16}\right) \right)^2 \\ &= \frac{1}{32} \left(\left(\frac{x_1^2}{4} + \frac{y_1}{6}\right) + \left(\frac{x_2}{6} + \frac{y_2^2}{4}\right) \right)^2 \\ &= \frac{1}{8} \left(\frac{\left(\frac{x_1^2}{4} + \frac{y_1}{6}\right) + \left(\frac{x_2}{6} + \frac{y_2^2}{4}\right)}{2} \right)^2 \\ &\leq \frac{1}{8} \left(\max\left\{\frac{x_1^2}{4} + \frac{y_1}{6}, \frac{x_2}{6} + \frac{y_2^2}{4}\right\} \right)^2 \\ &= \frac{1}{8} \max\left\{ \left(\frac{x_1^2}{4} + \frac{y_1}{6}\right)^2, \left(\frac{x_2}{6} + \frac{y_2^2}{6}\right)^2 \right\} \end{aligned}$$

where used the following:

$$\frac{a+b}{2} \le \max\{a,b\}, \ (\max(a,b))^2 = \max\{a^2,b^2\},$$

for non-negative *a* and *b*. Here $\lambda = \frac{1}{8} \in (0, \frac{1}{4}) = (0, \frac{1}{2^2}) = (0, \frac{1}{s^{2k}}).$

One can easily verify the remaining conditions of Theorem 2.4. Clearly 0 is the unique point in X such that f0 = 0 = g0 = S(0,0) = T(0,0).

Corollary 2.1. Let (X, b_d) be a b_d -complete b-dislocated metric space with $s \ge 1$ and k be any positive integer. Let $S, T : X^{2k} \longrightarrow X$ and $f : X \longrightarrow X$ be mappings satisfying

(2.23)
$$S(X^{2k}) \subseteq g(X), T(X^{2k}) \subseteq f(X),$$

$$(2.24) \quad b_d(S(x_1, x_2, ..., x_{2k}), T(y_1, y_2, ..., y_{2k})) \le \lambda \max\{b_d(fx_i, fy_i) : 1 \le i \le 2k\}$$

for all $x_1, x_2, ..., x_{2k}, y_1, y_2, ..., y_{2k} \in X, where \lambda \in (0, \frac{1}{s^{2k}})$

(2.25)
$$f(X)$$
 is ab_d – complete subspace of X

(2.26) (f,S) or (f,T) is 2k - dweakly compatible pair.

Then there exists a unique point $u \in X$ such that u = fu = S(u, u, ..., u, u) = T(u, u, ..., u, u).

Corollary 2.2. Let (X, b_d) be a b_d -complete b-dislocated metric space with $s \ge 1$ and k be any positive integer. Let $S, T : X^{2k} \longrightarrow X$ be mappings satisfying

$$(2.27) b_d(S(x_1, x_2, ..., x_{2k}), T(y_1, y_2, ..., y_{2k})) \le \lambda \max\{b_d(x_i, y_i) : 1 \le i \le 2k\}$$

for all $x_1, x_2, ..., x_{2k}, y_1, y_2, ..., y_{2k} \in X, where \lambda \in (0, \frac{1}{s^{2k}})$

Then there exists a unique point $u \in X$ such that u = S(u, u, ..., u, u) = T(u, u, ..., u, u).

Acknowledgment The second author is thankful to Ministry of Education, Sciences and Technological Development of Serbia (project number 174009).

Competing interests

Authors declare that they have no any conflict of interest regarding the publication of this paper.

References

- M. Abbas, D. Ilić, T. Nazir, Iterative Approximation of Fixed Points of Generalized Weak Prešić Type k-Step Iterative Method for a Class of Operators, Filomat, 29 (4) (2015) 713-724.
- [2] R. George, KP Reshma and R. Rajagopalan, A generalised fixed point theorem of Prešić type in cone metric spaces and application to Markov process, Fixed Point Theory Appl., 2011, 2011:85.
- [3] Z. Kadelburg, S. Radenović, Notes on Some Recent Papers Concerning F-Contractions in b-Metric Spaces, Constr. Math. Anal., 1(2) (2018), 108-112.
- [4] E. Karapinar, A Short Survey on the Recent Fixed Point Results on b-Metric Spaces, Constr. Math. Anal., 1(1)(2018) 15-44.
- [5] A. Amini-Harandi, Metric-like spaces, partial metric spaces and fixed points, Fixed Point Theory Appl. 2012, 2012:204
- [6] P. Hitzler and A. K. Seda, Dislocated topologies, J. Electr. Eng., 51(12) (2000) 3-7.
- [7] N. Hussain, J. R. Roshan, V. Parvaneh and M. Abbas, Common fixed point results for weak contractive mappings on ordered b-dislocated metric spaces with applications, J. Inequal. Appl., 2013, 2013:486
- [8] Lj. B. Ćirić and S. B. Prešić, On Prešić type generalization of Banach contraction mapping principle, Acta Math. Univ. Comenianae, LXXVI(2) (2007) 143-147.
- [9] M. Păcurar, Approximating common fixed points of Prešić-Kannan type operators by a multi-step iterative method, An. St. Univ. Ovidius Constanta, 17(1) (2009) 153-168.
- [10] S. B. Prešić, Sur une classe d'inequations aux differences finite et sur la convergence de certaines suites, Publications de l'Institut Mathématique, 5(19) (1965) 75-78.
- [11] K. P. R. Rao, G. N. V. Kishore and Md. Mustaq Ali, Generalization of Banach contraction principle of Prešić type for three maps, Math. Sci., 3(3) (2009) 273 - 280.
- [12] K. P. R. Rao, Md. Mustaq Ali and B.Fisher, Some Prešić type generalization of Banach contraction principle, Math. Moravica 15 (2011) 41 - 47.

- [13] P. Salimi, N. Hussain, S. Shukla, Sh. Fathollahi, S. Radenović, *Fixed point results for cyclic* $\alpha \psi \phi contractions with applications to integral equations, J. Comput. Appl. Math.,$ **290**(2015) 445-458.
- [14] S. Shukla, S. Radenović, S. Pantelić, Some Fixed Point Theorems for Prešić-Hardy-Rogers Type Contractions in Metric Spaces, Journal of Mathematics, (2013) ArticleID 295093.
- [15] S. Shukla, S. Radenović, V.Ć. Rajić, Some common fixed point theorems in 0-σ-complete metric-like spaces, Vietnam J. Math., 41 (2013) 341-352.

DEPARTMENT OF BASIC SCIENCE AND HUMANITIES NRI INSTITUTE OF TECHNOLOGY AGIRIPALLI-521212, A.P, INDIA *E-mail address*: somu.mphil@gmail.com

FACULTY OF TECHNOLOGY UNIVERSITY OF NOVI SAD BULEVAR CARA LAZARA 1, SERBIA *E-mail address*: tatjanad@tf.uns.ac.rs

DEPARTMENT OF SCIENCE AND HUMANITIES USHARAMA COLLEGE OF ENGINEERING TELAPROLU-521260, A. P, INDIA *E-mail address*: alimustaq9@gmail.com

DEPARTMENT OF MATHEMATICS COLLEGE OF SCINCE, KING SAUD UNIVERSITY RIYADH 11451, SAUDI ARABIA *E-mail address*: radens@beotel.rs

DEPARTMENT OF MATHEMATICS ACHARYA NAGARJUNA UNIVERSITY NAGARJUNA NAGAR -522 510, A.P., INDIA *E-mail address*: kprrao2004@yahoo.com