\int Hacettepe Journal of Mathematics and Statistics Volume 43 (4) (2014), 571–579

On multiplication lattice modules

Fethi Çallıalp^{*}, Ünsal Tekir[†] and Emel AslanKarayiğit[‡]

Abstract

In this paper we study multiplication lattice modules. Next we characterize hollow lattices modules. We also establish maximal elements in multiplication lattices modules. In [16], we introduced the concept of a multiplication lattice L-module and we characterized it by principal elements. In this paper, we continue study on multiplication lattice L-module.

Received 24/01/2013 : Accepted 07/05/2013

2000 AMS Classification: Primary 16F10; Secondary 16F05

Keywords: Multiplicative lattices, Lattices modules, prime elements.

1.

A multiplicative lattice L is a complete lattice in which there is defined a commutative, associative multiplication which distributes over arbitrary joins and has compact greatest element 1_L (least element 0_L) as a multiplicative identity (zero). Multiplicative lattices have been studied extensively by E.W.Johnson, C.Jayaram, the current authors, and others, see, for example, [1 - 16].

An element $a \in L$ is said to be proper if a < 1. An element $p < 1_L$ in L is said to be prime if $ab \leq p$ implies $a \leq p$ or $b \leq p$. An element m < 1 in L is said to be maximal if $m < x \leq 1_L$ implies $x = 1_L$. It is easily seen that maximal elements are prime.

If a, b belong to L, $(a :_L b)$ is the join of all $c \in L$ such that $cb \leq a$. An element e of L is called meet principal if $a \wedge be = ((a :_L e) \wedge b)e$ for all $a, b \in L$. An element e of L is called join principal if $((ae \vee b) :_L e) = a \vee (b :_L e)$ for all $a, b \in L$. $e \in L$ is said to be principal if e is both meet principal and join principal. $e \in L$ is said to be weak meet (join) principal if $a \wedge e = e(a :_L e) (a \vee (0_L :_L e) = (ea :_L e))$ for all $a \in L$. An element a of a multiplicative lattice L is called compact if $a \leq \vee b_{\alpha}$ implies $a \leq b_{\alpha_1} \vee b_{\alpha_2} \vee \dots \vee b_{\alpha_n}$ for some subset $\{\alpha_1, \alpha_2, ..., \alpha_n\}$. If each element of L is a join of principal (compact) elements of L, then L is called a PG-lattice (CG - lattice).

Let M be a complete lattice. Recall that M is a lattice module over the multiplicative lattice L, or simply an L-module in the case there is a multiplication between elements of L and M, denoted by lB for $l \in L$ and $B \in M$, which satisfies the following properties .

^{*}Dogus University, Department of mathematics, Acıbadem, 34722,Istanbul, Turkey. E-mail: fcallialp@dogus.edu.tr

[†]Marmara University, Department of mathematics, Ziverbey, Göztepe,Istanbul E-mail: utekir@marmara.edu.tr

[‡]Marmara University, Department of mathematics, Ziverbey, Göztepe,Istanbul E-mail: emel.aslankarayigit@marmara.edu.tr

- (i): (lb) B = l(bB); (ii): $\left(\bigvee_{\alpha} l_{\alpha}\right) \left(\bigvee_{\beta} B_{\beta}\right) = \bigvee_{\alpha,\beta} l_{\alpha} B_{\beta}$; (iii): $l_{L}B = B$; (iii): $l_{\alpha}B = 0$, for all $l_{\alpha}b = l_{\alpha}b$, and for a
- (iv): $0_L B = 0_M$ for all l, l_{α}, b in L and for all B, B_{β} in M.

Let M be an L-module. If N, K belong to M, $(N :_L K)$ is the join of all $a \in L$ such that $aK \leq N$. If $a \in L$, $(0_L :_M a)$ is the join of all $H \in M$ such that $aH = 0_M$. An element N of M is called meet principal if $(b \land (B :_L N)) N = bN \land B$ for all $b \in L$ and for all $B \in M$. An element N of M is called join principal if $b \lor (B :_L N) = ((bN \lor B) :_L N)$ for all $b \in L$ and for all $N \in M$. N is said to be principal if it is both meet principal and join principal. In special case an element N of M is called weak meet principal (weak join principal) if $(B :_L N) N = B \land N ((bN :_L N) = b \lor (0_M :_L N))$ for all $B \in M$ and for all $b \in L$. N is said to be weak principal if N is both weak meet principal and weak join principal.

Let M be an L-module. An element N in M is called compact if $N \leq \bigvee B_{\alpha}$ implies

 $N \leq B_{\alpha_1} \bigvee B_{\alpha_2} \bigvee ... \bigvee B_{\alpha_n}$ for some subset $\{\alpha_1, \alpha_2, ..., \alpha_n\}$. The greatest element of M will be denoted by 1_M . If each element of M is a join of principal (compact) elements of M, then M is called a PG-lattice (CG-lattice).

Let L be a multiplicative lattice and let M be an L-module. If M is CG-lattice, then any weak principal element N of M is compact [14, Corollary 2.2]. Especially, if L is a CG-lattice, then any weak principal element in L is compact [14, Corollary 2.3].

Let M be an L-module. An element $N \in M$ is said to be proper if $N < 1_M$. If $ann(1_M) = (0_M :_L 1_M) = 0_L$, M is called a faithful L-module. If $cm = 0_M$ implies $m = 0_M$ or $c = 0_L$ for any $c \in L$ and $m \in M$, then M is called a torsion-free L-module. For various characterizations of lattice modules, the reader is referred to [9 - 16].

H.M.Nakkar and I.A.Al-Khouja [13, 14] studied multiplicative lattice modules over multiplicative lattices. In [16], we introduced the concept of a multiplication lattice L-module and we characterized it by principal elements. In this study, we continue study on multiplication lattice L-module and we prove that many important theorems like Nakayama Lemma. We also prove that if L is a multiplicative PG-lattice and M is a multiplication PG-lattice module, then K is maximal element of M if and only if there exist a maximal element $p \in L$ such that $K = p1_M < 1_M$.

1.1. Definition. Let L be a multiplicative lattice and $c \in L$. c is said to be a multiplication element if for every element a of L such that $a \leq c$ there exists an element $d \in L$ such that a = cd.

1.2. Definition. Let L be a multiplicative lattice and M a lattice L-module. $N \in M$ is said to be a multiplication element if for every element K of M such that $K \leq N$ there exists an element $a \in L$ such that K = aN.

Note that, $a \in L$ is a multiplication element if and only if a is a weak meet principal element in L and $N \in M$ is a multiplication element if and only if N is a weak meet principal element in M. We say that M is a multiplication lattice L-module if 1_M is a multiplication element in M.

1.3. Theorem. Let L be a PG-lattice and M be a PG-lattice L-module. Then M is a multiplication lattice L-module if and only if for every maximal element $q \in L$,

- (i): For every principal element $Y \in M$, there exists a principal element $q_Y \in L$ with $q_Y \nleq q$ such that $q_Y Y = 0_M$ or
- (ii): There exists a principal element $X \in M$ and a principal element $b \in L$ with $b \notin q$ such that $b1_M \leq X$.

Proof. [see 16, Theorem 4].

1.4. Theorem. Let L be a PG-lattice, and M be a faithful multiplication PG-lattice L-module. Then the following conditions are equivalent.

- (i): 1_M is a compact element of M.
- (ii): If $a, c \in L$ such that $a1_M \leq c1_M$, then $a \leq c$.
- (iii): For each element N of M there exists a unique element a of L such that $N = a 1_M$.
- (iv): $1_M \neq a 1_M$ for any proper element a of L.
- (v): $1_M \neq p 1_M$ for any maximal element p of L.

Proof. [see 16, Theorem 5].

1.5. Proposition. Let L be a PG-lattice and M be a faithful multiplication PG-lattice L-module such that 1_M compact. If $a \in L$ is a multiplication element, then $a1_M \in M$ is a multiplication element.

Proof. Let $K \leq a1_M$. Since M is a multiplication module, $K = b1_M$ for some $b \in L$. Then $K = b1_M \leq a1_M$. Since 1_M is compact, $b \leq a$ by Theorem 2(ii). Since $a \in L$ is a multiplication element, we have b = ac for some $c \in L$ and so $K = b1_M = (ac) 1_M = c(a1_M)$. Consequently, $a1_M$ is a multiplication element.

1.6. Proposition. Let L be a PG-lattice and M a faithful multiplication PG-lattice L-module such that 1_M is compact.

- (i): N is a multiplication element in M if and only if $(K:_L N)(N:_L 1_M) = (K:_L 1_M)$ for all $K \leq N$.
- (ii): $a = (a1_M : L 1_M)$ for all $a \in L$.
- (iii): N is a multiplication element in M if and only if $(N :_L 1_M)$ is a multiplication element in L.
- (iv): $a1_M$ is a multiplication element in M if and only if a is a multiplication element in L.

Proof. (i) \Rightarrow : Let N be a multiplication element in M and $K \leq N$. Then K = bN for some $b \in L$. Since M is a multiplication lattice L-module,

 $K = bN = (bN :_{L} N) N = (bN :_{L} N) (N :_{L} 1_{M}) 1_{M} = (K :_{L} 1_{M}) 1_{M}.$

Therefore $(K:_L N)(N:_L 1_M) = (K:_L 1_M)$ by Theorem 2 (ii). $\Leftarrow:$ Since

$$K = (K :_L 1_M) 1_M = (K :_L N) (N :_L 1_M) 1_M = (K :_L N) N$$

for all $K \leq N$, N is a multiplication element.

(*ii*) Since M is a multiplication lattice module, we have $a1_M = (a1_M : L 1_M) 1_M$ and so $a = (a1_M : L 1_M)$ for all $a \in L$ by Theorem 2 (*ii*).

 $(iii) \Rightarrow:$ Let N be a multiplication element. If $a \leq (N :_L 1_M)$, then $a = (a1_M :_L 1_M)$ by (ii) and $a = (a1_M :_L 1_M) = (a1_M :_L N) (N :_L 1_M)$ by (i). Therefore, $a = c (N :_L 1_M)$ where $c = (a1_M :_L N)$. Then $(N :_L 1_M)$ is a multiplication element in L.

 \Leftarrow : Let $(N :_L 1_M)$ be a multiplication element in L. Then $(N :_L 1_M) 1_M = N$ multiplication elemen in M by Proposition 1.

 $(iv) \Rightarrow:$ Let $N = a1_M$ be a multiplication element in M. Then $(N:_L 1_M) = (a1_M:_L 1_M) = a$ is a multiplication element in L by (iii).

⇐: Let $a \in L$ be a multiplication element in L. Then $N = a1_M$ is a multiplication element in M by Proposition 1.

573

1.7. Proposition. Let L be a multiplicative lattice and M a multiplication lattice L-module. If L is a Noetherian (Artinian) latice, then M is a Noetherian (Artinian) L-module.

Proof. Suppose that $N_1 \leq N_2 \leq \dots$ and L is Noetherian. Then $(N_1:_L 1_M) \leq (N_2:_L 1_M) \leq \dots$. Since L is Noetherian, there is a positive integer k > 0 such that $(N_k:_L 1_M) = (N_{k+1}:_L 1_M) = \dots$ and so $(N_k:_L 1_M) 1_M = (N_{k+1}:_L 1_M) 1_M = \dots$. Therefore, $N_k = N_{k+1} = \dots$. Similarly, if L is Artinian, then M is Artinian.

1.8. Definition. Let L be a multiplicative lattice and M be a lattice L-module. Let K be a proper element in M. K is said to be a small element if for every element N of M such that $K \vee N = 1_M$ implies $N = 1_M$.

1.9. Definition. Let L be a multiplicative lattice and M be a lattice L-module. If every proper element of M is small, then M is called a hollow L-module.

1.10. Theorem. Let L be a PG-lattice and M be a faithful multiplication PG-lattice L-module with 1_M compact. Then M is a hollow L-module if and only if L is a hollow L-module.

Proof. \Rightarrow : Suppose that M is hollow. Let $a < 1_L$ such that $a \lor b = 1_L$ for some $b \in L$. Then $(a \lor b) 1_M = a 1_M \lor b 1_M = 1_M$. Since $a < 1_L$, $a 1_M < 1_M$ by Theorem 2. By hypothesis, $b 1_M = 1_M$ and hence $b = 1_L$ by Theorem 2 (ii). Therefore a is a small element in L.

 \Leftarrow : Suppose that *L* is a hollow *L*-module. Let $N < 1_M$ and *K* be a any element in *M* such that $N \lor K = 1_M$. Since *M* is a multiplication *L*-module, we have $N = (N :_L 1_M) 1_M$ and $K = (K :_L 1_M) 1_M$. Then,

$$1_M = N \lor K = (N :_L 1_M) 1_M \lor (K :_L 1_M) 1_M = [(N :_L 1_M) \lor (K :_L 1_M)] 1_M$$

Therefore, $(N :_L 1_M) \lor (K :_L 1_M) = 1_L$ by Theorem 2 (*ii*). Since $N = (N :_L 1_M) 1_M < 1_M$, we have $(N :_L 1_M) < 1_L$ and so $(K :_L 1_M) = 1_L$ by hypothesis. This shows that $K = 1_M$. Consequently, M is hollow.

1.11. Theorem. Let L be a PG-lattice and M be a faithful multiplication PG-lattice L-module with 1_M compact. Then, N is small if and only if there exists a small element $a \in L$ such that $N = a1_M$.

Proof. \Rightarrow : Suppose that $N \in M$ is small and $N = a1_M$ for some proper element a in L. Suppose that $a \lor b = 1_L$ for some $b \in L$. Then

 $N \vee b1_M = a1_M \vee b1_M = (a \vee b) 1_M = 1_M$

and so $b1_M = 1_M$ by hypothesis. Hence $b = 1_L$ by Theorem 2. This shows that a is small in L.

⇐: Suppose that $a \in L$ is small such that $N = a1_M$. Let $N \bigvee K = a1_M \lor K = 1_M$ for some $K \in M$. Since M is a multiplication L-module, there is an element $b \in L$ such that $K = b1_M$ and hence $(a \lor b) 1_M = a1_M \lor K = 1_M$. Then $a \lor b = 1_L$ by Theorem 2 (*ii*) and hence $b = 1_L$ by hypothesis. Therefore, $K = 1_M$. This shows that $a1_M$ is small. \Box

1.12. Definition. Let M be a L-module. An element $N < 1_M$ in M is said to be prime if $aX \leq N$ implies $X \leq N$ or $a1_M \leq N$ i.e. $a \leq (N :_L 1_M)$ for every $a \in L, X \in M$.

1.13. Definition. Let M be an L-module. M is said to be prime L-module if 0_M is prime element of M.

It is clear that 0_M is prime element in M if and only if $(0_M :_L 1_M) = (0_M :_L N)$ for all $0_M \neq N \in M$.

1.14. Definition. Let M be an L-module. M is said to be coprime L-module if $(0_M : 1_M) = (N : 1_M)$ for all $N \in M$ such that $N < 1_M$.

Recall that a lattice *L*-module *M* is called simple if $M = \{0_M, 1_M\}$.

1.15. Proposition. If M is a multiplication and coprime L-module, then M is simple.

Proof. Let $N \in M$ such that $N < 1_M$. Since M is a coprime L-module, we have $(0_M : L 1_M) = (N : L 1_M)$. Since M is a multiplication L-module, it follows that N = $(N:_L 1_M) 1_M = (0_M:_L 1_M) 1_M = 0_M$. Then M is simple.

1.16. Definition. Let L be a PG-lattice and M a PG-lattice L-module. Let p be a maximal element of L. M is called p-torsion provided for each principal element $X \in M$ there exists a principal element $q_X \in L$, $q_X \nleq p$ such that $q_X X = 0_M$.

1.17. Definition. Let L be a PG-lattice and M be a PG-lattice L-module. M is called p-cyclic provided there exists a principal element $Z \in M$ and a principal element $q \in L, q \not\leq p$ such that $q1_M \leq Z$.

Let M be an L-module. Let N and K be elements of M such that $N \leq K$. Define $[N, K] = \{A \in M : N \le A \le K\}$. Then [N, K] is an L-module. It is clear that N is a multiplication element if and only if $[0_M, N]$ is a multiplication lattice L-module. Recall that $ann(X) = (0_M : X)$ for any $X \in M$.

1.18. Theorem. Let L be a PG-lattice and M be a PG-lattice L-module. Let $\{N_{\lambda}\}_{\lambda \in \Lambda}$ be a collection of elements of M such that $N = \bigvee_{\lambda \in \Lambda} N_{\lambda}$ and $a = \bigvee_{\lambda \in \Lambda} (N_{\lambda} :_{L} N)$.

i) N is a multiplication element in M.

ii) H = aH for all elements $H \leq N$.

 $\begin{array}{l} iii) \ 1_L = a \bigvee ann \left(X \right) \text{ for all principal elements } X \leq N. \\ iv) \ \left(N :_L K \right) \bigvee ann \left(X \right) = \bigvee_{\lambda \in \Lambda} \left(N_\lambda :_L K \right) \bigvee ann \left(X \right) \text{ for all principal elements } \\ X \leq N \text{ and for all elements } K \text{ in } M. \end{array}$

Then, $(i) \Rightarrow (ii) \Leftrightarrow (iii) \Leftrightarrow (iv)$. If all N_{λ} are multiplication elements, then the

conditions are equivalent.

Proof. $(i) \Rightarrow (ii)$. Let $a = \bigvee_{\lambda \in \Lambda} (N_{\lambda} :_{L} N)$. Then $aN = \bigvee_{\lambda \in \Lambda} (N_{\lambda} : N) N = N$. Since N is a multiplication element, there exist an element $h \in L$ such that H = hN for $H \leq N$. Therefore, aH = ahN = h(aN) = hN = H.

 $(ii) \Rightarrow (iii)$. Suppose that $1_L \neq a \bigvee ann(X)$ for all principal elements $X \leq N$. There exists a maximal element $p \in L$ such that $a \bigvee ann(X) \leq p$ for each principal element $X \leq p$ N. Since $X = aX \leq pX \leq X$, we have X = pX. Then, $1_L = (pX :_L X) = p \bigvee ann(X)$. Since $ann(X) \leq a \bigvee ann(X) \leq p$, we get a contradiction.

 $(iii) \Rightarrow (ii)$. Since $X = (a \bigvee ann(X)) X = aX$ for all principal elements $X \leq N$, it follows that H = aH for every $H \leq N$.

$$(iii) \Rightarrow (iv)$$
. Since $\bigvee_{\lambda \in \Lambda} (N_{\lambda} :_L K) K \leq \bigvee_{\lambda \in \Lambda} N_{\lambda} = N$, we have $\bigvee_{\lambda \in \Lambda} (N_{\lambda} :_L K) \leq V_{\lambda \in \Lambda}$

 $\left(\bigvee_{\lambda \in \Lambda} N_{\lambda} : {}_{L} K\right) = (N :_{L} K). \text{ Therefore, } \bigvee_{\lambda \in \Lambda} (N_{\lambda} :_{L} K) \bigvee ann(X) \leq (N :_{L} K) \bigvee ann(X) \text{ for all principal elements } X \leq N. \text{ Conversely, } w_{1} \text{ and } w_{2} \text{ be principal elements such that}$

 $w_1 \bigvee w_2 \leq (N:K) \bigvee ann(X)$ where $w_1 \leq (N:K)$ and $w_2 \leq ann(X)$. Then $1_L =$ $\begin{array}{l} \sum_{\lambda \in \Lambda} (V_{\lambda}) = \bigvee_{\lambda \in \Lambda} (N_{\lambda} : L N) \bigvee ann (X). & \text{Hence } w_{1} = \bigvee_{\lambda \in \Lambda} (N_{\lambda} : L N) w_{1} \bigvee ann (X) w_{1}. \\ \text{Since } w_{1}K \leq N, \text{ we have } (N_{\lambda} : L N) w_{1}K \leq (N_{\lambda} : L N) N \leq N_{\lambda} \text{ and so } (N_{\lambda} : L N) w_{1} \leq N_{\lambda}. \end{array}$ $(N_{\lambda}:_{L} K)$. Therefore,

 $w_1 \bigvee w_2 = \bigvee_{\substack{\lambda \in \Lambda \\ \leq \bigvee_{\lambda \in \Lambda}} (N_\lambda :_L N) w_1 \bigvee ann(X) w_1 \bigvee w_2$ $\leq \bigvee_{\substack{\lambda \in \Lambda \\ \lambda \in \Lambda}} (N_\lambda :_L K) \bigvee ann(X).$ Hence, $(N :_L K) \bigvee ann(X) \leq \bigvee_{\substack{\lambda \in \Lambda \\ \lambda \in \Lambda}} (N_\lambda :_L K) \bigvee ann(X).$ (iv)

 $(iv) \Rightarrow (iii)$. If we take K = N, then $1_L = (N :_L N) \bigvee ann(X) = a \bigvee ann(X)$

 $(iii) \Rightarrow (i)$. Suppose that $1_L = a \bigvee ann(X)$ for all principal elements $X \leq N$. Suppose that N is not p-torsion. There exists a principal element $X \leq N$ such that ann(X) = $(0_M :_L X) \leq p$. Since $1_L = a \bigvee ann(X)$, we have $a = \bigvee_{\lambda \in \Lambda} (N_\lambda :_L N) \leq p$. There exists $\lambda \in \Lambda$ such that $(N_{\lambda}:_{L} N) \nleq p$. There exists a principal element $b \nleq p$ such that $b \leq (N_{\lambda} : L N)$. Since N_{λ} is a multiplication element and not p-torsion, it follows that N_{λ} is p-cyclic by Theorem 1. Indeed, if N_{λ} is a p-torsion, then $cN_{\lambda} = 0_M$ for some principal elemebt $c \nleq p$ and so $bN \le N_{\lambda}$ implies $bcN \le cN_{\lambda} = 0_M$. Then $bc \le (0_M :_L N)$. Therefore $bcY = 0_M$ for all principal elements $\overline{Y} \leq N$ and principal element $bc \leq p$.

Since N is not p-torsion, this is a contradiction. Hence N_{λ} is p-cyclic. Therefore, $dN_{\lambda} \leq Y_{\lambda}$ for some principal element $Y_{\lambda} \leq N_{\lambda}$ and principal element $d \nleq p$. Therefore, $bN \leq N_{\lambda}$ and so $bdN \leq dN_{\lambda} \leq Y_{\lambda}$ and $bd \leq p$. Consequently, N is p-cyclic. \square

1.19. Theorem. (Nakayama Lemma) Let M be a non-zero multiplication PG-lattice L-module. Let $a \in L$ such that for all maximal element $q \in L$, $a \leq q$. Then $a1_M < 1_M$.

Proof. Let $a \in L$ such that $a \leq q$ for all maximal element $q \in L$ and suppose that $a1_M = 1_M$. Let consider a principal element $0_M \neq X \in M$. Since M is a multiplication L-module, we have $X = b1_M$ for some $b \in L$. Hence $X = b1_M = ab1_M = aX$. Thus $1_L = (aX:X) = a \lor (0_M:LX)$ for all principal elements $X \in M$. Since $(0_M:LX) < 1_L$, there exists a maximal element $p \in L$ such that $(0_M :_L X) \leq p$. By hypothesis $a \leq p$, hence $1_L = (aX : X) = a \lor (0_M :_L X) \le p$ and we obtain a contradiction. \square

1.20. Proposition. Let L be a multiplicative PG-lattice. Let M be a multiplication PGlattice L-module and $(0_M:1_M) \leq p$ for some prime element $p \in L$. If $a1_M \leq p1_M$ for some $a \in L$, then $a \leq p$ or $p1_M = 1_M$.

Proof. If $a_{1_M} \leq p_{1_M}$ for some $a \in L$, then $a_X \leq p_{1_M}$ for all principal element $X \in M$. Hence $a \leq p$ or $X \leq p1_M$ [see 16, Theorem 6]. If $a \leq p$, then $X \leq p1_M$ for all principal element $X \in M$, hence it is clear that $p1_M = 1_M$. \square

1.21. Proposition. Let L be a multiplicative PG-lattice. Let M be a multiplication PGlattice L-module. Then K is maximal element of M if and only if there exist a maximal element $p \in L$ such that $K = p1_M < 1_M$.

Proof. \leftarrow : If there exist a maximal element $p \in L$ such that $K = p \mathbf{1}_M < \mathbf{1}_M$, then K is maximal [see16, Proposition 4].

 \Rightarrow : Let K be a maximal element of M and $(K:_L 1_M) = q$. Since M is a multiplication lattice module, we have $K = q \mathbf{1}_M$. We show that $(K :_L \mathbf{1}_M) = q$ is a maximal element of L. If q is not a maximal element, there exists a maximal element p such that q < p. Then $p1_M \notin K$. Indeed, if $p1_M \leq K$, then $p \leq (K :_L 1_M) = q$. This is a contradiction. Therefore, $1_M = K \vee p 1_M = (q \vee p) 1_M = p 1_M$. Hence X = pX for all principal elements X and so $1_L = (pX:_L X) = p \lor (0_M:_L X)$. This implies that $(0_M:_L X) \notin p$. Therefore, there exists a principal element $p_X \in L$ such that $p_X \leq (0_M : X)$ and $p_X \leq p$. If we take a principal element X such that $X \leq K$, then $X \vee K = 1_M$. Hence $p_X X \vee p_X K = p_X 1_M$ and so $p_X K = p_X 1_M \leq K$. Therefore, $p_X \leq (K : L 1_M) = q < p$. This is a contradiction. \square

1.22. Theorem. Let L be a CG-lattice and M be a PG-lattice L-module. Then M is a multiplication lattice L-module if and only if for every maximal element $q \in L$,

(i) For every principal element $Y \in M$, there exists a compact element $q_Y \in L$ with $q_Y \leq q$ such that $q_Y Y = 0_M$ or

(*ii*) There exists a principal element $X \in M$ and a compact element $b \in L$ with $b \notin q$ such that $b1_M \leq X$.

Proof. \implies : Let M be a multiplication lattice L-module. We have two cases.

Case 1. Let $q1_M = 1_M$ where q is a maximal element of L. For every principal element $Y \in M$, there exists an element $a \in L$ such that $Y = a1_M$. Then $Y = a1_M = aq1_M = qY$. Therefore, $1_L = (qY :_L Y) = q \lor (0_M :_L Y)$. Hence $(0_M :_L Y) \notin q$. There exists a compact element q_Y such that $q_Y \notin (0_M :_L Y)$ and $q_Y \notin q$.

Case 2. Let $q1_M < 1_M$. There exists a principal element $X \in M$ such that $X = j1_M \nleq q1_M$, with $j \in L, j \nleq q$. There exists a compact element $b \in L$ with $b \leq j$ and $b \nleq q$. We obtain $b1_M \leq j1_M = X$.

 \Leftarrow :Let $N \in M$. Put $a = (N :_L 1_M)$. Clearly $a1_M = (N :_L 1_M)1_M \leq N$. Take any principal element $Y \leq N$. We will show that $(a1_M :_L Y) = 1_L$. Suppose there exists a maximal element $q \in L$ such that $(a1_M :_L Y) \leq q$. We have two case.

Case 1. Suppose that (i) is satisfied. There exists a compact element $q_Y \in L$ with $q_Y \notin q$ such that $q_Y Y = 0_M$ for every principal element $Y \in M$. Then $q_Y \notin (0_M : Y) \leq (a1_M : Y) \leq q$. This is a contradiction.

Case 2. Suppose that (ii) is satisfied. There exists a principal element $X \in M$ and a compact element $b \in L$ with $b \notin q$ such that $b1_M \notin X$. Then $bN \leq b1_M \notin X$ for any $N \in M$. Since X is a principal element of $M, bN = (bN :_L X)X$. Then $b(bN :_L X)1_M \leq (bN :_L X)X = bN \leq N$ and so $b(bN :_L X) \leq a = (N :_L 1_M)$. Therefore $b^2Y \leq b^2N = b(bN :_L X)X \leq aX \leq a1_M$ imply $b^2 \leq (a1_M :_L Y) \leq q$. Since q is maximal (and so prime) element of L, we have $b \leq q$. This is a contradiction. \Box

1.23. Definition. Let M be an L-module. An element $N < 1_M$ in M is said to be primary, if $aX \leq N$ and $X \nleq N$ implies $a^k 1_M \leq N$, for some $k \geq 0$ *i.e* $a^k \leq (N : 1_M)$ for every $a \in L, X \in M$.

If a is an element of a multiplicative lattice L, we define $\sqrt{a} = \bigvee \{b \in L : b^n \leq a \text{ for some natural number } n\}$.

1.24. Theorem. Let L be a CG-lattice and M be a multiplication PG-lattice L-module. Suppose that p is a primary element in L with $(0_M :_L 1_M) \leq p$. If $aX \leq p1_M$, where $a \in L, X \in M$, then $X \leq p1_M$ or $a \leq \sqrt{p}$.

Proof. We may suppose that X is principal in M. Suppose that $aX \leq p1_M$ with $a \nleq \sqrt{p}$. We will show that $(p1_M :_L X) = 1_L$. Suppose that there exists a maximal element $q \in L$ such that $(p1_M :_L X) \leq q$. By theorem 7, we have two cases.

Case 1. If there exists a compact element $q_x \in L$ with $q_x \nleq q$ such that $0_M = q_x X$, then $q_x \le (0_M :_L X) \le (p 1_M :_L X) \le q$. This is a contradiction.

Case 2. If there exists a principal element $Y \in M$ and a compact element $b \in L$ with $b \nleq q$ such that $b1_M \leq Y$, then $bX \leq b1_M \leq Y$. Since Y is principal, we have $bX = (bX :_L Y)Y$. Put $(bX :_L Y) = s$. Then abX = asY. Since Y is join principal, it follows that $(asY :_L Y) = as \lor (0_M :_L Y)$. Since Y is meet principal, we have $abX = (abX :_L Y)Y$. Put $c = (abX :_L Y)$. Since $cY = abX \leq bp1_M \leq pY$, it follows that $c \lor (0_M :_L Y) = (cY :_L Y) \leq (pY :_L Y) = p \lor (0_M :_L Y)$. Since $b(0_M :_L Y)1_M = (0_M :_L Y)b1_M \leq (0_M :_L Y)Y = 0_M$, we have $b(0_M :_L Y) \leq (0_M :_L 1_M) \leq p$. Hence $bc \lor b(0_M :_L Y) \leq bp \lor b(0_M :_L Y) \leq p$. Therefore, $bc \leq p$. On the other hand, $c = (abX :_L Y) = (asY :_L Y) = as \lor (0_M :_L Y)$ and so $abs \leq abs \lor b(0_M :_L Y) = bc \leq p$. If $b \leq \sqrt{p}$, since b is compact, we obtain $b \leq a_1 \lor a_2 \lor \ldots \lor a_m$ such that $a_i^{n_i} \leq p$

for each i = 1, ...m. For $k = n_1 + n_2 + ... + n_m$, we have $b^k \leq a_1^k \vee a_2^k \vee ... \vee a_m^k \leq p$. Then $b^k \leq p \leq (p1_M :_L X) \leq q$. Since q is maximal, we obtain $b \leq q$. This is a contradiction. Therefore, $b \nleq \sqrt{p}$. Since $a \nleq \sqrt{p}, b \nleq \sqrt{p}$ and p is primary, we have $s \leq p$. So, $bX = sY \leq pY \leq p1_M$ and therefore $b \leq (p1_M :_L X) \leq q$. This is a contradiction.

1.25. Corollary. Let L be a CG-lattice and M be a PG-lattice L-module. Let M be a multiplication lattice L-module and N < 1_M. Then the following condition are equivalent.
i) N is a primary element in M.

ii) $(N :_L 1_M)$ is a primary element in L.

iii) There exists a primary element p in L with $(0_M : L 1_M) \leq p$ such that $N = p1_M$.

Proof. $i \implies ii \implies iii \implies iii$: Clear.

 $iii) \Longrightarrow i)$: Let $aX \le N$ and $X \le N$ for $a \in L, X \in M$. Since there exists a primary element p in L with $(0_M :_L 1_M) \le p$ such that $N = p1_M$, we have $aX \le p1_M$ and $X \le p1_M$. By theorem 8, $a \le \sqrt{p}$ and so $a^k \le p$ for some k > 0. Hence $a^k \le (p1_M :_L 1_M) = (N :_L 1_M)$.

REFERENCES

[1] C.Jayaram and E.W.Johnson. (1995). Some results on almost principal element lattices, Period.Math.Hungar, 31, 33 - 42.

[2] C.Jayaram and E.W.Johnson, s-prime elements in multiplicative lattices. (1995) . Period. Math. Hungar, 31, 201 - 208.

[3] C.Jayaram and E.W.Johnson. (1997). Dedekind lattices, Acta.Sci. Math.(Szeged), 63, 367 - 378.

[4] C.Jayaram and E.W.Johnson, Strong compact elements in multiplicative lattices. (1997). Czechoslovak Math. J, 47 (122), 105 – 112.

[5] C.Jayaram and E.W.Johnson, σ -elements in multiplicative lattices. (1998). Czechoslovak Math. J, 48 (123), 641-651.

[6] C.Jayaram. (2002). $l\mbox{-prime elements in multiplicative lattices (2002). Algebra Universalis 48, 117 <math display="inline">-$ 127.

[7] C.Jayaram. (2003). Laskerian lattices, Czechoslovak Math. J, 53 (128), 351-363.

[8] C.Jayaram. (2004). Almost π -lattices, Czechoslovak Math. J. 54 (129), 119–130.

[9]~ E.W.Johnson and Johnny A.Johnson. $(2003)\,.$ Lattice Modules over Elemen Domains, Comm. in Algebra, $31\,(7)\,,\,3505-3518.$

[10] D. Scott Culhan. (2005). Associated Primes and Primal Decomposition in modules and Lattice modules, and their duals, Thesis, University of California Riverside.

[11] Eaman A.Al-Khouja. (2003). Maximal Elements and Prime elements in Lattice Modules, Damascus University for Basic Sciences 19, 9-20.

[12] H.M.Nakkar. (1974). Localization in multiplicative lattice modules, (Russian), Mat. Issled. 2(32), 88 - 108.

[13] H.M.Nakkar and I.A.Al-Khouja. (1989). Multiplication elements and Distributive and Supporting elements in Lattice Modules, R.J. of Aleppo University, 11, 91–110.

[14] H.M.Nakkar and I.A.Al-Khouja. (1985). Nakayama's Lemma and the principal elements in Lattice Modules over multiplicative lattices, R.J. of Aleppo University, 7, 1-16.

[15] H.M.Nakkar and D.D.Anderson, Associates and weakly associated prime elements and primary decomposition in lattice modules, Algebra Universalis,25(1988), 196-209.

[16] F.Callialp, U.Tekir, Multiplication lattice modules, Iranian Journal of Science & Technology(2011),no.4, 309 – 313.