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Abstract

We prove a general common fixed point theorem for three operators in
G-metric spaces satisfying a nonlinear contraction. Also we prove the
uniqueness of the fixed point, as well as studying the G-continuity of
the fixed point. Moreover, we show that these maps satisfy properties Q
and R. Our results extend some recent works. An illustrative example
is also discussed.
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1. Introduction and Preliminaries

The notion of G-metric spaces was introduced by Z. Mustafa and B. Sims [5, 8]. They
generalized the concept of a metric space. Then, based on the notion of generalized
metric spaces, several authors have obtained some fixed point results for a self-mapping
under various contractive conditions, (see [1, 2, 3, 6, 7, 9]). In this paper we prove a
general common fixed point theorem for three operators in a complete generalized metric
space X involving a nonlinear contraction related to a function ¢ € ® where ® is given
by the following:

1.1. Definition. Denote by ® the set of non-decreasing continuous functions ¢ : RT™ —
R" satisfying:

(1) ¢(0) =0,

(2) 0<¢(t)<tforallt>0,

(3)  the series Z ¢" (t)converges for all ¢ > 0.
n>1
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1.2. Definition ([8]). Let X be a nonempty set and let G : X x X x X — R" a function
satisfying the following axioms:

(Gl) G(z,y,2)=0ifx =y =z,

(G2) 0< G(z,z,y) for all z,y € X with x # v,

(G3) G(z,z,y) < G(z,y,2), forall z,y,z € X, with z #y,

(G4) G(z,y,2) =G(z,2,y) = G(y, z,x) = ... (symmetry in all three variables),
(G5) G(=z,y,2) < G(z,a,a) + G(a,y,z), for all z,y,2,a € X,

(rectangle inequality).

Then the function G is called a generalized metric, or, simply, a G-metric on X, and the
pair (X, G) is called a G-metric space.

1.3. Definition ([8]). Let (X, @) be a G-metric space, let {z,,} be a sequence of points
of X. We say that {z,} is G-convergent to x if limy m— oo G(Z, Tn, m) = 0; that is, for
any € > 0, there exists a k € N such that G(z, Tn,zm) < € for all n,m > k (throughout
this paper we mean by N the set of all natural numbers). We call = the limit of the
sequence and write x,, — z or limzx,, = x.

1.4. Definition ([8]). Let (X, G) be a G-metric space. Then the following are equivalent:

( {zn} is G-convergent to z,

( G(Zn,Tn,x) = 0, as n — 00,

(3) G(zn,z,x) = 0, as n — oo,

( G(Tm,ZTn,z) = 0, as n,m — oo.

1.5. Definition ([8]). Let (X,G) be a G-metric space. A sequence {z,} is called G-
cauchy if for each ¢ > 0, there exists a k € N such that G(zn,Tm,z;) < € for all
n,m,l > k, that is, if G(n, Tm,x;) = 0 as n,m,l — oco.

1.6. Proposition ([8]). Let (X, @) be a G-metric space.Then the following are equiva-
lent:

(1) The sequence {z,} is G-cauchy.
(2) For every € > 0, there exists a k € N such that G(n, Tm,Tm) < €,

for all n,m > k.

1.7. Proposition ([8]). Let (X, G) be a G-metric space.Then f : X — X is G-continuous
at x € X if and only if it is G-sequentially continuous at x, that is, whenever {z,} is
G-convegent to x, f(xn) is G-convergent to f(z).

1.8. Proposition ([8]). Let (X, &) be a G-metric space.Then the function G(z,y, z) is
jointly continuous in all the three variables.

1.9. Definition ([8]). A G-metric space (X, G) is called G-complete if every G-cauchy
sequence is G-convergent in (X, G).
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1.10. Proposition ([8]). Let (X, G) be a G-metric space.Then for any z,y,z,a € X it
follows that:

(1) G(z,y,2) =0, thenz =y = z,

(2) G(z,y,2) < G(z,z,y) + G(z, z, 2),

3) G(z,y,y) <2G(y,,7),

(4) G(z,y,2) < G(x,a,2) + G(a,y, 2),

() Gl@92) < 2[G(w,y, @) + G(r,0,2) + Gla,y, 2)
(6) G(z,y,2) <[G(z,a,a) + G(y,a,a) + G(z,a,a)].

1.11. Definition. Let (X, G) be a G-metric space and 7,5 : X — X be two mappings
with F(T)NF(S) # @. Then T and S have property Q if F(T")NF(S™) = F(T)NF(S),
for each n € N.

1.12. Definition. Let {T;} be a sequence of selfmaps of a G-metric space X. We shall
say that this family has property R if N F(T7*) = N F(T3), for each n € N.

In this paper we prove a general common fixed point theorem for three operators
in G-metric spaces satisfying a nonlinear contraction. Also we prove the uniqueness
of the fixed point, as well as studying the G-continuity of the fixed point. Moreover,
we show that these maps satisfy properties @ and R. An interesting fact about maps
satisfying properties @ and R is that they have no nontrivial periodic points. Some
papers dealing with properties @ and R are ([4, 10]). Our results extend some recent
works. An illustrative example is also discussed.

2. Fixed Point Theorem

2.1. Theorem. Let (X,G) be a complete G-metric space and let T, T, T3 be selfmaps
of X satisfying for all x,y,z € X,

(2.1) G(Thz, Toy, Tsz) < ¢(M(x,y, 2)),
where

M(z,y, z) = max{G(x,y, 2), G(z,z, Trz), G(y,y, T2y), G(z, 2, T32),

G(z,z,Toy),G(z, 2z, Tvz), Gy, y, Thz), Gy, y, T32), G(z, z, Toy) },

and ¢ € . Then T1,T> and T3 have a unique common fized point (say u) and each T;
is G-continuous at u.
Proof. We shall first show that, if u is a fixed point of one of the maps, then it is a
common fixed point. Suppose that w € F(T1). Then, from (2.1),

G(Thu, Tou, Tsu) < ¢(max{G(u,u, u), G(u,u, Tiu), G(u, u, Tou),

G(u,u, Tzu), G(u, u, Tou), G(u, u, Thu), G(u, u, Thu),

(2.2) G(u,u, Tzu), G(u, u, Tou)}),
which implies that

G(Tvu, Tou, Tsu) < p(max{G(u,u, Tsu), G(u,u, Tou)}).
If Tou # Tsu, then, from properties (G3) and (G4), G(u,u, Tsu) < G(Tou,u,Tsu), and
G(u,u, Tou) < G(Tru,u, Tsu). Therefore,G(Tiu, Tou, Tsu) < ¢(G(Thu, Tou, Tsu)), which

leads to a contradiction if G(Thiu,Tou,Tsu) > 0. Therefore, G(Tiu, Tou, T3u) = 0 and
from proposition (1.10), v = Thu = Tou = Tsu.
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Suppose that Tou = T3u. Then (2.2) becomes
G(u, Tou, Tou) < ¢p(max{0, G(u, Tou, Tou)}),

which implies that © = T>u, and therefore u is a common fixed point of T4, 75, and T5.
A similar proof shows that, if u is a fixed point of T5 or T3, then it is a common fixed
point.
Let xo be an arbitrary point in X. Take x1 = Tizo,z2 = Tox1 and x3 = Tzx2. We
can then construct a sequence {z,} in X such that for any n € N

T3nt+1 = 11730, T3nt2 = T2T3n+1, T3n+3 = 13T3n42.

If there exists an integer p such that xsp, = x3pt1, then zs, € F(T1), hence x3, €
F(Tg) N F(Tg)

Similarly, if there exists an integer p such that xsp,+1 = x3py2 Or Tapt2 = 3p43, then
we have a common fixed point. Therefore, we shall assume that x,, # x,4+1 for alln € N.
Using (2.1) with © = 23n,y = Z3n+1 and z = T3n42, we get

G(-T3n+17 T3n+2, l’3n+3) = G(Tllisn, T2353n+1, T3$3n+2)
S ¢(maX{G(m3n7 T3n+1, x3n+2)7 G(mS'rm T3n, TI-T37L)7
G(z3n+1, T3nt1, ToT3n+1), G(T3n+2, Tant2, T3T3n42),

G(x3n, T3n, Toxan+1), G(T3nt2, Tant2, T1T3n),

Q

(3n+1, Z3n+1, T1%3n), G(T3n+1, T3n+1, I3T3n+2),

Q

(z3n+2; T3n+2, T2x3n+1)})
= ¢(maX{G($3m T3n+1, $3n+2)7 G($3n, T3n, L3n+1 )7

G

(w3n+17 L3n+1, x3n+2), G(x3n+27 T3n+2, x3n+3),
G(l’sm T3n, 963n+2)7 G($3n+2, T3n+2, $3n+1),
(

G I3n+17$3n+1,$3n+1), G(333n+17 T3n+1, $3n+3),
G(T3n+2, Tan+2, Tant2)}).
Then, using (G1), (G3) and (G4), we get
G(T3n+1, T3n42, Tan+3) < ¢(Max{G(T3n, Tan+1, Tan+2), G(T3n+1, Tan+2, Tant3)})-
Since the z; are distinct, the above inequality implies that
G(z3n+1, T3n+2, T3n+3) < ¢(G(T3n, T3n+t1, T3nt2)).
In a similar way, we obtain
G(Z3n+2, T3n+3, L3nta) < O(G(X3n+1, T3n+t2, T3n+3)),
and
G(3n+3, Tanta, Tants) < O(G(T3n+2, Tan+3, Tanta))-
From the above three inequalities, one can assert that
G(Tns Tnt1, Tnt2) < O(G(Tn—1,Tn, Tnt1)).

If we define t, = G(Zn,ZTnt1,Tn+2), then 0 < ¢, < t,-1 , so that the sequence {t,}
is non-increasing, hence convergent to some r > 0. Letting n — oo in (2.4), we have
r < ¢(r), using the continuity of ¢. If r» # 0, we obtain the contradiction r < ¢(r) < r.
Hence r = 0. We rewrite this as

lim G($n, xn+1,$n+2) =0.

n—00
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We next prove that {z,} is a G-Cauchy sequence. From (2.4),
G(Tn, Tnt1, Tnt2) < A(G(Tn-1,Tn, Tnt1)) < ... < ¢"(G(zo,x1,22)).
Therefore, using conditions (G3), (G4), (G5) and (2.4), we have for any k € N
G(Tny Ttk Tntk) < G(Tn, Tng1, Tnt1) + G(Tnt1, Tnt2, Tng2) + oo
+ G(Tntk—2, Tntk—1, Tntk—-1) + G(Tntk—1,Tntk, Tntk)
< G(xn, Tnt+1, Tnt2) + G(Tnt1, Tnt2, Tnts) + oo
+ G(Tatk—2, Tntk—1, Tntk) + G(Tntk—1, Tntks Tntk+1)
< ¢"(G(wo, 21, 22)) + ¢" (G (w0, 21, 22)) + oovon.
+ 0" (G0, w1, 22))

< Z (;ZSZ(G(‘TO? Z1, :CQ))

Using properties of ¢, > o2 ¢"(G(x0,x1,2)) tends to 0 as n — oo. Then for any k € N

lim G(zn, Tnik,Tntk) =0,

n—oo
and {z,} is a G-Cauchy sequence.Since X is a G-complete space, {z,} is a G-convergent
to some u € X; that is

lim G(zn,Tn,u) = lim G(zn,u,u) =0.

To show that u is a common fixed point of the maps T;,7 = 1, 2, 3, it will be sufficient to
show that Tiu = u. From (2.1), we have

G(Tiu, T3n+2, Tants) = G(Tiu, Toxsnt1, T3T3n42)
< ¢(ma‘X{G(ua T3n+1, ‘r3’n+2)7 G(’LL, u, Tlu)a
G($3n+17 T3n+1; T2$3n+1), G($3n+2, T3n+2, T3-T3n+2)7

G(u,u, Towsznt1), G(®3n42, Tant2, T1u),

Q

(3n+1, Z3n+1, Thu), G(X3n+1, T3n+1, T3T3n+2),

Q

(z3n42; T3n+2, T2Z3n+1)})

= ¢(max{G(u, T3n+1, T3n+2), G(u, u, T1u),

Q

T3n+1; L3n+1; $3n+2)7 G($3n+2, T3n+2, $3n+3),

G
G

(
G(u,u, Z3n+2), G(T3n42, Tant2, Tiu),
(3n+1, Z3n+1, Thu), G(Z3n+1, T3n+1, T3n+3),
(T3n+2, Tant2, Tang2)})-
Thus,
G(Thu, Z3n+2, Tants) < d(max{G(u, Tan+t1, Tant2), G(Tiu, u,u),
G(Z3n4+1, T3n+1, T3n+2); G(T3n+2, T3nt2, T3n+3),
G(u, u, T3n+2), G(T14, T3n+2, T3n+2),
G(Thu, T3n+1, T3n+1), G(Z3n+1, L3n41, T3n+3) })-

Taking the limit as n — oo, we get G(Tiu, u,u) < ¢(G(T1u,u,u)), which implies that
Tiu = u, Tou = u = T3u, and u is a common fixed point of the three maps 71,7 and T5.
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Let v be another common fixed point of each 73,7 = 1,2, 3. Using (2.1)
G(u,u,v) = G(Tru, Tou, T3v)
< ¢(max{G(u,u,v), G(u,u, Tiu), G(u, u, Tou),
G(Uv v, T3’U), G(“v u, T2u)7 G(Ua v, Tlu)7
G(u,u, Tiu), G(u,u, T3v), G(v, v, Tou)})
= ¢(maX{G(u’ u’ v)’ 07 07 07 07 G(v7 v? u)7 07
G(“’ u7 ’U), G(v7 v7 u)})'
This implies that
G(u,u,v) < ¢p(max{G(u,u,v), G(v,v,u)}).

Then either

If (1) is true, then
G(u,u,v) < ¢(G(u,u,v)) < G(u,u,v),

which implies that © = v,and w is the unique common fixed point of 71,75 and T5. If (2)
is true, then we have

G(u,u,v) < G(v,v,u).
Now, again using (2.1) with x = v,y = z = u, we get
Gv,v,u) = G(Thv, Trv, Tsu)
< p(max{G(v,v,u), G(v,v,Tv), G(v,v, Tov),
G(u7 u’ T3u)7 G(U’ U’ T2U)7 G(u’ u’ Tlv)7
G(v,v, T1v), G(v,v, Tsu), G(u,u, Tov)})
= ¢p(max{G(v,v,u)G(u,u,v)}).
Then either
(3) G(v,v,u) > G(u,u,v),
(4) G(v,v,u) < G(u,u,v).
If (3) is true, then
G(v,v,u) < ¢(G(v,v,u)) < G(v,v,u),

which implies that u = v,and w is the unique common fixed point of T1,T> and T3. If (4)
is true, then we have

G(v,v,u) < G(u,u,v).

Combining (2.6) and (2.7), we get G(v,v,u) = G(u,u,v). Using it in (2.5), we get that
u is the unique common fixed point of 71,75 and T53.

We shall now show that each T;,7 = 1, 2, 3, is G-continuous at u. First we prove that
T is G-continuous at u. For this, let {un} C X be a sequence which is G-convergent to
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u. Using (2.1), we have
G(Thun, u,u) = G(Tiun, Tou, Tsu)
S ¢(maX{G(u’n7 'LL, U)? G(u?’h u’ﬂ7 Tl’LLn), G(U, uy TQU),
G(u,u, Tzu), G(un, Un, Tou), G(u, u, Thu,),
G(’LL, ’LL, Tlun)v G(U, U, T3U), G(’LL, ’LL, T2u)})
= ¢ HlaX{G(’an, u, U), G(UTM Un, Tlu?‘l)a 07 07
G (Un, un,u), G(u,u, Tru,),0,0}).
Therefore
G(Tlu’ﬂ7 ’LL, ’LL) S d)(maX{G(u”a ’U,, ’LL), G(Tlun7 un, u’"«)a
G (Un, un, u), G(Thun, u, u)}).

Taking the limit as n — oo, we get G(T1un,u,u) = 0, which implies that lim, oo Thun =
u and 71 is G-continuous at u. Similarly, one can show that each T;,i = 2,3, is G-
continuous at wu. O

We now give some corollaries of Theorem 2.1. The first corresponds to ¢(t) = kt
where 0 < k < 1.

2.2. Corollary. Let (X,G) be a complete G-metric space and let T1, T2, T3 be selfmaps
of X satisfying for all x,y,z € X,

G(T1$> sz, T3Z) S ]{?(M(CE, Y, Z))7
where

M(.’E, Y, Z) = maX{G(m7 Y, Z)7 G($7 €, Tl$)7 G(ya Y, T2y)7 G(Z, 2 T3Z)7
G(ZB, z, TQy)? G(Z, 2, Tlm)7 G(y7 Y, Tlm)’ G(y7 Y, T3Z)) G(Z, 2, TQy)}?

where k is a constant satisfying 0 < k < 1. Then T1,T> and T3 have a unique common
fized point (say u) and each T; is G-continuous at u.

2.3. Corollary. Let (X,G) be a complete G-metric space and let Ty, T2, T3 be selfmaps
of X satisfying for all x,y,z € X,

Gz, T3y, 15" 2) < ¢(M(z,y, 2)),
where
M(z,y, z) = max{G(z,y, 2), G(z,z,T1"z), G(y,y, 15 y), G(z, 2, T3 ' 2),
G(z,2,15"y), G(z, 2, T1"2), Gy, y, 1" ), G(y,y, 15" 2), G(2, 2, T3"y) },

and ¢ € . Then T1,T> and T3 have a unique common fized point (say u) and each T;
is G-continuous at u.

Proof. From Theorem 2.1, we conclude that the maps 77",75" and 73" have a unique
common fixed point say u. For any i = 1,2,3, Tiu = Ty(T/"u) = T u = T (Tyu),
meaning that T;u is also a fixed point of T;". By the uniqueness of u, we get Tyu = u. O

By taking 71 = S and T> = T3 = T in Theorem 2.1, we obtain the following result:
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2.4. Corollary. Let (X,G) be a complete G-metric space and let S,T be selfmaps of X
satisfying for all x,y,z € X,

G(Sz, Ty, Tz) < ¢(M(x,y, 2)),
where
M(z,y, z) = max{G(z,y, z), G(z,z, Sx), G(y,y, Ty), G(z, 2, Tz),
G(z,z,Ty),G(z,2,52),G(y,y,Sz), G(y,y,Tz),G(z,2,Ty)},

and ¢ € ®. Then S, T have a unique common fized point (say u). Also S and T are
G-continuous at u.

By taking T'=T) = T» = T3 in Theorem 2.1 and in the above Corollaries, we obtain
the following results:

2.5. Corollary. Let (X,G) be a complete G-metric space and let T be selfmap of X
satisfying for all x,y,z € X,

G(Tz, Ty, Tz) < ¢(M(z,y, 2)),
where
M(z,y, z) = max{G(z,y, 2), G(z,z,Tz), G(y,y, Ty), G(z, 2, Tz),
G(z,z,Ty),G(z,2,Tx),G(y,y,Tz), Gy, y, Tz),G(z,2,Ty)},
and ¢ € ®. Then T has a unique fized point (say u). Also T is G-continuous at u.

2.6. Corollary. Let (X,G) be a complete G-metric space and let T be selfmap of X
satisfying for all x,y,z € X,

G(Tz, Ty, Tz) < k(M(z,y, 2)),
where
M(z,y, z) = max{G(z,y, 2), G(z,z,Tz), G(y,y, Ty), G(z, 2, Tz),
G(z,z,Ty),G(z,2,Tx),G(y,y,Tx),G(y,y, Tz),G(z,2,Ty)},

where k is a constant satisfying 0 < k < 1. Then T has a unique fized point (say u).
Also T is G-continuous at u.

2.7. Remark. Special cases of Corollary 2.6 are Theorems 2.1, 2.2 of [2], Theorems 2.1,
2.3, 2.5, 2.8, 2.9 of [5],Theorem 2.3 of 7] and Theorems 2.1, 2.4, 2.6, 2.8 of [9].

2.8. Example. Let X = [0, 1] with G-metric defined by G(z,y,2) = |z —y| + |y — 2| +

|z — z|. Define ¢ : R — R as ¢(t) = % and T1,T2,T5 : X — X by

z ifreclo,i
Tlﬂ?z :105 lfx [1 3)7
3 1m€[§,1]
xif 0.1
Tox = 3100 1$€[1’3),
T ifzez,1]

&
8
|
—
N8 x|
=
8
m
=)
— Wl
—
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Now, we prove that the mappings 71,72 and T3 satisfy condition (2.1). We discuss the
following eight cases:

Case-I: If z,y,z € [0, 3), then

14z 9y 4z

M(m,y,z) :max{max{|w—y\,|y—z|,\z—:p|}, 15°10° 5’

Y z _z _Z _Y
So,
Yy Y z| |z T
G(Tiz, Toy, T3z) = = L)L 22 o=
(Thz, Toy, SZ) max{‘ 0l 150 =1z 5}
1
Sgmax{max{\yﬁfy|,|yfz|,|zfgc|}711475317,%%,%27
Y O P N A N
10] 15"3’ 15"y 5”2 10}
2
:gM(SU,y,Z)
= ¢(M(z,y, 2)).
Case-1I: If z,y, 2z € [%, 1], then
M3, 2) = max { maox(le =yl ly = =1 == o), 5 2.2,
_ ¥ I Zl |,y
T 4‘72 8,’3/ 8,y 2,2 4‘}
So,
T_Yl|y_z|2_¢2
G(Tiz, Ty, Tzz) = max{‘g 505 s }

-1 _z
o AT g
< 2 max { max{le — yl, Iy~ 21,2 — 2}, 7=, 22 2
=3 vl 1y 1472
,Q s _z Z _Yy
2
:gM(iﬁ,y:Z)

Case-1IL: If = € [0, %) and y,z € [%, 1], then

14z 3y z

i z_g‘}.

M(z,y,2) = max { max{|z — gl ly — =, 2 — 2}, 12

y—

k]

SN2 VO T N
40 15’ ;5 Y 7 2l



590

So,

z ylly z2||z =
Tia, Toy, Tsz) = S A A N
G( 1T, L2Y, 32) max{‘lla 404 20|92 15}
1 2z y| |y 2z
2max{ 15 2" 2 PP 15 }
2 l4x 3y =z
< Z _ _ _ el A
o { o =yl ly - =1z —olh S, 22
B PO I PP AlL,_Y
I 15"3/ Y 2 )® 4‘
2
ng(xvwa)
= ¢(M(z,y, 2)).
Case-IV: If y € [0, %) and z,z € [1,1], then
M3 2) = mae { (e — Iy = =1 = = o), 5, 2.2,

I

B N PO N W )
= o= S S 3) -6l

So,

G(Tlx,Tgy,ng):max{ %—1% ,’1%—%, %—% }
- e[z -2 2= -2

Tr 9y z

S fmax{max{\x—y|,|y—z|,|z—x|},§,%,§,

Y i I PO I PO I PP
ST M A 8"‘1’ 2 |* 10}
— S M(@.p.2)
= ¢(M(z,y,2))
Case-V: If z € [0, §) and z,y € [$, 1], then
M(:c,y,z):max{max{|xfy\,|yfz|,\zfx|},%v,%,4€z,

xT
z— =

8

_z
Y3

<

I I

_Y _E Y
- A

4 Y



So,

G(Tlx,Tgy,ng):max{‘g %, g,g—%}
D S N A N
" 2 5015 2
2 Tr 3y 4z
< _ _ e Aied
< {max{\a: oty = le —al), 2, B, %2,
B I PO T YRS I P N PV )
O e
2
:gM(x,y,z)
= ¢(M(z,y, z)).
Case-VIL: If z,y € [0, 3) and z € [1,1], then
B 14z 9y =z
M(m,y7z)_max{max{|x y‘7|y Z|7‘Z x|}7T57E757
_Y LA _Y¥
’ 10H 15’|y 15Hy ? 10‘}'
So,
Y Y z| |z T
G(Tha, Toy, T LA A N e
(T, Tey, Toz) max{ 15 10" 10 2|2 15}
_1 2z _y| |y _ _ 2z
_2maX{15 5.’5 Z‘ 15}
2 14z 9y =
< Z _ _ _ finiadii-Aed
3 ma { max{fo = gy — 3112 — ol S, 58,2
S I DU A U PP U PV
EERUI 15"y 15”y 2” 10}
:§M(m,y,z)
= ¢(M($, Y, Z))
Case-VII: If 2,z € [0, %) and y € [3,1], then
14x 3y 4z
Mo, 2) = max { max{lo = ol by — 2| = = ol), S0 2L
_Y _x _x _Z _Y
v 4"Z 15"y Y 5"Z 4‘}'
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So,
z ylly =2z =
Tvz, Ty, Tsz) = oy oz E_z
G(Tw, Toy, Ts2) max{‘m 4|2 " 5P|5 1 }
1o d]4e _dz| |4z 4
1 5 Y B0 15
2 14 4
< S {max(le =yl by = ol o - alp S, %,
y

T x z Y
T 1 A
= gM(x,y, z)
= ¢(M(z,y, 2)).
Case-VIII: If y,z € [0, 3) and = € [$, 1], then
M,y 2) = mae { maoxlle — Iy = =1 = — o), 5, 2, 2,

_Y _z _z _Zz _Y¥
v 10Hz 8"3’ 8| Y 5"Z 10'}'
So,
y y ozl |z x
Tyz, Ty, Tsz) = SR N .,
G(Tiz, Toy, Tu2) max{‘ 10H10 5|5 8}
Se_ylly_,||,_5
8 202 8

Tr 9y 4z
max{\x - y|7 |y - Z|7 |Z - l‘|}, ?7 E7 E»

IA
\
=
o
"

I
U] =
g
| QO
»

A T N T )
o8 s Y 57 10
= M (@,5,2)

Thus all the conditions of Theorem 2.1 are satisfied for all x,y, z € X and 0 is the unique
common fixed point of 71,7 and T5.

3. Properties Q and R

In this section, we shall show that maps satisfying the conditions of theorem (2.1) and
Corollary (2.3) possess properties R and @ respectively.

3.1. Theorem. Under the conditions of Theorem 2.1, T1,T> and Ts have Property R.
Proof. From Theorem 2.1, T1,T> and T3 have a fixed point. Therefore, (F(T7")NF(13)N

F(T3')) is non empty for each n € N. Let n > 1 and suppose that p € F(T1*) N F(T3') N
F(T3). We claim that p € F(T1) N F(T2) N F(T3). To prove this, it is sufficient to show
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that p is a fixed point of T1. Suppose that T1p # p. Then using (2.1)
G(Tip,p,p) = G(T7"'p, T5'p, T5'p)
< ¢(max{G(T{'p, T3~ 'p, T3 'p), G(TT'p, T{'p, T 'p),
G(T3 ™ p, T3 'p, To'p), G(T5 ', T3 ' p, T5'),
G(I7p, T'p, T3'p). (T3~ 'p, T3 'p, T p),
G(T3 ™ 'p. T3 p, T1p), G(T3 ™ 'p, T3 p, Ti'p),
G(T3 ' p. T3 'p. T3'p)})
= ¢max{G(p, T3 'p, T3 'p), G(p,p, T1p), G(T3 "~ 'p, T3 'p, p),
G(T3 ™ 'p, T3~ p,p), G(p, p,p), G(T5 ', T3~ 'p, Tup),
G(T3 'p, T3 'p, Tap), G(T5 ' p, T3~ ', ), G(T5 ™ 'p, T3 'p,p)}).
If p =T p, then G(T3 *p, T3 'p,p) = 0. If p # T3 'p, then from (G3) and (G4),
G(Ty 'p, T3 'p,p) < G(T3 'p,p, T3 'p).
Similarly, either

G(T3 'p, T3 'p,p) = 0 or
G(T3 'p, T3 'p,p) < G(p, T3 'p, T3 'p),
G(T3 'p, T3 'p, Tip) = 0 or

G(T3 'p, T3 'p, Tip) < G(Tip, T3 'p, T3 'p),

and

G(T3 'p, T3 'p,Tip) = 0 or

G(T3 ™ 'p, T3 'p, Tup) < G(Tip, T3~ 'p, T3~ 'p).
Therefore

G(T1p7p7p) S ¢(ma'X{G(T1p7p7 p)7 G(p7 T2n_1p7 Tén_lp% G(T1p7 TZn_lpa T;_lp)})
Then either
G(Tip,p,p) < ¢(G(T1p,p,p)),

or G(T1p7p7p) < ¢(G(p7 T;_lpy TBn_lp))7

or G(Tup,p,p) < ¢(G(Tup, T3~ 'p, T3~ 'p)).
The condition

G(Twp,p,p) < $(G(p, T3 'p, T3 'p)),
implies that

G(Tip,p,p) = G(T{"'p, T3'p, T5'p)

< (G(Tp, T3 ', T3 'p)) < ... < S(G(Tup, p, 1)),

and if

G(Tip,p,p) < $(G(T1p, T3~ 'p, T3 'p)),
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implies that

G(Twp,p,p) = G(Tip, T5'p, T3'p)
< ¢(G(Tap, T3 'p, T3 'p)) < .... < $(G(T1p, p, p))-

Thus in either case, we obtain

G(Tup, p,p) < (G(T1p, p,p)

)
which is a contradiction. Hence Tip = p. Then, by Theorem 2.1, Top = T3p = p.
),

Therefore, p € F(T1) N F(T2) N F (T35

and T1,7T> and T3 satisfy property R.
O

3.2. Corollary. Under the conditions of Corollary 2.3, S and T have Property Q.

3.3. Remark. For T} = T = T3 = T in Theorem 3.1, we obtain Theorems 3.1, 3.2 of
[2] as special cases of our result.
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