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On property (gw1)
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Abstract

In this note we introduce and study the property (gw1), which extend
property (gw) introduced by Amouch and Berkani in [7]. We investi-
gate the property (gw1) in connection with Weyl type theorems, and
establish for abounded linear operator defined on a Banach space the
sufficient and necessary conditions for which property (gw1) holds. We
also study the property (gw1) for operators satisfying the single val-
ued extension property (SVEP). Classes of operators are considered as
illustrating examples.
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1. Introduction

Throughout this paper, B(X) denote the algebra of all bounded linear operators acting
on a Banach space X. For T ∈ B(X), let T ∗, ker(T ), R(T ), σ(T ), σp(T ) and σa(T ) denote
respectively the adjoint, the null space, the range, the spectrum, the point spectrum and
the approximate point spectrum of T . Let α(T ) and β(T ) be the nullity and the deficiency
of T defined by

α(T ) := dimker(T ) and β(T ) := codimR(T ).

If the range R(T ) of T is closed and α(T ) < ∞ (resp. β(T ) < ∞), then T is called an
upper semi-Fredholm (resp. a lower semi-Fredholm ) operator. In the sequel SF+(X)
(resp. SF−(X)) will denote the set of all upper (resp. lower ) semi-Fredholm operators.
If T ∈ B(X) is either upper or lower semi- Fredholm, then T is called a semi-Fredholm
operator, and the index of T is defined by

ind(T ) = α(T )− β(T ).

If both α(T ) and β(T ) are finite, then T is a Fredholm operator. An operator T is called
Weyl if it is Fredholm of index zero.
Let a := asc(T ) be the ascent of an operator T ; i.e., the smallest nonnegative integer
p such that ker(T a) = ker(T a+1). If such integer does not exist we put asc(T ) = ∞ .
Analogously, let d := dsc(T ) be descent of an operator T ; i.e., the smallest nonnegative
integer d such that R(T d) = R(T d+1), and if such integer does not exist we put d(T ) =∞.
It is well known that if asc(T ) and dsc(T ) are both finite then asc(T ) = dsc(T ) [23,
Proposition 38.3]. Moreover, 0 < asc(T − λI) = dsc(T − λI) <∞ precisely when λ is a
pole of the resolvent of T , see Heuser [23, Proposition 50.2].
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An operator T ∈ B(X) is called Browder if it is Fredholm ”of finite ascent and de-
scent”. The Weyl spectrum of T is defined by σW (T ) := {λ ∈ C : T − λI is not Weyl}.
For T ∈ B(X), let SF−+ (X) := {T ∈ SF+(X) : ind(T ) ≤ 0}. Then the upper Weyl

spectrum of T is defined by σ
SF−

+
(T ) :=

{
λ ∈ C : T − λI /∈ SF−+ (X)

}
. Let ∆(T ) =

σ(T ) \ σW (T ) and ∆a(T ) = σa(T ) \ σ
SF−

+
(T ). Following Coburn [17], we say that

Weyl’s theorem holds for T ∈ B(X) (in symbols, T ∈ W) if ∆(T ) = E0(T ), where
E0(T ) = {λ ∈ isoσ(T ) : 0 < α(T − λI) <∞} and that Browder’s theorem holds for T
(in symbols, T ∈ B) if σb(T ) = σW (T ), where

σb(T ) = {λ ∈ C : T − λI is not Browder} .
Here and elsewhere in this paper, for K ⊂ C, isoK is the set of isolated points of K.

According to Rakoc̃ević [28], an operator T ∈ B(X) is said to satisfy a-Weyl’s theorem
(in symbols, T ∈ aW) if ∆a(T ) = E0

a(T ), where

E0
a(T ) = {λ ∈ isoσa(T ) : 0 < α(T − λI) <∞} .

It is known [28] that an operator satisfying a- Weyl’s theorem satisfies Weyl’s theorem,
but the converse does not hold in general.

For T ∈ B(X) and a nonnegative integer n define Tn to be the restriction of T to R(Tn)
viewed as a map from R(Tn) into R(Tn) ( in particular T0 = T ). If for some integer n the
range space R(Tn) is closed and Tn is an upper (resp. a lower) semi-Fredholm operator,
then T is called an upper (resp. a lower) semi- B-Fredholm operator. In this case the
index of T is defined as the index of the semi-B-Fredholm operator Tn, see [8]. Moreover,
if Tn is a Fredholm operator, then T is called a B-Fredholm operator. A semi-B-Fredholm
operator is an upper or a lower semi-B-Fredholm operator. An operator T ∈ B(X) is
said to be a B-Weyl operator if it is a B-Fredholm operator of index zero. The B-Weyl
spectrum σBW (T ) of T is defined by

σBW (T ) := {λ ∈ C : T − λI is not a B-Weyl operator} .
Given T ∈ B(X), we say that the generalized Weyl’s theorem holds for T (and we write
T ∈ gW) if

σ(T ) \ σBW (T ) = E(T ),

where E(T ) is the set of all isolated eigenvalues of T , and that the generalized Browder’s
theorem holds for T (in symbols, T ∈ gB) if

σ(T ) \ σBW (T ) = π(T ),

where π(T ) is the set of all poles of T , see [11, Definition 2.13]. It is known [11, 21] that

gW ⊆ gB ∩W and that gB ∪W ⊆ B.

Moreover, given T ∈ gB, it is clear that T ∈ gW if and only if E(T ) = π(T ). Generalized
Weyl’s theorem has been studied in [6, 12, 9, 10, 11, 19] and the references therein.

Let SBF+(X) be the class of all upper semi-B-Fredholm operators,

SBF−+ (X) = {T ∈ SBF+(X) : ind(T ) ≤ 0} .
The upper B-Weyl spectrum of T

σ
SBF−

+
(T ) :=

{
λ ∈ C : T − λI /∈ SBF−+ (X)

}
.

We say that T obeys generalized a-Weyl’s theorem (in symbols, T ∈ gaW), if

σ
SBF−

+
(T ) = σa(T ) \ Ea(T );

where Ea(T ) is the set of all eigenvalues of T which are isolated in σa(T ) ( [11, Definition
2.13]). Generalized a-Weyl’s theorem has been studied in [11, 13, 14].
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2. Results

We will say that T ∈ B(X) has the single-valued extension property at λ0, (SVEP for
short) if for every open neighborhood U of λ0, the only analytic function f : U → X
which satisfies the equation: (T − λI)f(λ) = 0, for all λ ∈ U is the function f ≡ 0.
T ∈ B(X) is said to have the SVEP if T has the SVEP at every point λ ∈ C(see [26]).

2.1. Remark. For T ∈ B(X) , let ∆g(T ) = σ(T ) \ σBW (T ) and ∆g
a(T ) = σa(T ) \

σ
SBF−

+
(T ). If T ∗ has the SVEP, then it is known [24, page 35] that σ(T ) = σa(T )

and from [5, Theorem 2.9] we have σ
SBF−

+
(T ) = σBW (T ). Thus Ea(T ) = E(T ) and

∆g
a(T ) = ∆g(T ).

2.2. Definition. ( [28]) A bounded linear operator T ∈ B(X) is said to satisfy property
(w) if

∆g(T ) = σa(T ) \ σ
SF−

+
(T ) = E0(T ).

2.3. Definition. ( [7]) A bounded linear operator T ∈ B(X) is said to satisfy property
(gw) if

∆g
a(T ) = E(T ).

2.4. Definition. ( [16]) A bounded linear operator T ∈ B(X) is said to satisfy property
(w1) if

∆g(T ) = σa(T ) \ σ
SF−

+
(T ) ⊆ E0(T ).

2.5. Definition. A bounded linear operator T ∈ B(X) is said to satisfy property (gw1)
if

∆g
a(T ) ⊆ E(T ).

2.6. Theorem. Let T ∈ B(X). If property (gw1) holds for T , then property (w1) holds
for T .

Proof. Assume that T satisfies property (gw1) and let λ ∈ ∆a(T ). Since σ
SBF−

+
(T ) ⊆

σ
SF−

+
(T ), then λ ∈ ∆g

a(T ) ⊆ E(T ). As α(T − λI) < ∞, then λ ∈ E0(T ) and ∆g(T ) ⊆
E0(T ). �

2.7. Theorem. Let T ∈ B(X). Then

(1) property (gw) holds for T if and only if T satisfies property (gw1) and E(T ) =
π(T ).

(2) property (gw) holds for T if and only if T satisfies property (gw1) and σ
SBF−

+
(T )∩

E(T ) = ∅.

Proof. (1). Suppose that T has property (gw), then property (gw1) holds for T . Let
λ ∈ E(T ), then λ ∈ ∆g

a(T ), thus T − λI ∈ SBF−+ (X). Since λ ∈ isoσ(T ), we know that
T − λI ∈ gB and hence λ ∈ π(T ). Conversely, suppose T satisfies property (gw1) and
E(T ) = π(T ). Let λ ∈ E(T ), which means that λ ∈ ∆g

a(T ), thus property (gw) holds for
T .
(2). Suppose that T has property (gw) and this implies that property (gw1) holds for
T , and σ

SBF−
+

(T ) ∩ E(T ) = ∅. For the converse, if λ ∈ E(T ), λ /∈ σ
SBF−

+
(T ) since

σ
SBF−

+
(T ) ∩ E(T ) = ∅. Then λ ∈ ∆g

a(T ), hence ∆g
a(T ) = E(T ). �

The following example shows that property (gw1) does not implies property (gw) in
general.
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2.8. Example. Let S ∈ B(X) be any quasi-nilpotent operator acting on an infinite
dimensional Banach space X such that R(Sn) is non-closed for alln. Let T = 0 ⊕ S
defined on the Banach space X ⊕ X. Since R(Tn) = R(Sn) is non-closed for all n, then
T is not a semi-B-Fredholm operator, so σ

SBF−
+

(T ) = {0}. Since σa(T ) = {0} and

E(T ) = {0}, then T does not satisfies property (gw). But T satisfies property (gw1),
since ∆g

a(T ) = ∅ ⊆ E(T ).

The following example shows that property (gw1) does not implies that σ
SBF−

+
(T ) ∩

E(T ) = ∅.

2.9. Example. Let X = `p, let T1, T2 ∈ B(X) be given by

T (x1, x2, · · · ) :=

(
0,

1

2
x1,

1

3
x2,

1

4
x3, · · ·

)
and T2 := 0,

and let

T :=

(
T1 0
0 T2

)
∈ (

¯
X⊕ X).

Then

σ(T ) = σa(T ) = σBW (T ) = σ
SBF−

+
(T ) = E(T ) = {0}

and

∆g
a(T ) = ∅.

Therefore, property (gw1) holds for T but σ
SBF−

+
(T ) ∩ E(T ) = {0} .

2.10. Theorem. Let T ∈ B(X). Then the following statements are equivalent:

(a) Property (gw1) holds for T ;
(b) σ

SBF−
+

(T ) = σa(T ) ∩ σBW (T );

(c) σa(T ) = σ
SBF−

+
(T ) ∪ E(T );

(d) ∆g
a(T ) ⊆ π(T ).

Proof. (a)⇔ (b). Suppose T has property (gw1). Clearly, σ
SBF−

+
(T ) ⊆ σBW (T )∩σa(T ).

We only need to prove that σ
SBF−

+
(T ) ⊇ σBW (T ) ∩ σa(T ). Let λ /∈ σ

SBF−
+

(T ), then

T −λI ∈ SBF−+ (X), thus T −λI is semi-B-Fredholm and ind(T −λI) ≤ 0 or λ ∈ ∆g
a(T ).

Since T has property (gw1), we know that if λ ∈ ∆g
a(T ), T −λI ∈ gB, which means that

λ /∈ σa(T )∩ σBW (T ). Conversely, let λ ∈ ∆g
a(T ), since σ

SBF−
+

(T ) = σa(T )∩ σBW (T ), it

follows that T − λI ∈ gB, hence λ ∈ E(T ), which means that property (gw1) holds for
T.
(a) ⇔ (c). Suppose T satisfies property (gw1). σa(T ) ⊇ σ

SBF−
+

(T ) ∪ E(T ) is clear.

Let λ /∈ σ
SBF−

+
(T ) ∪ E(T ), then T − λI ∈ SBF−+ (X) and ind(T − λI) ≤ 0. If α(T −

λI) = 0, then λ /∈ σa(T ); if α(T − λI) > 0, then λ ∈ σa(T ) \ σ
SBF−

+
(T ), since T

satisfies property (gw1), it follows that λ ∈ E(T ). It is in contradiction to the fact
that λ /∈ E(T ) ∪ σ

SBF−
+

(T ). Thus σa(T ) = σ
SBF−

+
(T ) ∪ E(T ). For the converse, if

σa(T ) = σ
SBF−

+
(T )∪E(T ), then σa(T ) \σ

SBF−
+

(T ) ⊆ E(T ), which means that property

(gw1) holds for T.
(a) ⇔ (d). Suppose T has property gw1. Let λ ∈ ∆g

a(T ), then λ ∈ E(T ), since T − λI
is upper semi-B-Fredholm and λ ∈ isoσ(T ), we know that T − λI ∈ gB, hence λ ∈ π(T ).
Conversely, using the fact that π(T ) ⊆ E(T ), if ∆g

a(T ) ⊆ π(T ), then T has property
(gw1). �
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In the following, let H(T ) be the class of all complex-valued functions which are
analytic on a neighborhood of σ(T ) and are not constant on any component of σ(T ).

2.11. Theorem. Let T ∈ B(X). Suppose that property (gw1) holds for T . Then the
following statements are equivalent:

(i) For any f ∈ H(T ), property (gw1) holds for f(T );
(ii) For any f ∈ H(T ), f(σ

SBF−
+

(T )) = σ
SBF−

+
(f(T )), and if σa(T ) 6= σ

SBF−
+

(T ),

then σ(T ) = σa(T );
(ii) For each pair λ, µ ∈ C \σ

SBF−
+

(T ), ind(T −λI)ind(T −µI) ≥ 0, and if σa(T ) 6=
σ
SBF−

+
(T ), then σ(T ) = σa(T ).

Proof. (i)⇒ (ii). σ
SBF−

+
(f(T )) ⊆ f(σ

SBF−
+

(T )) is clear. We need to prove σ
SBF−

+
(f(T )) ⊇

f(σ
SBF−

+
(T )). Let µ0 /∈ σSBF−

+
(f(T )), then f(T )− µ0I ∈ SBF−+ (X). Let

f(T )− µ0I = (T − λ1I)n1(T − λ2I)n2 · · · (T − λkI)nkg(T ),

where λi 6= λj and g(T ) is invertible. Thus T − λjI is upper semi-B-Fredholm operator
and µ0 /∈ σa(f(T )) or µ0 ∈ ∆g

a(f(T )). If µ0 /∈ σa(f(T )), then f(T )−µ0I is bounded from
below, which means that each T −λjI is bounded from below. Then µ0 /∈ f(σ

SBF−
+

(T )).

If µ0 ∈ ∆g
a(f(T )), since property (gw1) holds for f(T ), we know that f(T )− µ0I ∈ gB.

Hence T − λjI ∈ gB and λj /∈ σ
SBF−

+
(T ). Then µ0 /∈ f(σ

SBF−
+

(T )). Next we will

prove if σa(T ) 6= σ
SBF−

+
(T ), then σ(T ) = σa(T ). Let λ0 ∈ σa(T ) \ σ

SBF−
+

(T ). Then

T − λ0I ∈ gB because property (gw1) holds for T . For any µ0 /∈ σa(T ), α(T − µ0I) = 0.
Let f(T ) = (T − µ0I)(T − λ0I), then 0 ∈ σa(f(T )) \ σ

SBF−
+

(f(T )). Since f(T ) has

property (gw1), we know that f(T ) ∈ gB. This implies that f(T )− µ0I ∈ gB. The fact
α(T − µ0I) = 0 tell us that T − µ0I is invertible, which means that µ0 /∈ σ(T ). Hence
σ(T ) = σa(T ).
(ii)⇒ (i). Let µ0 ∈ ∆g

a(f(T )), then f(T )−µ0I ∈ SBF−+ (X) and α(f(T )−µ0I) > 0. Let

f(T )− µ0I = (T − λ1I)n1(T − λ2I)n2 · · · (T − λkI)nkg(T ),

where λi 6= λj and g(T ) is invertible. Since f(σ
SBF−

+
(T )) = σ

SBF−
+

(f(T )) and µ0 /∈
σ
SBF−

+
(f(T )), it follows that λj /∈ σSBF−

+
(T ). Then T−λjI ∈ SBF−+ (X). Let α(T−λjI =

0) if 1 ≤ j ≤ i and α(T − λjI > 0) if i < j ≤ k. Then T − λjI is bounded from below if
1 ≤ j ≤ i. Using the fact σ(T ) = σa(T ) we know that T − λjI is invertible. If i < j ≤ k,
then λj /∈ ∆g

a(T ), since T has property (gw1), T −λjI ∈ gB. Thus f(T )−µ0I ∈ gB and
µ0 ∈ E(f(T )). Hence property (gw1) holds for f(T ).
(i)⇒ (iii). Suppose that there exist λ, µ ∈ σ

SBF−
+

(T ) such that ind(T−λI)ind(T−µI) <

0. Let ind(T −λI) = k > 0, then T −λI is B-Fredholm. If ind(T −µI) = −t < 0, t 6=∞,
then let f(T ) = (T −λI)t(T −µI)k; if ind(T −I) =∞, then let f(T ) = (T −λI)(T −µI).
Thus 0 ∈ ∆g

a(f(T )), since f(T ) has property (gw1), we know that f(T ) ∈ gB. Thus
T − λI ∈ gB and T − µI ∈ gB. It is in contradiction to the fact that ind(T − λI) > 0.
Hence for each pair λ, µ ∈ C \ σ

SBF−
+

(T ), ind(T − λI)ind(T − µI) ≥ 0.

(iii)⇒ (i). Let µ0 /∈ ∆g
a(f(T )), then f(T )− µ0 ∈ SBF−+ (X). Let

f(T )− µ0I = (T − λ1I)n1(T − λ2I)n2 · · · (T − λkI)nkg(T ),

where λi 6= λj and g(T ) is invertible. Then for any λj , T −λjI is upper semi-B-Fredholm
and

k∑

j=1

ind(T − λj)nj ≤ 0.
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By condition ind(T − λjI) ≤ 0, we get that T − λjI ∈ SBF−+ (X). Since the rest of the
proof is similar to the proof of (ii)⇒ (i) we omit it, and hence property (gw1) holds for
f(T ). �

2.12. Theorem. Let T ∈ B(X). Then the following statements are equivalent:

(I) T satisfies property (gw1) and E(T ) = π(T )
(II) T satisfies generalized Weyl’s theorem and ind(T − λI) = 0 for all λ ∈ ∆g

a(T ).

Proof. (I) ⇒ (II). Suppose that T satisfies property (gw) and E(T ) = π(T ). Let
λ ∈ ∆g(T ). Since σ

SBF−
+

(T ) ⊆ σBW (T ), then λ /∈ σ
SBF−

+
(T ). If α(T − λI) = 0, as

λ /∈ σBW (T ), then T − λI will be invertible. But this is impossible since λ ∈ σ(T ).
Hence α(T − λI) > 0 and λ ∈ σa(T ). As T satisfies property (gw1), then λ ∈ E(T ).
This implies that ∆g(T ) ⊆ E(T ). To show the opposite inclusion, let λ ∈ E(T ) be
arbitrary. Since T satisfies property (gw1), and E(T ) = π(T ), then λ /∈ σ

SBF−
+

(T ) and

hence ind(T − λI) ≤ 0. On the other hand, as λ ∈ E(T ), then λ ∈ isoσ(T ), and hence
T ∗ has the SVEP at λ. By [3], we have ind(T − λI ≥ 0. So ind(T − λI) = 0, and
λ /∈ σBW (T ). Hence σ(T ) \ σBW (T ) = E(T ) and ind(T − λI) = 0 for all λ ∈ ∆g

a(T ).
(II)⇒ (I). Conversely, assume that T satisfies generalized Weyl’s theorem and ind(T −
λI) = 0 for all λ ∈ ∆g

a(T ). If λ ∈ ∆g
a(T ), then T −λI is a semi-B-Fredholm operator such

that ind(T − λI) = 0. Hence T − λI is a B-Weyl operator. Since T satisfies generalized
Weyl’s theorem, then λ ∈ E(T ) and hence ∆g

a(T ) ⊆ E(T ). To show E(T ) = π(T ), let
λ ∈ E(T ), then T − λI is a B-Weyl operator and since λ ∈ σ(T ), then α(T − λI) > 0.
Thus λ ∈ π(T ). Consequently T satisfies property (gw1) and E(T ) = π(T ). �

The following example shows that generalized a-Weyl’s theorem and generalized Weyl’s
theorem does not imply property (gw1).

2.13. Example. Let X = `2(N) and S ∈ B(X) be the unilateral right shift and let V
defined by

V (x1, x2, · · · ) = (0, x2, x3, · · · ), (xn) ∈ `2(N).

If T = S ⊕ V, then σ(T ) = D(0, 1) the closed unit disc in C, isoσ(T ) = ∅ and σa(T ) =
C(0, 1) ∪ {0}, where C(0, 1) is unit circle of C. This implies that

σ
SBF−

+
(T ) = C(0, 1) and ∆g

a(T ) = {0} .

Moreover we have E(T ) = ∅ and Ea(T ) = {0} . Hence T satisfies generalized a- Weyl’s
theorem and so T satisfies generalized Weyl’s theorem. But T does not satisfy property
(gw1).

2.14. Theorem. Let T ∈ B(X). If T ∗ has the SVEP, then the following statements are
equivalent:

(1) Property (gw) holds for T ;
(2) generalized Weyl’s theorem holds for T ;
(3) generalized a-Weyl’s theorem holds for T ;
(4) Property (gw1) holds for T and E(T ) = π(T )

Proof. Suppose that T ∗ has the SVEP, then as it had been already mentioned by Remark
2.1, we have

σa(T ) = σ(T ), σ
SBF−

+
(T ) = σBW (T ), Ea(T ) = E(T )

and ∆g
a(T ) = ∆g(T ). The equivalence between (1), (2), and (3) follows from [7, Theorem

2.8]. Since (1)⇔ (4) has already been proved, the proof is complete. �

2.15. Theorem. Let T ∈ B(X). If T has SVEP then σ
SBF−

+
(T ∗) = σBW (T ).
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Proof. The inclusion σ
SBF−

+
(T ∗) ⊆ σBW (T ) holds for every T ∈ B(X). Suppose that

λ /∈ σ
SBF−

+
(T ∗). Then T ∗ − λI∗ ∈ SBF+(X) with ind(T ∗ − λI∗) ≤ 0. By duality

T − λI is lower semi-B-Fredholm and the SVEP of T entails that asc(T − λI) <∞. By
[1, Theorem 3.4] we have ind(T − λI) ≤ 0, thus ind(T ∗ − λI∗) = −ind(T − λI) ≥ 0.
Therefore, ind(T ∗ − λI∗) = ind(T − λI) = 0, and, again by [1, Theorem 3.4], we have
dsc(T − λI) <∞, thus λ /∈ σBW (T ). �

A bounded operator T ∈ B(X) is said to be polaroid if isoσ(T ) = ∅ or every isolated
point of σ(T ) is a pole of the resolvent of T (see [4]).

2.16. Theorem. Suppose that T ∈ B(X). Then the following statements hold:

(i) If T is polaroid and T ∗ has SVEP then property (gw) holds for T.
(ii) If T is polaroid and T has SVEP then property (gw) holds for T ∗.

Proof. (i). Note that by Remark 2.1 we have σ(T ) = σa(T ). Suppose first that isoσ(T ) =
∅. Then E(T ) = ∅. We show that also ∆g

a(T ) is empty. By Remark 2.1 we have
σa(T )\σ

SBF−
+

(T ) = σ(T )\σBW (T ) and the last set is empty, since σ(T ) has no isolated

points. Therefore, T satisfies property (gw). Consider the other case, isoσ(T ) 6= ∅.
Suppose that λ ∈ E(T ). Then λ is isolated in σ(T ) and hence, by the polaroid condition,
λ is a pole of the resolvent of T , i.e. asc(T − λI) = dsc(T − λI) < ∞. By assumption
α(T − λI) <∞, so by [1, Theorem 3.1] β(T − λI) <∞,and hence T − λI is a Fredholm
operator. Therefore, by 2.1, λ ∈ σa(T ) \ σ

SBF−
+

(T ) = σ(T ) \ σBW (T ).. Conversely, if

λ ∈ σa(T ) \ σ
SBF−

+
(T ) = σ(T ) \ σBW (T ) then λ is an isolated point of σ(T ) . Clearly,

0 < α(T − λI), so λ ∈ E(T ) and hence T satisfies property (gw).
(ii). First note that since T has SVEP then σ(T ∗) = σ(T ) = σ(T ∗), see Corollary 2.45
of [1]. Suppose first that isoσ(T ) = σ(T ∗) = ∅. Then E(T ∗) = ∅. By Theorem 2.15 we
have σa(T ∗) \ σ

SBF−
+

(T ∗) = σ(T ) \ σBW (T ) = ∅, so T ∗ satisfies property (gw). Suppose

that isoσ(T ) 6= ∅ and let λ ∈ E(T ∗). Then λ is an isolated point of σ(T ∗) = σ(T ) ,
hence a pole of the resolvent of T ∗, since T ∗ is polaroid by Theorem 2.5 of [4]. By
assumption α(T ∗ − λI)p and since the ascent and the descent of T ∗ − λI∗ are both
finite it then follows by Theorem 3.1 of [1] that β(T − λI) = α(T − λI) < ∞, so
T ∗ − λI∗ ∈ gB and hence also T − λI ∈ gB. Therefore, λ ∈ σ(T ) \ σBW (T ) and by
Theorem 2.15and Remark 2.1 it then follows that λ ∈ σa(T )\σ

SBF−
+

(T ). Conversely, if

λ ∈ σa(T ) \ σ
SBF−

+
(T ) = σ(T ) \ σBW (T ), then λ is an isolated point of the spectrum of

σ(T ) = σ(T ∗), T −λI ∈ gB, or equivalently T ∗−λI∗ ∈ gB. Since α(T ∗−λI∗) = β(T ∗−
λI∗) we then have α(T ∗ − λI∗) > 0 (otherwise λ /∈ σ(T ∗)). Clearly, α(T ∗ − λI∗) > 0,
since by assumption T ∗−λI∗ ∈ SF−+ (X∗) , so that λ ∈ E(T ∗). Thus T ∗ satisfies property
(gw). �

2.17. Corollary. Suppose that T ∈ B(X). Then the following statements hold:

(i) If T is polaroid and T ∗ has SVEP then property (gw1) holds for T.
(ii) If T is polaroid and T has SVEP then property (gw1) holds for T ∗.

The following example shows that in the statements (i) of Theorem 2.16 and Corollary
2.17 the assumption that T ∗ has SVEP cannot be replaced by the assumption that T
has SVEP.

2.18. Example. Denote by S the unilateral right shift on `2(N) and define

V (x1, x2, · · · ) = (0, x2, x3, · · · ) for all (xn) ∈ `2(N).

Clearly, V is a quasi-nilpotent operator. Let T = S ⊕ V . We have σ(T ) = D, D the
closed unit disc of C, so isoσ(T ) = E(T ) = ∅ and hence T is polaroid. Moreover,
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σa(T ) = ∂D ∪ {0}. Since σa(T ) does not cluster at λ T has SVEP at 0, as well as at
the points λ /∈ σa(T ). Since T has SVEP at all points ∂σ(T ) it then follows that T has
SVEP. Finally, σ

SBF−
+

(T ) = ∂σ(T ) so ∆g
a(T ) = {0} 6= E(T ) = ∅, thus T does not satisfy

property (gw1) and hence does not satisfy property (gw).

Analogously, in the statements (ii) of Theorem 2.16 and Corollary 2.17 the assump-
tion that T has SVEP cannot be replaced by the assumption that T ∗ has SVEP.

2.19. Example. Let us consider the left shift L ∈ (
¯
`2(N)), and let V ∗ be the adjoint

of the quasi-nilpotent operator V defined in Example 2.18. We have L∗ = R, R the
unilateral right shift. If we define W := L ⊕ V ∗ then, as observed in Example 2.18

W ∗ = R ⊕ V has SVEP. From Example 2.18 we also know that σ(W ) = σ(W ∗) = D,
so isoσ(W ∗) = E(W ∗) = ∅ and hence W is polaroid. Moreover, σa(W ∗) = ∂D ∪ {0}.
Finally, σ

SBF−
+

(W ∗) = ∂σ(W ∗) so ∆g
a(W ∗) = {0} 6= E(W ∗) = ∅, thus W ∗ does not

satisfy property (gw1) and hence does not satisfy property (gw).

2.20. Example. Let H be a Hilbert space, an operator T acting on H is said to be
paranormal if ‖Tx‖2 ≤

∥∥T 2x
∥∥ ‖x‖ for all x ∈ H. Examples of paranormal operators

are the p-hyponormal or log-hyponormal operators ( [20]). Recall that an operator T is
p-hyponormal for some p > 0, if (T ∗T )p ≥ (TT ∗)p and T is said to be log-hyponormal
if T is invertible and log T ∗T ≥ log TT ∗. It follows from [18, Lemma 2.3] that a
paranormal operator T is polaroid. Moreover a paranormal operator have the SVEP, see
[15, Corollary 2.10]. So if T is paranormal, then T ∗ satisfies property (gw1).

A bounded operator T ∈ B(X) is said to have property H(p) if for all λ ∈ C there
exists a p := p(λ) ∈ N such that:

H0(T − λI) = ker(T − λI)p,

where

H0(T − λI) =
{
x ∈ X| lim

n→∞
‖(T − λI)nx‖ 1

n = 0
}
.

It is well known that such operators has the SVEP and are polaroid. So if T ∗ has the
property H(p), then T has the property (gw1). Oudghiri [27] observed that every gen-
eralized scalar operator and every subscalar operator T (i.e. T is similar to a restriction
of a generalized scalar operator to one of its closed invariant subspaces) has property
H(p), see [24] for definitions and properties. Consequently, property H(p) is satisfied by
p-hyponormal operators and log-hyponormal operators [25, Corollary 2], algebraically w-
hyponormal operators [31], quasi-class (A, k) [29], algebraically (p, k)-quasihyponormal
[32], algebraically wF (p, r, q) operators with p, r > 0 and q ≥ 1 [30], M -hyponormal
operators [24, Proposition 2.4.9], and totally paranormal operators [2]. Also totally
∗-paranormal operators have property H(1) [22].
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