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On property (gwl)
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Abstract

In this note we introduce and study the property (gw1), which extend
property (gw) introduced by Amouch and Berkani in [7]. We investi-
gate the property (gwl) in connection with Weyl type theorems, and
establish for abounded linear operator defined on a Banach space the
sufficient and necessary conditions for which property (gw1) holds. We
also study the property (gwl) for operators satisfying the single val-
ued extension property (SVEP). Classes of operators are considered as
illustrating examples.
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1. Introduction

Throughout this paper, B(X) denote the algebra of all bounded linear operators acting
on a Banach space X. For T' € B(X), let T, ker(T"), R(T), o(T), 0p(T) and 04 (T") denote
respectively the adjoint, the null space, the range, the spectrum, the point spectrum and
the approximate point spectrum of T'. Let «(T") and 3(T’) be the nullity and the deficiency
of T' defined by

a(T) := dimker(T) and B(T) := codimR(T).

If the range R(T) of T is closed and «(T") < oo (resp. B(T) < o0), then T is called an
upper semi-Fredholm (resp. a lower semi-Fredholm ) operator. In the sequel SF4 (X)
(resp. SF_(X)) will denote the set of all upper (resp. lower ) semi-Fredholm operators.
If T € B(X) is either upper or lower semi- Fredholm, then T is called a semi-Fredholm
operator, and the index of 7" is defined by

nd(T) = o(T) — B(T).
If both a(T") and B(T') are finite, then T is a Fredholm operator. An operator T is called
Weyl if it is Fredholm of index zero.
Let a := asc(T') be the ascent of an operator T ; i.e., the smallest nonnegative integer
p such that ker(T) = ker(T*"!). If such integer does not exist we put asc(T) = oo .
Analogously, let d := dsc(T') be descent of an operator T ; i.e., the smallest nonnegative
integer d such that R(T%) = R(T?*'), and if such integer does not exist we put d(T) = co.
It is well known that if asc(T) and dsc(T") are both finite then asc(T) = dsc(T) [23,
Proposition 38.3]. Moreover, 0 < asc(T — AI) = dsc(T — M) < oo precisely when A is a
pole of the resolvent of T, see Heuser [23, Proposition 50.2].

*Dept. of Mathematics & Statistics, Faculty of Science, Mu’tah University, Al-karak, Jordan
E-mail: malik_okasha@yahoo.com



604

An operator T' € B(X) is called Browder if it is Fredholm ”of finite ascent and de-
scent”. The Weyl spectrum of 7' is defined by ow (T) :={A € C: T — A\l is not Weyl}.
For T € B(X), let SF_(X) := {T € SF+(X):ind(T) <0}. Then the upper Weyl
spectrum of T is defined by og,— (T) :== {A€C:T -\ ¢ SF_(X)}. Let A(T) =

+
o(T)\ ow(T) and Ay(T) = 0a(T) \ 0gp—(T). Following Coburn [17], we say that
+
Weyl’s theorem holds for T € B(X) (in symbols, T € W) if A(T) = E°(T), where
E°(T) = {)\ €is00(T): 0 < a(T — M) < 0o} and that Browder’s theorem holds for T
(in symbols, T' € B) if 04(T") = ow (T'), where

o(T) ={Ae€C:T — Xl isnot Browder}.

Here and elsewhere in this paper, for K C C, isoK is the set of isolated points of K.

According to Rakocevié¢ [28], an operator T' € B(X) is said to satisfy a-Weyl’s theorem
(in symbols, T € aW) if Ay (T) = E2(T), where

EXT) = {\ €is004(T): 0 < a(T — X\) < 0o} .
It is known [28] that an operator satisfying a- Weyl’s theorem satisfies Weyl’s theorem,
but the converse does not hold in general.

For T' € B(X) and a nonnegative integer n define T}, to be the restriction of 7" to R(T™)
viewed as a map from R(T™) into R(T") ( in particular Tp = T'). If for some integer n the
range space R(T™) is closed and T, is an upper (resp. a lower) semi-Fredholm operator,
then T is called an upper (resp. a lower) semi- B-Fredholm operator. In this case the
index of T is defined as the index of the semi-B-Fredholm operator T, see [8]. Moreover,
if T}, is a Fredholm operator, then T is called a B-Fredholm operator. A semi-B-Fredholm
operator is an upper or a lower semi-B-Fredholm operator. An operator T' € B(X) is
said to be a B-Weyl operator if it is a B-Fredholm operator of index zero. The B-Weyl
spectrum opw (T) of T is defined by

opw(T):={A€C:T — Al isnot a B-Weyl operator}.

Given T € B(X), we say that the generalized Weyl’s theorem holds for T' (and we write
T € gW) if

o(T)\ opw(T) = E(T),
where E(T) is the set of all isolated eigenvalues of T', and that the generalized Browder’s
theorem holds for T' (in symbols, T € gB) if

o(T)\ opw(T) = =(T),
where 7(T') is the set of all poles of T', see [11, Definition 2.13]. It is known [11, 21] that
gW C gBNW and that ¢gBUW C B.

Moreover, given T' € ¢gB, it is clear that T' € gW if and only if E(T) = m(T"). Generalized
Weyl’s theorem has been studied in [6, 12, 9, 10, 11, 19] and the references therein.
Let SBF4(X) be the class of all upper semi-B-Fredholm operators,

SBF{ (X) ={T € SBF(X) :ind(T) < 0}.
The upper B-Weyl spectrum of T'
Tspr- (T):={XeC:T -\ ¢ SBF{(X)}.
We say that T obeys generalized a-Weyl’s theorem (in symbols, T' € gaW), if
Top=(T) = 0u(T) \ Bu(T);

where E,(T) is the set of all eigenvalues of T" which are isolated in o (T") ( [11, Definition
2.13]). Generalized a-Weyl’s theorem has been studied in [11, 13, 14].
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2. Results

We will say that 7' € B(X) has the single-valued extension property at Ao, (SVEP for
short) if for every open neighborhood U of Ag, the only analytic function f : U — X
which satisfies the equation: (7" — AI)f(A) = 0, for all A € U is the function f = 0.
T € B(X) is said to have the SVEP if T has the SVEP at every point A € C(see [26]).

2.1. Remark. For T € B(X) , let AYT) = o(T) \ osw(T) and AJ(T) = 0a(T) \
ogpp—-(T). If T™ has the SVEP, then it is known [24, page 35] that o(T) = ou(T)
+
and from [5, Theorem 2.9] we have o4, .—(T) = opw(T). Thus E*(T) = E(T) and
+
AY(T) = AY(T).
2.2. Definition. ( [28]) A bounded linear operator T € B(X) is said to satisfy property

(w) if
AY(T) = 0a(T) \ 0gp— (T) = E°(T).

2.3. Definition. ( [7]) A bounded linear operator T' € B(X) is said to satisfy property
(gw) if
AY(T) = E(T).

2.4. Definition. ( [16]) A bounded linear operator T € B(X) is said to satisfy property
(wl) if
AY(T) = 0a(T)\ 04, (T) C E*(T).
+

2.5. Definition. A bounded linear operator T' € B(X) is said to satisfy property (gwl)
if
AY(T) C B(T).

2.6. Theorem. Let T € B(X). If property (gwl) holds for T', then property (wl) holds
for T

Proof. Assume that T satisfies property (gwl) and let A € A,(T). Since Tspry (T) C
Tsr; (T), then A\ € AY(T) C E(T). As a(T — M) < oo, then X\ € E°(T) and AY(T) C
E°(T). a

2.7. Theorem. Let T' € B(X). Then
(1) property (gw) holds for T if and only if T satisfies property (gwl) and E(T) =

w(T).
(2) property (gw) holds for T if and only if T" satisfies property (gwl) and Tspr- (TN
E(T)=0.

Proof. (1). Suppose that T" has property (gw), then property (gwl) holds for T'. Let
A€ E(T), then A € AY(T), thus T — A € SBF_ (X). Since A € isoo(T), we know that
T — M € ¢gB and hence A € n(T'). Conversely, suppose T satisfies property (gwl) and
E(T) =n(T). Let A € E(T), which means that A € AJ(T), thus property (gw) holds for
T.

(2). Suppose that T has property (gw) and this implies that property (gwl) holds for
T, and Tspr- (T) N E(T) = 0. For the converse, if A € E(T), A ¢ Tspry (T") since

Tspr; (TYNE(T) = 0. Then A € A%(T), hence AY(T) = E(T). O

The following example shows that property (gwl) does not implies property (gw) in
general.
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2.8. Example. Let S € B(X) be any quasi-nilpotent operator acting on an infinite
dimensional Banach space X such that R(S™) is non-closed for alln. Let T = 0@ S
defined on the Banach space X @ X. Since R(T™) = R(S™) is non-closed for all n, then
T is not a semi-B-Fredholm operator, so Tspr- (T) = {0}. Since o,(T) = {0} and

E(T) = {0}, then T does not satisfies property (gw). But T satisfies property (gwl),
since AJ(T) =0 C E(T).

The following example shows that property (gwl) does not implies that o
E(T)=0.
2.9. Example. Let X = /7, let T1,T> € B(X) be given by

-l

T(z1,m2, ) = <07 %xl, %xg, %333, . ) and T%:=0,
and let
T.= <€1 192> € (X ).
Then
o(T) = 0a(T) = o5w(T) = 05— (T) = E(T) = {0}
and

AY(T) = 0.

Therefore, property (gwl) holds for T but o (TYNE(T)={0}.

SB’FJr

2.10. Theorem. Let T' € B(X). Then the following statements are equivalent:
(a) Property (gwl) holds for T
(b) Tspry (T) = 0a(T) Now (T);
(€) 0u(T) = 05y (T) U B(T);
(d) AZ(T) € =(T).

Proof. (a) < (b). Suppose T has property (gwl). Clearly, Tspr; (T) Copw(T)Noa(T).
s (T) 2 ow(T)Noa(T). Let X ¢ Tsprs (T), then
T — Xl € SBF (X), thus T — Al is semi-B-Fredholm and ind(T — AI) < 0 or A € AZ(T).
Since T has property (gwl), we know that if A € AJ(T"), T'— I € gB, which means that
A& oq.(T)Nopw(T). Conversely, let A € AZ(T), since Tspr; (T) = oo(T)Nopw (T), it

follows that T'— AI € ¢gB, hence A € E(T'), which means that property (gwl) holds for

T.

(a) < (c). Suppose T satisfies property (gwl). 4(T) 2 0g4pp—(T) U E(T) is clear.
+

We only need to prove that o

Let A ¢ ogpp—(T)U E(T), then T — Al € SBF (X) and ind(T — AI) < 0. If o(T —
+

M) = 0, then A € 04(T); if «(T — X)) > 0, then \ € O'a(T)\USBF;(T), since T

satisfies property (gwl), it follows that A € E(T). It is in contradiction to the fact

that A ¢ E(T)Uogpp—(T). Thus 0,(T) = 0g4p,-(T) U E(T). For the converse, if

+ +

0o(T) = 0gpp—- (T)UE(T), then 04(T)\ 045 - (T) € E(T), which means that property
+ +

(gw1) holds for T.

(a) & (d). Suppose T has property gwl. Let A € AJ(T), then A € E(T), since T — Al

is upper semi-B-Fredholm and \ € isoo(T'), we know that T'— AI € ¢gB, hence A € n(T).

Conversely, using the fact that w(T) C E(T), if AJ(T) C «(T), then T has property

(gqwl). O



607

In the following, let H(T') be the class of all complex-valued functions which are
analytic on a neighborhood of ¢(T") and are not constant on any component of o(T).

2.11. Theorem. Let T' € B(X). Suppose that property (gwl) holds for 7. Then the
following statements are equivalent:
(i) For any f € H(T), property (gwl) holds for f(T);
(ii) For any f € H(T), f(JSBF; (T)) = JSBF; (f(T)), and if Ua(T) i GSBF; (T)7
then o(T) = 04(T);
(ii) For each pair A\, u € C\ og4p,—(T), ind(T — AI)ind(T — pI) > 0, and if oo (T) #
+
Tspr; (T), then o(T) = oo(T).
Proof. (i) = (i1). 0g4pp— (f(T)) C f(oggp-(T)) is clear. We need to prove o g (f(T)) 2
+ + +
flogpp—(T)). Let po ¢ Tsprs (f(T)), then f(T) — pol € SBF (X). Let
F(T) = pol = (T = X\D)" (T = A D)2 -+ (T = A D)™ g(T),
where \; # \; and ¢g(T') is invertible. Thus T' — ;I is upper semi-B-Fredholm operator
and po ¢ oo (f(T)) or po € AJ(f(T)). If po ¢ oa(f(T)), then f(T) — pol is bounded from
below, which means that each T'— ;T is bounded from below. Then po ¢ f(ogp.—(T)).
+
If o € AJ(f(T)), since property (gwl) holds for f(T), we know that f(T") — pol € gB.
Hence T'— A\;I € gB and \j ¢ 0g4pp—(T). Then po ¢ f(oggp-(T)). Next we will
+ +
prove if 04(T) # 04— (T), then o(T) = 0o(T). Let Ao € 0u(T) \ 0g5,—(T). Then
+ +
T — Mol € gB because property (gwl) holds for T. For any po ¢ 0a(T), a(T — pol) = 0.
Let f(T) = (T — pol)(T — XoI), then 0 € oo (f(T)) \ O'SBF; (f(T)). Since f(T) has
property (gwl), we know that f(T) € gB. This implies that f(T) — uol € gB. The fact
a(T — polI) = 0 tell us that T"— pol is invertible, which means that uo ¢ o(7T"). Hence
o(T) = oo(T).
(#1) = (i). Let po € AS(f(T)), then f(T)—pol € SBF (X) and a(f(T)— pol) > 0. Let
F(T) = pol = (T = M) (T = Aod)™ -+ (T' = A D)™ g(T),
where A\; # A; and g(7T') is invertible. Since f(ogp,—(T)) = oggp-(f(T)) and po ¢
+ +
ggp—(f(T)), it follows that \; & 0gpp— (T). Then T—X;1 € SBF[ (X). Let a(T—M\;1 =
+ +
0)if1 <j<idiand a(T —A;I>0)if i <j <k. Then T — A\;I is bounded from below if
1 < j <. Using the fact 0(T") = 04(T") we know that T — A, is invertible. If i < j < k,
then A\; ¢ AJ(T), since T has property (gwl), T — A\;I € gB. Thus f(T) — uol € gB and
wo € E(f(T)). Hence property (gwl) holds for f(T).
(i) = (4ii). Suppose that there exist X, 1 € 045 - (T') such that ind(T—AI)ind(T—pl) <
+
0. Let ind(T —XI) = k > 0, then T'— X[ is B-Fredholm. If ind(T —pl) = —t < 0, t # oo,
then let f(T") = (T = M)Y(T — pI)¥; if ind(T — I) = oo, then let f(T) = (T — X )(T — pul).
Thus 0 € AY(f(T)), since f(T) has property (gwl), we know that f(T) € gB. Thus
T— X € gBand T — ul € gB. It is in contradiction to the fact that ind(T — A\I) > 0.
Hence for each pair A\, u € C\ 04— (1), ind(T — A )ind(T — ul) > 0.
+
(#4i) = (i). Let po ¢ AZ(f(T)), then f(T) — po € SBF[ (X). Let
F(T) = pol = (T = MI)" (T = AI)™ -+ (T = A I)"* g(T),
where \; # A; and g(T) is invertible. Then for any \;, T — A; I is upper semi-B-Fredholm

and
k

> ind(T = X;)™ <0.

j=1
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By condition ind(T" — A;I) < 0, we get that T' — A\;I € SBF [ (X). Since the rest of the
proof is similar to the proof of (iz) = (¢) we omit it, and hence property (gw1) holds for

f(T). U
2.12. Theorem. Let T' € B(X). Then the following statements are equivalent:

(I) T satisfies property (gwl) and E(T) = n(T)
(II) T satisfies generalized Weyl’s theorem and ind(T — A\I) = 0 for all A € AY(T).

Proof. (I) = (II). Suppose that T satisfies property (gw) and E(T) = =w(T). Let

X € AY(T). Since 05— (T) C opw(T), then A ¢ o —(T). If (T — M) = 0, as
+ +

A ¢ opw(T), then T'— Al will be invertible. But this is impossible since A € o(T).

Hence a(T — AI) > 0 and X € 04(T). As T satisfies property (gwl), then A € E(T).

This implies that AY(T) C E(T). To show the opposite inclusion, let A € E(T) be

arbitrary. Since T satisfies property (gwl), and E(T) = w(T'), then X\ ¢ 04— (T) and
+

hence ind(T — AI) < 0. On the other hand, as A € E(T), then A € isoo(T), and hence
T* has the SVEP at A. By [3], we have ind(T — Al > 0. So ind(T — X\I) = 0, and
A ¢ opw(T). Hence o(T) \ opw(T) = E(T) and ind(T — AI) =0 for all A € AY(T).

(II) = (I). Conversely, assume that 7" satisfies generalized Weyl’s theorem and ind(T —
M) =0forall A € AJ(T). If X € AJ(T), then T'— A is a semi-B-Fredholm operator such
that ind(T — M) = 0. Hence T' — AI is a B-Weyl operator. Since T satisfies generalized
Weyl’s theorem, then A € E(T) and hence AJ(T) C E(T'). To show E(T) = n(T), let
A € E(T), then T — A is a B-Weyl operator and since A € o(T), then «(T — AI) > 0.
Thus A € 7(T). Consequently T satisfies property (gwl) and E(T) = «(T). O

The following example shows that generalized a-Weyl’s theorem and generalized Weyl’s
theorem does not imply property (gwl).

2.13. Example. Let X = ¢*(N) and S € B(X) be the unilateral right shift and let V'
defined by

V(wl,ZUQ,"'):(O7$2,$3,"'), (l‘n) €£2(N).
If T =S®YV, then o(T) = D(0,1) the closed unit disc in C, isoo(T) = 0 and 04(T) =
C(0,1) U {0}, where C(0,1) is unit circle of C. This implies that

Tspry (T) =C(0,1) and AY(T)={0}.

Moreover we have E(T) = () and E,(T) = {0}. Hence T satisfies generalized a- Weyl’s
theorem and so T satisfies generalized Weyl’s theorem. But T does not satisfy property

(gwl).
2.14. Theorem. Let T' € B(X). If T has the SVEP, then the following statements are
equivalent:

(1) Property (gw) holds for T ;

(2) generalized Weyl’s theorem holds for T ;

(3) generalized a-Weyl’s theorem holds for T}

(4) Property (gwl) holds for T and E(T) = w(T)

Proof. Suppose that T has the SVEP, then as it had been already mentioned by Remark
2.1, we have
OG(T) = J(T)7 JSBF_: (T) = OBW(T)7 EG(T) = E(T)

and AJ(T) = A9(T). The equivalence between (1), (2), and (3) follows from [7, Theorem
2.8]. Since (1) < (4) has already been proved, the proof is complete. O

2.15. Theorem. Let T € B(X). If T has SVEP then 03, (T7) = 05w (7).
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Proof. The inclusion o4 .- (T") € opw(T) holds for every T' € B(X). Suppose that
+
A& ogpp-(T"). Then T* — AI" € SBFy(X) with ind(T* — AI") < 0. By duality
+
T — X is lower semi-B-Fredholm and the SVEP of T entails that asc(T — AI) < co. By
[1, Theorem 3.4] we have ind(T — AI) < 0, thus ind(T* — AI*) = —ind(T — A1) > 0.
Therefore, ind(T* — AI*) = ind(T — A\I) = 0, and, again by [1, Theorem 3.4], we have
dsc(T — M) < oo, thus A ¢ opw (T). O

A bounded operator T' € B(X) is said to be polaroid if ésoo(T") = @ or every isolated
point of o(T') is a pole of the resolvent of T' (see [4]).

2.16. Theorem. Suppose that 7' € B(X). Then the following statements hold:

(i) If T is polaroid and T has SVEP then property (gw) holds for 7'
(ii) If T is polaroid and T has SVEP then property (gw) holds for 7.

Proof. (i). Note that by Remark 2.1 we have o(T') = 04(T"). Suppose first that isoo(T") =
(. Then E(T) = @. We show that also AJ(T) is empty. By Remark 2.1 we have
0o(T)\oggp—-(T) = o(T)\opw(T) and the last set is empty, since o(T’) has no isolated
+
points. Therefore, T satisfies property (gw). Consider the other case, isoc(T) # 0.
Suppose that A € E(T). Then X is isolated in (T") and hence, by the polaroid condition,
A is a pole of the resolvent of T', i.e. asc(T — M) = dsc(T — M) < oco. By assumption
a(T — M) < 00, so by [1, Theorem 3.1] S(T — AI) < oo,and hence T' — AI is a Fredholm
operator. Therefore, by 2.1, A € 0u(T) \ 055,— (T) = o(T) \ osw(T).. Conversely, if
+
A€ oo(T)\ ogpp—(T) = o(T) \ opw(T) then X is an isolated point of o(T") . Clearly,
+

0 < a(T — M), so A € E(T) and hence T satisfies property (gw).

(ii). First note that since T' has SVEP then o(T*) = o(T) = o(T™), see Corollary 2.45
of [1]. Suppose first that isoo(T) = o(T*) = 0. Then E(T™) = (. By Theorem 2.15 we
have 0, (T*)\ 0ggp— (T*) = o(T) \ 08w (T) = 0, so T" satisfies property (gw). Suppose

+
that isoo(T) # 0 and let A € E(T*). Then A is an isolated point of o(T™) = o(T) ,
hence a pole of the resolvent of T, since T™ is polaroid by Theorem 2.5 of [4]. By
assumption «(7T* — AI)? and since the ascent and the descent of T" — AI* are both
finite it then follows by Theorem 3.1 of [1] that 8(T — X\) = (T — AI) < o0, so
T* — X" € gB and hence also T — A € ¢gB. Therefore, A € o(T) \ opw(T') and by
Theorem 2.15and Remark 2.1 it then follows that A € 04 (T) \ 0 gy (T). Conversely, if
+
A€ oa(T)\ 0ggp-(T) =a(T)\ opw(T), then A is an isolated point of the spectrum of
+

o(T)=0o(T"), T— X € gB, or equivalently T — A\I* € gB. Since a(T* — ") = B(T™* —
AI™) we then have o(T* — AI™) > 0 (otherwise A ¢ o(T™)). Clearly, a(T" — AI*) > 0,
since by assumption T —XI* € SF (X*) , so that A € E(T™). Thus T satisfies property
(gw). O

2.17. Corollary. Suppose that 7' € B(X). Then the following statements hold:

(i) If T is polaroid and T™ has SVEP then property (gw1) holds for T.
(ii) If T is polaroid and T has SVEP then property (gwl) holds for T*.

The following example shows that in the statements (i) of Theorem 2.16 and Corollary
2.17 the assumption that T has SVEP cannot be replaced by the assumption that T
has SVEP.

2.18. Example. Denote by S the unilateral right shift on £2(N) and define
V(z1,x2,---) = (0,x2,x3,---) for all (z,) € £*(N).

Clearly, V is a quasi-nilpotent operator. Let T'= S ® V. We have ¢(T) = D, D the
closed unit disc of C, so isoo(T) = E(T) = () and hence T is polaroid. Moreover,
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ca(T) = 0D U {0}. Since 04(T) does not cluster at A T" has SVEP at 0, as well as at

the points A ¢ o (T). Since T has SVEP at all points do(T) it then follows that T" has

SVEP. Finally, o5 .— (T) = do(T) so A§(T) = {0} # E(T) = 0, thus T does not satisfy
+

property (gwl) and hence does not satisfy property (gw).

Analogously, in the statements (7¢) of Theorem 2.16 and Corollary 2.17 the assump-
tion that T has SVEP cannot be replaced by the assumption that 7" has SVEP.

2.19. Example. Let us consider the left shift L € (£*(N)), and let V* be the adjoint
of the quasi-nilpotent operator V defined in Example 2.18. We have L* = R, R the
unilateral right shift. If we define W := L @& V™ then, as observed in Example 2.18
W* = R® V has SVEP. From Example 2.18 we also know that (W) = o(W*) = D,
so isooc(W™*) = E(W*) = () and hence W is polaroid. Moreover, o,(W*) = dD U {0}.
Finally, O'SBF;(W*) = do(W™) so AJ(W*) = {0} # E(W™*) = 0, thus W* does not

satisfy property (gwl) and hence does not satisfy property (gw).

2.20. Example. Let H be a Hilbert space, an operator 1" acting on H is said to be
paranormal if ||Tz|*> < | 7%z [|#]| for all 2 € H. Examples of paranormal operators
are the p-hyponormal or log-hyponormal operators ( [20]). Recall that an operator T is
p-hyponormal for some p > 0, if (T"T)? > (TT*)? and T is said to be log-hyponormal
if T is invertible and logT*T > logTT™*. 1t follows from [18, Lemma 2.3] that a
paranormal operator T is polaroid. Moreover a paranormal operator have the SVEP, see
[15, Corollary 2.10]. So if T' is paranormal, then T satisfies property (gw1).

A bounded operator T' € B(X) is said to have property H(p) if for all A € C there
exists a p := p(A) € N such that:

Ho(T — M) = ker(T — AI)?,

where .
Ho(T = A1) = {@ € X lim |[(T = AD)"a||* = 0}
n— oo

It is well known that such operators has the SVEP and are polaroid. So if T has the
property H(p), then T has the property (gwl). Oudghiri [27] observed that every gen-
eralized scalar operator and every subscalar operator T (i.e. T is similar to a restriction
of a generalized scalar operator to one of its closed invariant subspaces) has property
H(p), see [24] for definitions and properties. Consequently, property H (p) is satisfied by
p-hyponormal operators and log-hyponormal operators [25, Corollary 2], algebraically w-
hyponormal operators [31], quasi-class (A, k) [29], algebraically (p, k)-quasihyponormal
[32], algebraically wF(p,r,q) operators with p,7 > 0 and ¢ > 1 [30], M-hyponormal
operators [24, Proposition 2.4.9], and totally paranormal operators [2]. Also totally
x-paranormal operators have property H(1) [22].
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