1 Hacettepe Journal of Mathematics and Statistics
$\$ Volume 43 (4) (2014), 603-611

On property ($g w 1$)

M. H. M. Rashid*

Abstract

In this note we introduce and study the property ($g w 1$), which extend property ($g w$) introduced by Amouch and Berkani in [7]. We investigate the property ($g w 1$) in connection with Weyl type theorems, and establish for abounded linear operator defined on a Banach space the sufficient and necessary conditions for which property ($g w 1$) holds. We also study the property $(g w 1)$ for operators satisfying the single valued extension property (SVEP). Classes of operators are considered as illustrating examples.

Received 30/11/2010 : Accepted 22/04/2013

2000 AMS Classification: 47A10; 47A11; 47A53
Keywords: Generalized Weyl's theorem, Generalized a-Weyl's theorem, Property ($g w 1$), Property ($g w$), Polaroid operators, Perturbation Theory

1. Introduction

Throughout this paper, $\mathbf{B}(X)$ denote the algebra of all bounded linear operators acting on a Banach space \mathcal{X}. For $T \in \mathbf{B}(\mathcal{X})$, let $T^{*}, \operatorname{ker}(T), \mathcal{R}(T), \sigma(T), \sigma_{p}(T)$ and $\sigma_{a}(T)$ denote respectively the adjoint, the null space, the range, the spectrum, the point spectrum and the approximate point spectrum of T. Let $\alpha(T)$ and $\beta(T)$ be the nullity and the deficiency of T defined by

$$
\alpha(T):=\operatorname{dim} \operatorname{ker}(T) \quad \text { and } \quad \beta(T):=\operatorname{codim} \mathcal{R}(T) .
$$

If the range $\mathcal{R}(T)$ of T is closed and $\alpha(T)<\infty$ (resp. $\beta(T)<\infty$), then T is called an upper semi-Fredholm (resp. a lower semi-Fredholm) operator. In the sequel $S F_{+}(X)$ (resp. $S F_{-}(X)$) will denote the set of all upper (resp. lower) semi-Fredholm operators. If $T \in \mathbf{B}(X)$ is either upper or lower semi- Fredholm, then T is called a semi-Fredholm operator, and the index of T is defined by

$$
\operatorname{ind}(T)=\alpha(T)-\beta(T)
$$

If both $\alpha(T)$ and $\beta(T)$ are finite, then T is a Fredholm operator. An operator T is called Weyl if it is Fredholm of index zero.
Let $a:=\operatorname{asc}(T)$ be the ascent of an operator T; i.e., the smallest nonnegative integer p such that $\operatorname{ker}\left(T^{a}\right)=\operatorname{ker}\left(T^{a+1}\right)$. If such integer does not exist we put $\operatorname{asc}(T)=\infty$. Analogously, let $d:=d s c(T)$ be descent of an operator T; i.e., the smallest nonnegative integer d such that $\mathcal{R}\left(T^{d}\right)=\mathcal{R}\left(T^{d+1}\right)$, and if such integer does not exist we put $d(T)=\infty$. It is well known that if $\operatorname{asc}(T)$ and $d s c(T)$ are both finite then $\operatorname{asc}(T)=d s c(T)$ [23, Proposition 38.3]. Moreover, $0<\operatorname{asc}(T-\lambda I)=d s c(T-\lambda I)<\infty$ precisely when λ is a pole of the resolvent of T, see Heuser [23, Proposition 50.2].

[^0]An operator $T \in \mathbf{B}(X)$ is called Browder if it is Fredholm "of finite ascent and descent". The Weyl spectrum of T is defined by $\sigma_{W}(T):=\{\lambda \in \mathbb{C}: T-\lambda I$ is not Weyl $\}$. For $T \in \mathbf{B}(X)$, let $S F_{+}^{-}(X):=\left\{T \in S F_{+}(X): \operatorname{ind}(T) \leq 0\right\}$. Then the upper Weyl spectrum of T is defined by $\sigma_{S F_{+}^{-}}(T):=\left\{\lambda \in \mathbb{C}: T-\lambda I \notin S F_{+}^{-}(X)\right\}$. Let $\Delta(T)=$ $\sigma(T) \backslash \sigma_{W}(T)$ and $\Delta_{a}(T)=\sigma_{a}(T) \backslash \sigma_{S F_{+}^{-}}(T)$. Following Coburn [17], we say that Weyl's theorem holds for $T \in \mathbf{B}(\mathcal{X})$ (in symbols, $T \in \mathcal{W}$) if $\Delta(T)=E^{0}(T)$, where $E^{0}(T)=\{\lambda \in \operatorname{iso\sigma }(T): 0<\alpha(T-\lambda I)<\infty\}$ and that Browder's theorem holds for T (in symbols, $T \in \mathcal{B}$) if $\sigma_{b}(T)=\sigma_{W}(T)$, where

$$
\sigma_{b}(T)=\{\lambda \in \mathbb{C}: T-\lambda I \quad \text { is not Browder }\} .
$$

Here and elsewhere in this paper, for $K \subset \mathbb{C}$, iso K is the set of isolated points of K.
According to Rakoc̃ević [28], an operator $T \in \mathbf{B}(X)$ is said to satisfy a-Weyl's theorem (in symbols, $T \in a \mathcal{W}$) if $\Delta_{a}(T)=E_{a}^{0}(T)$, where

$$
E_{a}^{0}(T)=\left\{\lambda \in \operatorname{iso\sigma }_{a}(T): 0<\alpha(T-\lambda I)<\infty\right\}
$$

It is known [28] that an operator satisfying a- Weyl's theorem satisfies Weyl's theorem, but the converse does not hold in general.

For $T \in \mathbf{B}(X)$ and a nonnegative integer n define T_{n} to be the restriction of T to $\mathcal{R}\left(T^{n}\right)$ viewed as a map from $\mathcal{R}\left(T^{n}\right)$ into $\mathcal{R}\left(T^{n}\right)$ (in particular $T_{0}=T$). If for some integer n the range space $\mathcal{R}\left(T^{n}\right)$ is closed and T_{n} is an upper (resp. a lower) semi-Fredholm operator, then T is called an upper (resp. a lower) semi- B-Fredholm operator. In this case the index of T is defined as the index of the semi-B-Fredholm operator T_{n}, see [8]. Moreover, if T_{n} is a Fredholm operator, then T is called a B-Fredholm operator. A semi-B-Fredholm operator is an upper or a lower semi-B-Fredholm operator. An operator $T \in \mathbf{B}(X)$ is said to be a B-Weyl operator if it is a B-Fredholm operator of index zero. The B-Weyl spectrum $\sigma_{B W}(T)$ of T is defined by

$$
\sigma_{B W}(T):=\{\lambda \in \mathbb{C}: T-\lambda I \quad \text { is not a B-Weyl operator }\} .
$$

Given $T \in \mathbf{B}(\mathcal{X})$, we say that the generalized Weyl's theorem holds for T (and we write $T \in g \mathcal{W})$ if

$$
\sigma(T) \backslash \sigma_{B W}(T)=E(T)
$$

where $E(T)$ is the set of all isolated eigenvalues of T, and that the generalized Browder's theorem holds for T (in symbols, $T \in g \mathcal{B}$) if

$$
\sigma(T) \backslash \sigma_{B W}(T)=\pi(T),
$$

where $\pi(T)$ is the set of all poles of T, see [11, Definition 2.13]. It is known [11, 21] that

$$
g \mathcal{W} \subseteq g \mathcal{B} \cap \mathcal{W} \quad \text { and that } \quad g \mathcal{B} \cup \mathcal{W} \subseteq \mathcal{B} .
$$

Moreover, given $T \in g \mathcal{B}$, it is clear that $T \in g \mathcal{W}$ if and only if $E(T)=\pi(T)$. Generalized Weyl's theorem has been studied in $[6,12,9,10,11,19]$ and the references therein.

Let $S B F_{+}(X)$ be the class of all upper semi-B-Fredholm operators,

$$
S B F_{+}^{-}(X)=\left\{T \in S B F_{+}(X): \operatorname{ind}(T) \leq 0\right\} .
$$

The upper B-Weyl spectrum of T

$$
\sigma_{S B F_{+}^{-}}(T):=\left\{\lambda \in \mathbb{C}: T-\lambda I \notin S B F_{+}^{-}(X)\right\} .
$$

We say that T obeys generalized a-Weyl's theorem (in symbols, $T \in g a \mathcal{W}$), if

$$
\sigma_{S B F_{+}^{-}}(T)=\sigma_{a}(T) \backslash E_{a}(T) ;
$$

where $E_{a}(T)$ is the set of all eigenvalues of T which are isolated in $\sigma_{a}(T)$ ($[11$, Definition 2.13]). Generalized a-Weyl's theorem has been studied in $[11,13,14]$.

2. Results

We will say that $T \in \mathbf{B}(X)$ has the single-valued extension property at λ_{0}, (SVEP for short) if for every open neighborhood U of λ_{0}, the only analytic function $f: U \rightarrow X$ which satisfies the equation: $(T-\lambda I) f(\lambda)=0$, for all $\lambda \in U$ is the function $f \equiv 0$. $T \in \mathbf{B}(X)$ is said to have the SVEP if T has the SVEP at every point $\lambda \in \mathbb{C}$ (see [26]).
2.1. Remark. For $T \in \mathbf{B}(X)$, let $\Delta^{g}(T)=\sigma(T) \backslash \sigma_{B W}(T)$ and $\Delta_{a}^{g}(T)=\sigma_{a}(T) \backslash$ $\sigma_{S B F_{+}^{-}}(T)$. If T^{*} has the SVEP, then it is known [24, page 35] that $\sigma(T)=\sigma_{a}(T)$ and from [5, Theorem 2.9] we have $\sigma_{S B F_{+}^{-}}(T)=\sigma_{B W}(T)$. Thus $E^{a}(T)=E(T)$ and $\Delta_{a}^{g}(T)=\Delta^{g}(T)$.
2.2. Definition. ([28]) A bounded linear operator $T \in \mathbf{B}(X)$ is said to satisfy property (w) if

$$
\Delta^{g}(T)=\sigma_{a}(T) \backslash \sigma_{S F_{+}^{-}}(T)=E^{0}(T)
$$

2.3. Definition. ([7]) A bounded linear operator $T \in \mathbf{B}(X)$ is said to satisfy property $(g w)$ if

$$
\Delta_{a}^{g}(T)=E(T)
$$

2.4. Definition. ([16]) A bounded linear operator $T \in \mathbf{B}(X)$ is said to satisfy property $(w 1)$ if

$$
\Delta^{g}(T)=\sigma_{a}(T) \backslash \sigma_{S F_{+}^{-}}(T) \subseteq E^{0}(T)
$$

2.5. Definition. A bounded linear operator $T \in \mathbf{B}(X)$ is said to satisfy property ($g w 1$) if

$$
\Delta_{a}^{g}(T) \subseteq E(T)
$$

2.6. Theorem. Let $T \in \mathbf{B}(X)$. If property ($g w 1$) holds for T, then property $(w 1)$ holds for T.

Proof. Assume that T satisfies property $(g w 1)$ and let $\lambda \in \Delta_{a}(T)$. Since $\sigma_{S B F_{+}^{-}}(T) \subseteq$ $\sigma_{S F_{+}^{-}}(T)$, then $\lambda \in \Delta_{a}^{g}(T) \subseteq E(T)$. As $\alpha(T-\lambda I)<\infty$, then $\lambda \in E^{0}(T)$ and $\Delta^{g}(T) \subseteq$ $E^{0}(T)$.
2.7. Theorem. Let $T \in \mathbf{B}(X)$. Then
(1) property ($g w)$ holds for T if and only if T satisfies property $(g w 1)$ and $E(T)=$ $\pi(T)$.
(2) property $(g w)$ holds for T if and only if T satisfies property $(g w 1)$ and $\sigma_{S B F_{+}^{-}}(T) \cap$ $E(T)=\emptyset$.

Proof. (1). Suppose that T has property $(g w)$, then property ($g w 1$) holds for T. Let $\lambda \in E(T)$, then $\lambda \in \Delta_{a}^{g}(T)$, thus $T-\lambda I \in S B F_{+}^{-}(X)$. Since $\lambda \in i \operatorname{so\sigma }(T)$, we know that $T-\lambda I \in g \mathcal{B}$ and hence $\lambda \in \pi(T)$. Conversely, suppose T satisfies property ($g w 1$) and $E(T)=\pi(T)$. Let $\lambda \in E(T)$, which means that $\lambda \in \Delta_{a}^{g}(T)$, thus property ($g w$) holds for T.
(2). Suppose that T has property ($g w$) and this implies that property ($g w 1$) holds for T, and $\sigma_{S B F_{+}^{-}}(T) \cap E(T)=\emptyset$. For the converse, if $\lambda \in E(T), \lambda \notin \sigma_{S B F_{+}^{-}}(T)$ since $\sigma_{S B F_{+}^{-}}(T) \cap E(T)=\emptyset$. Then $\lambda \in \Delta_{a}^{g}(T)$, hence $\Delta_{a}^{g}(T)=E(T)$.

The following example shows that property ($g w 1$) does not implies property ($g w$) in general.
2.8. Example. Let $S \in \mathbf{B}(X)$ be any quasi-nilpotent operator acting on an infinite dimensional Banach space \mathcal{X} such that $\mathcal{R}\left(S^{n}\right)$ is non-closed for alln. Let $T=0 \oplus S$ defined on the Banach space $\mathcal{X} \oplus \mathcal{X}$. Since $\mathcal{R}\left(T^{n}\right)=\mathcal{R}\left(S^{n}\right)$ is non-closed for all n, then T is not a semi-B-Fredholm operator, so $\sigma_{S B F_{+}^{-}}(T)=\{0\}$. Since $\sigma_{a}(T)=\{0\}$ and $E(T)=\{0\}$, then T does not satisfies property $(g w)$. But T satisfies property ($g w 1$), since $\Delta_{a}^{g}(T)=\emptyset \subseteq E(T)$.

The following example shows that property ($g w 1$) does not implies that $\sigma_{S B F_{+}^{-}}(T) \cap$ $E(T)=\emptyset$.
2.9. Example. Let $\mathcal{X}=\ell^{p}$, let $T_{1}, T_{2} \in \mathbf{B}(X)$ be given by

$$
T\left(x_{1}, x_{2}, \cdots\right):=\left(0, \frac{1}{2} x_{1}, \frac{1}{3} x_{2}, \frac{1}{4} x_{3}, \cdots\right) \quad \text { and } \quad T_{2}:=0
$$

and let

$$
T:=\left(\begin{array}{cc}
T_{1} & 0 \\
0 & T_{2}
\end{array}\right) \in(X \underset{X}{ }) .
$$

Then

$$
\sigma(T)=\sigma_{a}(T)=\sigma_{B W}(T)=\sigma_{S B F_{+}^{-}}(T)=E(T)=\{0\}
$$

and

$$
\Delta_{a}^{g}(T)=\emptyset .
$$

Therefore, property ($g w 1$) holds for T but $\sigma_{S B F_{+}^{-}}(T) \cap E(T)=\{0\}$.
2.10. Theorem. Let $T \in \mathbf{B}(X)$. Then the following statements are equivalent:
(a) Property ($g w 1$) holds for T;
(b) $\sigma_{S B F_{+}^{-}}(T)=\sigma_{a}(T) \cap \sigma_{B W}(T)$;
(c) $\sigma_{a}(T)^{+}=\sigma_{S B F_{+}^{-}}(T) \cup E(T)$;
(d) $\Delta_{a}^{g}(T) \subseteq \pi(T)$.

Proof. $(a) \Leftrightarrow(b)$. Suppose T has property ($g w 1$). Clearly, $\sigma_{S B F_{+}^{-}}(T) \subseteq \sigma_{B W}(T) \cap \sigma_{a}(T)$. We only need to prove that $\sigma_{S B F_{+}^{-}}(T) \supseteq \sigma_{B W}(T) \cap \sigma_{a}(T)$. Let $\lambda \notin \sigma_{S B F_{+}^{-}}(T)$, then $T-\lambda I \in S B F_{+}^{-}(\mathcal{X})$, thus $T-\lambda I$ is semi-B-Fredholm and $\operatorname{ind}(T-\lambda I) \leq 0$ or $\lambda \in \Delta_{a}^{g}(T)$. Since T has property ($g w 1$), we know that if $\lambda \in \Delta_{a}^{g}(T), T-\lambda I \in g \mathcal{B}$, which means that $\lambda \notin \sigma_{a}(T) \cap \sigma_{B W}(T)$. Conversely, let $\lambda \in \Delta_{a}^{g}(T)$, since $\sigma_{S B F_{+}^{-}}(T)=\sigma_{a}(T) \cap \sigma_{B W}(T)$, it follows that $T-\lambda I \in g \mathcal{B}$, hence $\lambda \in E(T)$, which means that property ($g w 1$) holds for T.
$(a) \Leftrightarrow(c)$. Suppose T satisfies property ($g w 1$). $\sigma_{a}(T) \supseteq \sigma_{S B F_{+}^{-}}(T) \cup E(T)$ is clear. Let $\lambda \notin \sigma_{S B F_{+}^{-}}(T) \cup E(T)$, then $T-\lambda I \in S B F_{+}^{-}(X)$ and $\operatorname{ind}(T-\lambda I) \leq 0$. If $\alpha(T-$ $\lambda I)=0$, then $\lambda \notin \sigma_{a}(T)$; if $\alpha(T-\lambda I)>0$, then $\lambda \in \sigma_{a}(T) \backslash \sigma_{S B F_{+}^{-}}(T)$, since T satisfies property $(g w 1)$, it follows that $\lambda \in E(T)$. It is in contradiction to the fact that $\lambda \notin E(T) \cup \sigma_{S B F_{+}^{-}}(T)$. Thus $\sigma_{a}(T)=\sigma_{S B F_{+}^{-}}(T) \cup E(T)$. For the converse, if $\sigma_{a}(T)=\sigma_{S B F_{+}^{-}}(T) \cup E(T)$, then $\sigma_{a}(T) \backslash \sigma_{S B F_{+}^{-}}(T) \subseteq E(T)$, which means that property ($g w 1$) holds for T.
$(a) \Leftrightarrow(d)$. Suppose T has property $g w 1$. Let $\lambda \in \Delta_{a}^{g}(T)$, then $\lambda \in E(T)$, since $T-\lambda I$ is upper semi-B-Fredholm and $\lambda \in \operatorname{iso\sigma }(T)$, we know that $T-\lambda I \in g \mathcal{B}$, hence $\lambda \in \pi(T)$. Conversely, using the fact that $\pi(T) \subseteq E(T)$, if $\Delta_{a}^{g}(T) \subseteq \pi(T)$, then T has property ($g w 1$).

In the following, let $H(T)$ be the class of all complex-valued functions which are analytic on a neighborhood of $\sigma(T)$ and are not constant on any component of $\sigma(T)$.
2.11. Theorem. Let $T \in \mathbf{B}(\mathcal{X})$. Suppose that property $(g w 1)$ holds for T. Then the following statements are equivalent:
(i) For any $f \in H(T)$, property ($g w 1$) holds for $f(T)$;
(ii) For any $f \in H(T), f\left(\sigma_{S B F_{+}^{-}}(T)\right)=\sigma_{S B F_{+}^{-}}(f(T))$, and if $\sigma_{a}(T) \neq \sigma_{S B F_{+}^{-}}(T)$, then $\sigma(T)=\sigma_{a}(T)$;
(ii) For each pair $\lambda, \mu \in \mathbb{C} \backslash \sigma_{S B F_{+}^{-}}(T), \operatorname{ind}(T-\lambda I) \operatorname{ind}(T-\mu I) \geq 0$, and if $\sigma_{a}(T) \neq$ $\sigma_{S B F_{+}^{-}}(T)$, then $\sigma(T)=\sigma_{a}(T)$.
Proof. $(i) \Rightarrow(i i) . \sigma_{S B F_{+}^{-}}(f(T)) \subseteq f\left(\sigma_{S B F_{+}^{-}}(T)\right)$ is clear. We need to prove $\sigma_{S B F_{+}^{-}}(f(T)) \supseteq$ $f\left(\sigma_{S B F_{+}^{-}}(T)\right)$. Let $\mu_{0} \notin \sigma_{S B F_{+}^{-}}(f(T))$, then $f(T)-\mu_{0} I \in S B F_{+}^{-}(X)$. Let

$$
f(T)-\mu_{0} I=\left(T-\lambda_{1} I\right)^{n_{1}}\left(T-\lambda_{2} I\right)^{n_{2}} \cdots\left(T-\lambda_{k} I\right)^{n_{k}} g(T),
$$

where $\lambda_{i} \neq \lambda_{j}$ and $g(T)$ is invertible. Thus $T-\lambda_{j} I$ is upper semi-B-Fredholm operator and $\mu_{0} \notin \sigma_{a}(f(T))$ or $\mu_{0} \in \Delta_{a}^{g}(f(T))$. If $\mu_{0} \notin \sigma_{a}(f(T))$, then $f(T)-\mu_{0} I$ is bounded from below, which means that each $T-\lambda_{j} I$ is bounded from below. Then $\mu_{0} \notin f\left(\sigma_{S B F_{+}^{-}}(T)\right)$. If $\mu_{0} \in \Delta_{a}^{g}(f(T))$, since property $(g w 1)$ holds for $f(T)$, we know that $f(T)-\mu_{0} I \in g \mathcal{B}$. Hence $T-\lambda_{j} I \in g \mathcal{B}$ and $\lambda_{j} \notin \sigma_{S B F_{+}^{-}}(T)$. Then $\mu_{0} \notin f\left(\sigma_{S B F_{+}^{-}}(T)\right)$. Next we will prove if $\sigma_{a}(T) \neq \sigma_{S B F_{+}^{-}}(T)$, then $\sigma(T)=\sigma_{a}(T)$. Let $\lambda_{0} \in \sigma_{a}(T) \backslash \sigma_{S B F_{+}^{-}}(T)$. Then $T-\lambda_{0} I \in g \mathcal{B}$ because property ($g w 1$) holds for T. For any $\mu_{0} \notin \sigma_{a}(T), \alpha\left(T-\mu_{0} I\right)=0$. Let $f(T)=\left(T-\mu_{0} I\right)\left(T-\lambda_{0} I\right)$, then $0 \in \sigma_{a}(f(T)) \backslash \sigma_{S B F_{+}^{-}}(f(T))$. Since $f(T)$ has property ($g w 1$), we know that $f(T) \in g \mathcal{B}$. This implies that $f(T)-\mu_{0} I \in g \mathcal{B}$. The fact $\alpha\left(T-\mu_{0} I\right)=0$ tell us that $T-\mu_{0} I$ is invertible, which means that $\mu_{0} \notin \sigma(T)$. Hence $\sigma(T)=\sigma_{a}(T)$.
(ii) $\Rightarrow(i)$. Let $\mu_{0} \in \Delta_{a}^{g}(f(T))$, then $f(T)-\mu_{0} I \in S B F_{+}^{-}(X)$ and $\alpha\left(f(T)-\mu_{0} I\right)>0$. Let

$$
f(T)-\mu_{0} I=\left(T-\lambda_{1} I\right)^{n_{1}}\left(T-\lambda_{2} I\right)^{n_{2}} \cdots\left(T-\lambda_{k} I\right)^{n_{k}} g(T),
$$

where $\lambda_{i} \neq \lambda_{j}$ and $g(T)$ is invertible. Since $f\left(\sigma_{S B F_{+}^{-}}(T)\right)=\sigma_{S B F_{+}^{-}}(f(T))$ and $\mu_{0} \notin$ $\sigma_{S B F_{+}^{-}}(f(T))$, it follows that $\lambda_{j} \notin \sigma_{S B F_{+}^{-}}(T)$. Then $T-\lambda_{j} I \in S B F_{+}^{-}(X)$. Let $\alpha\left(T-\lambda_{j} I=\right.$ $0)$ if $1 \leq j \leq i$ and $\alpha\left(T-\lambda_{j} I>0\right)$ if $i<j \leq k$. Then $T-\lambda_{j} I$ is bounded from below if $1 \leq j \leq i$. Using the fact $\sigma(T)=\sigma_{a}(T)$ we know that $T-\lambda_{j} I$ is invertible. If $i<j \leq k$, then $\lambda_{j} \notin \Delta_{a}^{g}(T)$, since T has property $(g w 1), T-\lambda_{j} I \in g \mathcal{B}$. Thus $f(T)-\mu_{0} I \in g \mathcal{B}$ and $\mu_{0} \in E(f(T))$. Hence property ($g w 1$) holds for $f(T)$. $(i) \Rightarrow(i i i)$. Suppose that there exist $\lambda, \mu \in \sigma_{S B F_{+}^{-}}(T)$ such that ind $(T-\lambda I) \operatorname{ind}(T-\mu I)<$ 0 . Let $\operatorname{ind}(T-\lambda I)=k>0$, then $T-\lambda I$ is B-Fredholm. If $\operatorname{ind}(T-\mu I)=-t<0, t \neq \infty$, then let $f(T)=(T-\lambda I)^{t}(T-\mu I)^{k}$; if $\operatorname{ind}(T-I)=\infty$, then let $f(T)=(T-\lambda I)(T-\mu I)$. Thus $0 \in \Delta_{a}^{g}(f(T))$, since $f(T)$ has property ($g w 1$), we know that $f(T) \in g \mathcal{B}$. Thus $T-\lambda I \in g \mathcal{B}$ and $T-\mu I \in g \mathcal{B}$. It is in contradiction to the fact that $\operatorname{ind}(T-\lambda I)>0$. Hence for each pair $\lambda, \mu \in \mathbb{C} \backslash \sigma_{S B F_{+}^{-}}(T), \operatorname{ind}(T-\lambda I) \operatorname{ind}(T-\mu I) \geq 0$.
$(i i i) \Rightarrow(i)$. Let $\mu_{0} \notin \Delta_{a}^{g}(f(T))$, then $f(T)-\mu_{0} \in S B F_{+}^{-}(X)$. Let

$$
f(T)-\mu_{0} I=\left(T-\lambda_{1} I\right)^{n_{1}}\left(T-\lambda_{2} I\right)^{n_{2}} \cdots\left(T-\lambda_{k} I\right)^{n_{k}} g(T),
$$

where $\lambda_{i} \neq \lambda_{j}$ and $g(T)$ is invertible. Then for any $\lambda_{j}, T-\lambda_{j} I$ is upper semi-B-Fredholm and

$$
\sum_{j=1}^{k} i n d\left(T-\lambda_{j}\right)^{n_{j}} \leq 0
$$

By condition $\operatorname{ind}\left(T-\lambda_{j} I\right) \leq 0$, we get that $T-\lambda_{j} I \in S B F_{+}^{-}(X)$. Since the rest of the proof is similar to the proof of $(i i) \Rightarrow(i)$ we omit it, and hence property ($g w 1$) holds for $f(T)$.
2.12. Theorem. Let $T \in \mathbf{B}(X)$. Then the following statements are equivalent:
(I) T satisfies property $(g w 1)$ and $E(T)=\pi(T)$
(II) T satisfies generalized Weyl's theorem and $\operatorname{ind}(T-\lambda I)=0$ for all $\lambda \in \Delta_{a}^{g}(T)$.

Proof. $(I) \Rightarrow(I I)$. Suppose that T satisfies property $(g w)$ and $E(T)=\pi(T)$. Let $\lambda \in \Delta^{g}(T)$. Since $\sigma_{S B F_{+}^{-}}(T) \subseteq \sigma_{B W}(T)$, then $\lambda \notin \sigma_{S B F_{+}^{-}}(T)$. If $\alpha(T-\lambda I)=0$, as $\lambda \notin \sigma_{B W}(T)$, then $T-\lambda I$ will be invertible. But this is impossible since $\lambda \in \sigma(T)$. Hence $\alpha(T-\lambda I)>0$ and $\lambda \in \sigma_{a}(T)$. As T satisfies property ($g w 1$), then $\lambda \in E(T)$. This implies that $\Delta^{g}(T) \subseteq E(T)$. To show the opposite inclusion, let $\lambda \in E(T)$ be arbitrary. Since T satisfies property ($g w 1$), and $E(T)=\pi(T)$, then $\lambda \notin \sigma_{S B F_{+}^{-}}(T)$ and hence $\operatorname{ind}(T-\lambda I) \leq 0$. On the other hand, as $\lambda \in E(T)$, then $\lambda \in \operatorname{iso\sigma }(T)$, and hence T^{*} has the SVEP at λ. By [3], we have $\operatorname{ind}(T-\lambda I \geq 0$. So $\operatorname{ind}(T-\lambda I)=0$, and $\lambda \notin \sigma_{B W}(T)$. Hence $\sigma(T) \backslash \sigma_{B W}(T)=E(T)$ and $\operatorname{ind}(T-\lambda I)=0$ for all $\lambda \in \Delta_{a}^{g}(T)$.
$(I I) \Rightarrow(I)$. Conversely, assume that T satisfies generalized Weyl's theorem and $\operatorname{ind}(T-$ $\lambda I)=0$ for all $\lambda \in \Delta_{a}^{g}(T)$. If $\lambda \in \Delta_{a}^{g}(T)$, then $T-\lambda I$ is a semi-B-Fredholm operator such that $\operatorname{ind}(T-\lambda I)=0$. Hence $T-\lambda I$ is a B-Weyl operator. Since T satisfies generalized Weyl's theorem, then $\lambda \in E(T)$ and hence $\Delta_{a}^{g}(T) \subseteq E(T)$. To show $E(T)=\pi(T)$, let $\lambda \in E(T)$, then $T-\lambda I$ is a B-Weyl operator and since $\lambda \in \sigma(T)$, then $\alpha(T-\lambda I)>0$. Thus $\lambda \in \pi(T)$. Consequently T satisfies property ($g w 1$) and $E(T)=\pi(T)$.

The following example shows that generalized a-Weyl's theorem and generalized Weyl's theorem does not imply property ($g w 1$).
2.13. Example. Let $X=\ell^{2}(\mathbb{N})$ and $S \in \mathbf{B}(X)$ be the unilateral right shift and let V defined by

$$
V\left(x_{1}, x_{2}, \cdots\right)=\left(0, x_{2}, x_{3}, \cdots\right), \quad\left(x_{n}\right) \in \ell^{2}(\mathbb{N})
$$

If $T=S \oplus V$, then $\sigma(T)=\mathbf{D}(0,1)$ the closed unit disc in $\mathbb{C}, i \operatorname{so\sigma }(T)=\emptyset$ and $\sigma_{a}(T)=$ $\mathbf{C}(0,1) \cup\{0\}$, where $\mathbf{C}(0,1)$ is unit circle of \mathbb{C}. This implies that

$$
\sigma_{S B F_{+}^{-}}(T)=\mathbf{C}(0,1) \quad \text { and } \quad \Delta_{a}^{g}(T)=\{0\}
$$

Moreover we have $E(T)=\emptyset$ and $E_{a}(T)=\{0\}$. Hence T satisfies generalized a- Weyl's theorem and so T satisfies generalized Weyl's theorem. But T does not satisfy property ($g w 1$).
2.14. Theorem. Let $T \in \mathbf{B}(X)$. If T^{*} has the SVEP, then the following statements are equivalent:
(1) Property ($g w$) holds for T;
(2) generalized Weyl's theorem holds for T;
(3) generalized a-Weyl's theorem holds for T;
(4) Property ($g w 1$) holds for T and $E(T)=\pi(T)$

Proof. Suppose that T^{*} has the SVEP, then as it had been already mentioned by Remark 2.1, we have

$$
\sigma_{a}(T)=\sigma(T), \sigma_{S B F_{+}^{-}}(T)=\sigma_{B W}(T), E_{a}(T)=E(T)
$$

and $\Delta_{a}^{g}(T)=\Delta^{g}(T)$. The equivalence between (1), (2), and (3) follows from [7, Theorem 2.8]. Since $(1) \Leftrightarrow(4)$ has already been proved, the proof is complete.
2.15. Theorem. Let $T \in \mathbf{B}(X)$. If T has SVEP then $\sigma_{S B F_{+}^{-}}\left(T^{*}\right)=\sigma_{B W}(T)$.

Proof. The inclusion $\sigma_{S B F_{+}^{-}}\left(T^{*}\right) \subseteq \sigma_{B W}(T)$ holds for every $T \in \mathbf{B}(\mathcal{X})$. Suppose that $\lambda \notin \sigma_{S B F_{+}^{-}}\left(T^{*}\right)$. Then $T^{*}-\lambda I^{*} \in S B F_{+}(X)$ with $\operatorname{ind}\left(T^{*}-\lambda I^{*}\right) \leq 0$. By duality $T-\lambda I$ is lower semi-B-Fredholm and the SVEP of T entails that $\operatorname{asc}(T-\lambda I)<\infty$. By [1, Theorem 3.4] we have $\operatorname{ind}(T-\lambda I) \leq 0$, thus $\operatorname{ind}\left(T^{*}-\lambda I^{*}\right)=-\operatorname{ind}(T-\lambda I) \geq 0$. Therefore, $\operatorname{ind}\left(T^{*}-\lambda I^{*}\right)=\operatorname{ind}(T-\lambda I)=0$, and, again by [1, Theorem 3.4], we have $d s c(T-\lambda I)<\infty$, thus $\lambda \notin \sigma_{B W}(T)$.

A bounded operator $T \in \mathbf{B}(X)$ is said to be polaroid if $i \operatorname{so\sigma }(T)=\emptyset$ or every isolated point of $\sigma(T)$ is a pole of the resolvent of T (see [4]).
2.16. Theorem. Suppose that $T \in \mathbf{B}(X)$. Then the following statements hold:
(i) If T is polaroid and T^{*} has SVEP then property $(g w)$ holds for T.
(ii) If T is polaroid and T has SVEP then property $(g w)$ holds for T^{*}.

Proof. (i). Note that by Remark 2.1 we have $\sigma(T)=\sigma_{a}(T)$. Suppose first that $\operatorname{iso\sigma }(T)=$ \emptyset. Then $E(T)=\emptyset$. We show that also $\Delta_{a}^{g}(T)$ is empty. By Remark 2.1 we have $\sigma_{a}(T) \backslash \sigma_{S B F_{+}^{-}}(T)=\sigma(T) \backslash \sigma_{B W}(T)$ and the last set is empty, since $\sigma(T)$ has no isolated points. Therefore, T satisfies property $(g w)$. Consider the other case, $\operatorname{iso\sigma }(T) \neq \emptyset$. Suppose that $\lambda \in E(T)$. Then λ is isolated in $\sigma(T)$ and hence, by the polaroid condition, λ is a pole of the resolvent of T, i.e. $\operatorname{asc}(T-\lambda I)=d s c(T-\lambda I)<\infty$. By assumption $\alpha(T-\lambda I)<\infty$, so by [1, Theorem 3.1] $\beta(T-\lambda I)<\infty$, and hence $T-\lambda I$ is a Fredholm operator. Therefore, by $2.1, \lambda \in \sigma_{a}(T) \backslash \sigma_{S B F_{+}^{-}}(T)=\sigma(T) \backslash \sigma_{B W}(T)$.. Conversely, if $\lambda \in \sigma_{a}(T) \backslash \sigma_{S B F_{+}^{-}}(T)=\sigma(T) \backslash \sigma_{B W}(T)$ then λ is an isolated point of $\sigma(T)$. Clearly, $0<\alpha(T-\lambda I)$, so $\lambda \in E(T)$ and hence T satisfies property $(g w)$.
(ii). First note that since T has SVEP then $\sigma\left(T^{*}\right)=\sigma(T)=\sigma\left(T^{*}\right)$, see Corollary 2.45 of [1]. Suppose first that $\operatorname{iso\sigma }(T)=\sigma\left(T^{*}\right)=\emptyset$. Then $E\left(T^{*}\right)=\emptyset$. By Theorem 2.15 we have $\sigma_{a}\left(T^{*}\right) \backslash \sigma_{S B F_{+}^{-}}\left(T^{*}\right)=\sigma(T) \backslash \sigma_{B W}(T)=\emptyset$, so T^{*} satisfies property ($\left.g w\right)$. Suppose that $\operatorname{iso\sigma }(T) \neq \emptyset$ and let $\lambda \in E\left(T^{*}\right)$. Then λ is an isolated point of $\sigma\left(T^{*}\right)=\sigma(T)$, hence a pole of the resolvent of T^{*}, since T^{*} is polaroid by Theorem 2.5 of [4]. By assumption $\alpha\left(T^{*}-\lambda I\right)^{p}$ and since the ascent and the descent of $T^{*}-\lambda I^{*}$ are both finite it then follows by Theorem 3.1 of [1] that $\beta(T-\lambda I)=\alpha(T-\lambda I)<\infty$, so $T^{*}-\lambda I^{*} \in g \mathcal{B}$ and hence also $T-\lambda I \in g \mathcal{B}$. Therefore, $\lambda \in \sigma(T) \backslash \sigma_{B W}(T)$ and by Theorem 2.15and Remark 2.1 it then follows that $\lambda \in \sigma_{a}(T) \backslash \sigma_{S B F_{+}^{-}}(T)$. Conversely, if $\lambda \in \sigma_{a}(T) \backslash \sigma_{S B F_{+}^{-}}(T)=\sigma(T) \backslash \sigma_{B W}(T)$, then λ is an isolated point of the spectrum of $\sigma(T)=\sigma\left(T^{*}\right), T-\lambda I \in g \mathcal{B}$, or equivalently $T^{*}-\lambda I^{*} \in g \mathcal{B}$. Since $\alpha\left(T^{*}-\lambda I^{*}\right)=\beta\left(T^{*}-\right.$ λI^{*}) we then have $\alpha\left(T^{*}-\lambda I^{*}\right)>0$ (otherwise $\lambda \notin \sigma\left(T^{*}\right)$). Clearly, $\alpha\left(T^{*}-\lambda I^{*}\right)>0$, since by assumption $T^{*}-\lambda I^{*} \in S F_{+}^{-}\left(X^{*}\right)$, so that $\lambda \in E\left(T^{*}\right)$. Thus T^{*} satisfies property $(g w)$.
2.17. Corollary. Suppose that $T \in \mathbf{B}(X)$. Then the following statements hold:
(i) If T is polaroid and T^{*} has SVEP then property ($g w 1$) holds for T.
(ii) If T is polaroid and T has SVEP then property ($g w 1$) holds for T^{*}.

The following example shows that in the statements (i) of Theorem 2.16 and Corollary 2.17 the assumption that T^{*} has SVEP cannot be replaced by the assumption that T has SVEP.
2.18. Example. Denote by S the unilateral right shift on $\ell^{2}(\mathbb{N})$ and define

$$
V\left(x_{1}, x_{2}, \cdots\right)=\left(0, x_{2}, x_{3}, \cdots\right) \quad \text { for all }\left(x_{n}\right) \in \ell^{2}(\mathbb{N})
$$

Clearly, V is a quasi-nilpotent operator. Let $T=S \oplus V$. We have $\sigma(T)=\mathbf{D}, D$ the closed unit disc of \mathbb{C}, so $\operatorname{iso\sigma }(T)=E(T)=\emptyset$ and hence T is polaroid. Moreover,
$\sigma_{a}(T)=\partial \mathbf{D} \cup\{0\}$. Since $\sigma_{a}(T)$ does not cluster at λT has SVEP at 0 , as well as at the points $\lambda \notin \sigma_{a}(T)$. Since T has SVEP at all points $\partial \sigma(T)$ it then follows that T has SVEP. Finally, $\sigma_{S B F_{+}^{-}}(T)=\partial \sigma(T)$ so $\Delta_{a}^{g}(T)=\{0\} \neq E(T)=\emptyset$, thus T does not satisfy property ($g w 1$) and hence does not satisfy property ($g w$).

Analogously, in the statements (ii) of Theorem 2.16 and Corollary 2.17 the assumption that T has SVEP cannot be replaced by the assumption that T^{*} has SVEP.
2.19. Example. Let us consider the left shift $L \in\left(\ell^{2}(\mathbb{N})\right)$, and let V^{*} be the adjoint of the quasi-nilpotent operator V defined in Example 2.18. We have $L^{*}=R, R$ the unilateral right shift. If we define $W:=L \oplus V^{*}$ then, as observed in Example 2.18 $W^{*}=R \oplus V$ has SVEP. From Example 2.18 we also know that $\sigma(W)=\overline{\sigma\left(W^{*}\right)}=\mathbf{D}$, so $\operatorname{iso\sigma }\left(W^{*}\right)=E\left(W^{*}\right)=\emptyset$ and hence W is polaroid. Moreover, $\sigma_{a}\left(W^{*}\right)=\partial \mathbf{D} \cup\{0\}$. Finally, $\sigma_{S B F_{+}^{-}}\left(W^{*}\right)=\partial \sigma\left(W^{*}\right)$ so $\Delta_{a}^{g}\left(W^{*}\right)=\{0\} \neq E\left(W^{*}\right)=\emptyset$, thus W^{*} does not satisfy property $(g w 1)$ and hence does not satisfy property $(g w)$.
2.20. Example. Let \mathcal{H} be a Hilbert space, an operator T acting on \mathcal{H} is said to be paranormal if $\|T x\|^{2} \leq\left\|T^{2} x\right\|\|x\|$ for all $x \in \mathcal{H}$. Examples of paranormal operators are the p-hyponormal or log-hyponormal operators ([20]). Recall that an operator T is p-hyponormal for some $p>0$, if $\left(T^{*} T\right)^{p} \geq\left(T T^{*}\right)^{p}$ and T is said to be log-hyponormal if T is invertible and $\log T^{*} T \geq \log T T^{*}$. It follows from [18, Lemma 2.3] that a paranormal operator T is polaroid. Moreover a paranormal operator have the SVEP, see [15, Corollary 2.10]. So if T is paranormal, then T^{*} satisfies property ($g w 1$).

A bounded operator $T \in \mathbf{B}(X)$ is said to have property $H(p)$ if for all $\lambda \in \mathbb{C}$ there exists a $p:=p(\lambda) \in \mathbb{N}$ such that:

$$
H_{0}(T-\lambda I)=\operatorname{ker}(T-\lambda I)^{p}
$$

where

$$
H_{0}(T-\lambda I)=\left\{x \in X \left\lvert\, \lim _{n \rightarrow \infty}\left\|(T-\lambda I)^{n} x\right\|^{\frac{1}{n}}=0\right.\right\} .
$$

It is well known that such operators has the SVEP and are polaroid. So if T^{*} has the property $H(p)$, then T has the property ($g w 1$). Oudghiri [27] observed that every generalized scalar operator and every subscalar operator T (i.e. T is similar to a restriction of a generalized scalar operator to one of its closed invariant subspaces) has property $\mathrm{H}(\mathrm{p})$, see $[24]$ for definitions and properties. Consequently, property $H(p)$ is satisfied by p-hyponormal operators and log-hyponormal operators [25, Corollary 2], algebraically w hyponormal operators [31], quasi-class (A, k) [29], algebraically (p, k)-quasihyponormal [32], algebraically $w F(p, r, q)$ operators with $p, r>0$ and $q \geq 1$ [30], M-hyponormal operators [24, Proposition 2.4.9], and totally paranormal operators [2]. Also totally *-paranormal operators have property $H(1)$ [22].

References

[1] P. Aiena, Fredholm and local spectral theory with applications to multipliers, ,Kluwer Acad. Publishers, Dordrecht, 2004.
[2] P. Aiena, F. Villafãne, Weyl's theorem for some classes of operators, Integral Equations Operator Theory, 53, 453-466, 2005.
[3] P. Aiena, Quasi-Fredholm operators and localized SVEP, Acta Sci. Math. (Szeged), 73, 251-263, 2007.
[4] Aiena, P., Guillen, J. and Peñna, P., Property (w) for perturbations of polaroid operators, Linear Algebra Appl., 428, 1791-1802, 2008.
[5] P. Aiena and T.L. Miller, On generalized a-Browder's theorem, Studia Math. 180 No.3, 285-300, 2007.
[6] M. Amouch, Generalized a-Weyl's Theorem and the Single-Valued Extension Property, Extracta Math. 21 No.1, 51-65, 2006.
[7] M. Amouch, M. Berkani, on the property (gw), Mediterr. J. Math., 5, 371-378, 2008.
[8] M. Berkani, On a class of quasi-Fredholm operators, Integral Equations Operator Theory, 34 No.2, 244-249, 1999.
[9] M. Berkani, Index of B-Fredholm operators and generalization of a Weyl theorem, Proc. Amer. Math. Soc., 130, 1717-1723, 2001.
[10] M. Berkani, B-Weyl spectrum and poles of the resolvent, J. Math. Anal. Appl., 272, 596603, 2002.
[11] M. Berkani, J. Koliha, Weyl type theorems for bounded linear operators, Acta Sci. Math. (Szeged), 69 No.(1-2), 359-376, 2003.
[12] M. Berkani, A. Arroud, Generalized weyl's theorem and hyponormal operators, J. Austral. Math. Soc., 76, 1-12, 2004.
[13] M. Berkani, On the equivalence of Weyl theorem and generalized Weyl theorem, Acta Math. Sinica, 272 No.1, 103-110, 2007.
[14] X. H. Cao, a-Browder's theorem and generalized a-Weyl's theorem, Acta Math. Sinica, 23 No.5, 951-960, 2007.
[15] N.N. Chourasia and P.B. Ramanujan, Paranormal operators on Banach spaces, Bull. Austral. Math. Soc., 21 No. 2, 161-168, 1980.
[16] Chenhui Sun, Xiaohong Cao and Lei Dai, Property (w1) and Weyl type theorem, J. Math. Anal. Appl., 363, 1-6, 2010.
[17] L. A. Coburn, Weyl's theorem for nonnormal operators, Michigan Math. J., 13, 285-288, 1966.
[18] R. Curto and Y.M. Han, Weyl's theorem for algebraically paranormal operators, Integral Equations Operator Theory, 47 No.3, 307-314, 2003.
[19] B. P. Duggal and S. V. Djordjevic, Generalized Weyl's theorem for a class of operators satisfying a norm condition II, Math. Proc. Royal Irish Acad., 104A, 1-9, 2006.
[20] T. Furuta, M. Ito and T. Yamazaki, A subclass of paranormal operators including class of log-hyponormal and several related classes, Sci. Math., 1, 389-403, 1998.
[21] R. E. Harte, Invertibility and singularity for bounded linear operators, Marcel Dekker, New York, 1988.
[22] Y.M. Han, An-Hyun Kim, A note on *-paranormal operators, Integral Equations Operator Theory, 49, 435-444, 2004.
[23] H. Heuser, Functional Analysis, Dekker, New York, 1982.
[24] K. B. Laursen and M. M. Neumann, An introduction to local spectral theory, Oxford, Clarendon, 2000.
[25] C. Lin, Y. Ruan, Z. Yan, p-Hyponormal operators are subscalar, Proc. Amer. Math. Soc., 131 No.9, 2753-2759, 2003.
[26] M. Mbekhta, Sur la th'eorie spectrale locale et limite de nilpotents, Proc. Amer. Math. Soc., 3, 621-631, 1990.
[27] M. Oudghiri, Weyl's and Browder's theorem for operators satisfying the SVEP, Studia Math., 163, 85-101, 2004.
[28] V. Rakočević, Operators obeying a-Weyl's theorem, Rev. Roumaine Math. Pures Appl., 10, 915-919, 1986.
[29] M.H.M.Rashid, Property (w) and quasi-class (A, k) operators, Revista De Le Unión Math. Argentina, 52, 133-142, 2011.
[30] M.H.M.Rashid, Weyl's theorem for algebraically $w F(p, r, q)$ operators with $p, r>0$ and $q \geq 1$, Ukrainian Math. J., 63 No.8, 1256-1267, 2011.
[31] M.H.M.Rashid and M.S.M.Noorani, Weyl's type theorems for algebraically w-hyponormal operators, Arab. J. Sci. Eng., 35,103-116, 2010.
[32] M.H.M.Rashid and M.S.M.Noorani, Weyl's type theorems for algebraically ($p, k)$ quasihyponormal operators, Commun. Korean Math. Soc., 27, 77-95, 2012.

[^0]: *Dept. of Mathematics \& Statistics, Faculty of Science, Mu'tah University, Al-karak, Jordan E-mail: malik_okasha@yahoo.com

